
Approximation Complexity

Optimisation problems can be grouped intoapproximation

complexity classes depending on the quality of the approximation

algorithms that they have.

We already mentioned NPO.

The class APX contains all NPO problems which admit a polynomial

timek-approximation algorithm forsome fixed constantk > 1.

The class PTAS contains all NPO problems which admit a

polynomial timek-approximation algorithm forany constantk > 1.

3

Approximation schemes

The class PTAS takes its name and is characterised in terms ofa

particular family of approximation algorithms.

A polynomial time approximation scheme (or PTAS) for an

NPO problem P is an algorithmA which takes as input an

x ∈ I and anerror bound ε and has a performance ratio

Rε(x, A(x)) ≤ 1 + ε

The algorithmA runs in time polynomial in the input order.

The PTAS is a “Fully”-PTAS (FPTAS) if its run time is poly-

nomial inε−1 as well.

4

Approximation scheme for scheduling

Recall the multiprocessor scheduling problem:n jobs have run times

p1, . . . , pn.

They are to be scheduled onm machines/processors so as to

minimize the finish time.

We have already seen some approximation algorithms with bounded

ratios for this problem.

We now present a PTAS for this problem due to Graham.

Assume thatn > m (m should be a small constant), and that the

run-times are arranged in non-increasing order (i.e.i < j implies that

pi ≥ pj). Note that the latter assumption can be easily fulfilled by

sorting the jobs based on their run-times.

5

Parametrised algorithm

Consider now the algorithmAk which is defined for each integer

k ∈ [0, n].

Input: p1, . . . , pn, with pi ≥ pi+1 for eachi ∈ {1, . . . , n − 1} and

processor countm.

Output: A feasible schedule.

1. Schedule the firstk jobs optimally.

2. Starting with the partial schedule obtained in the previous step,

schedule the remaining jobs greedily using the LPT rule.

Recall that the LPT rule picks the next largest unscheduled job and

schedules it on a processor which has the least load currently.

6



Analysis

This algorithm clearly runs in polynomial time ... but careful!

A better pseudo-code:

SCHEDULEk (~p, m)

let n be the number of jobs;

repeat
allocatep1, . . . , pk in the “next possible way”

run LPT onpk+1, . . . , pn

until (“tried them all”);

7

If k ≤ m then the first few possible ways are

Proc 1 Proc 2 . . . Prock − 1 Prock Prock + 1 Prock + 2 . . .

p1 p2 . . . pk−1 pk empty empty

p1 p2 . . . pk−1 empty pk empty

p1 p2 . . . empty pk−1 pk empty

p1 p2 . . . pk−2 pk−1 pk empty

empty p1 . . . pk−2 pk−1 pk empty

empty p1 . . . pk−2 pk−1 empty pk

Similar (slightly more complicate) enumeration scheme needed if

k > m.

8

The algorithm above has approximation ratio1 + m−1

m+k−1
.

Let K denote the finish time of the schedule found in Step 1.

Clearly, if c(x, Ak(x)) = K then this algorithm has found an optimal

schedule.

Assume now that the finish time of the total schedule is strictly

greater thanK (in symbols, assume thatc(x, Ak(x)) > K).

Then it must be the case that there is some jobJj with j > k that

finishes at timec(x, Ak(x)).

This implies that all processors are busy during the time interval

[0, c(x, Ak(x)) − pj ] since otherwise the jobJj would have been

scheduled earlier on. (Notice that once a processor becomesidle, it

remains idle till the end of the schedule.)

9

Let T =
∑n

i=1
pi be the total run-time of then jobs. We now conclude that

T ≥ m(c(x, Ak(x)) − pj) + pj .

Since the jobs are arranged in non-increasing order of run-times, we have that

T ≥ mc(x, Ak(x)) − (m − 1)pk+1.

Observing that opt(x) is at leastT/m, we have the following inequality.

c(x,Ak(x)) ≤ opt(x) + (1 − 1/m)pk+1

If we show thatpk+1 is not too large in terms of opt(x), we will be done.

Consider thek largest jobs which were scheduled in Step 1. In an optimal

schedule, some processor must be assigned at least1 + bk/mc of these jobs.

Since each of these has run-time at least as large aspk+1, we conclude that

opt(x) ≥ (1 + bk/mc)pk+1

which, combined with previous inequalities gives us the desired result.

10



Arbirarily good algorithm

We can now extract the promised PTAS from the above result.

Let Aε-good, for anyε > 0, be the algorithmAk with k chosen such

that the performance ratio is at most1 + ε. (Exercise. Verify that this

will be the case providedk ≥ 1−ε
ε

m).

11

Initial listing

We have left out one crucial detail in the description of the algorithm

Ak. How does Step 1 get implemented? It is not very hard to see that

there is a brute-force algorithm which compute an optimal schedule

in timeO(mk), for k jobs onm processors.

The running time of this step is polynomially bounded in the length

of x for sufficiently small values ofm, say for constantm.

12

Concluding remarks and exercises

Algorithm Aε-good is by no means a practical algorithm even for
relatively small value ofm.

The running time is exponential inε−1 and so ratios arbitrarily close
to 1 will not be achieved in reasonable time.

This trade-off between running-time and approximation guarantees is
an important feature of any approximation scheme. In general, we
would like the trade-off to be such that the running time doesnot
increase too fast with a decrease in the performance ratio.

Exercises.

1. Exactly how large canm be without making the time of the

approximation scheme super-polynomial?

2. It is instructive to compute the running time ofAε-good for small values

of ε. For example, what is the running time whenm = 10 andε = 0.1?

13

An example

Assumem = 2, andn = 10, and

p1 = 20, p2 = 12, p3 = p4 = 6, p5 = 5, p6 = p7 = 3, p8 = p9 = 2, p10 = 1.

We want to look atA 1

4
-good, that finds a1 + 1

4
solution (i.e.ε = 0.25).

We then setk = 1−ε
ε

m = 6.

We then run through all possible ways of assigning the six heaviest

jobs.

In each case we complete the assignment greedily.

14



Approximation scheme for KNAPSACK

Definition: A collection of items is given, each having a sizesi and a

profit pi associated with them. The goal is to pack items in a

knapsack of capacityU to maximise the total profit.

Greedy algorithm ... not enough even for constant approximation.

Approximation scheme? Along similar lines as for multiprocessor

scheduling.

15

Existence of good approximation algorithms

A poly-time approximation scheme for an optimisation problem is

rightfully considered the next best thing to a poly-timeexact

algorithm.

For NP-hard optimisation problems an important question iswhether

such a scheme exists.

Also, even if the previous question is answered in the negative one

may still be able to come up with a fixed constant approximation

ratio.

Since individual questions of this sort are rather hard to answer, in the

following sections we will build up on the theory of NP-completeness

to prove a number of results predicated on “P 6=NP”.

16

More specifically

1. We will define a suitable notion ofreducibility (roughly,

translation) between different problems. A reduction froma

“hard-to-approximate” problemΠ1 to a problemΠ2 would

imply thatΠ2 is “hard to approximate”, in the sense that a “good

approximation” forΠ2 would imply P=NP.

2. We will then build a library of reductions, thus enlargingthe

class of problems that are hard to approximate.

3. Finally we will describe a reduction from an NP-complete

problem to an optimisation problem. This reduction along with

all other reductions shown earlier on imply the hardness of

approximating these problems.

17


