Approximation Complexity

Optimisation problems can be grouped iafgproximation
complexity classes depending on the quality of the approximation
algorithms that they have.

We already mentioned NPO.

The class APX contains all NPO problems which admit a polyiabm
time k-approximation algorithm fosome fixed constant > 1.

The class PTAS contains all NPO problems which admit a
polynomial timek-approximation algorithm foany constantc > 1.

Approximation scheme for scheduling

Recall the multiprocessor scheduling problemjobs have run times
P1y---yDPn-

They are to be scheduled @nmachines/processors so as to

minimize the finish time.

We have already seen some approximation algorithms withdbexal
ratios for this problem.

We now present a PTAS for this problem due to Graham.

Assume that: > m (m should be a small constant), and that the
run-times are arranged in non-increasing order {i-€.j implies that
pi > p;). Note that the latter assumption can be easily fulfilled by
sorting the jobs based on their run-times.

Approximation schemes

The class PTAS takes its name and is characterised in terms of
particular family of approximation algorithms.

A polynomial time approximation scheme (or PTAS) for an
NPO problem P is an algorithm which takes as input gn
x € 7 and arerror bound € and has a performance ratio

Re(z,A(z)) < 1+e

The algorithmA runs in time polynomial in the input ordey.

The PTAS is a “Fully’-PTAS (FPTAS) if its run time is poly
nomial ine~! as well.

Parametrised algorithm

Consider now the algorithm;, which is defined for each integer
k€ [0,n].

Input: p1,...,pn, Withp; > p;yq foreachi € {1,...,n — 1} and
processor count.

Output: A feasible schedule.
1. Schedule the firgt jobs optimally.

2. Starting with the partial schedule obtained in the presistep,
schedule the remaining jobs greedily using the LPT rule.

Recall that the LPT rule picks the next largest unschedubdjpd
schedules it on a processor which has the least load cuyrrentl

Analysis

This algorithm clearly runs in polynomial time ... but carf

A better pseudo-code:

SCHEDULE, (p, m)
let n be the number of jobs;
repeat
allocatepy, ...
run LPT onpg41,--.,0n
until (“tried them all”);

, Pr In the “next possible way

m—1

The algorithm above has approximation ratie- ..

Let K denote the finish time of the schedule found in Step 1.

Clearly, if ¢(x, Ax(x)) = K then this algorithm has found an optima|
schedule.

Assume now that the finish time of the total schedule is $jrict
greater thari((in symbols, assume thatz, A (z)) > K).

Then it must be the case that there is somejptwith j > k that
finishes at time:(z, A (x)).

This implies that all processors are busy during the timervat
[0, c(x, Ar(x)) — p;] since otherwise the jol; would have been
scheduled earlier on. (Notice that once a processor beciieest
remains idle till the end of the schedule.)

If & < m then the first few possible ways are

Procl Proc2 Prock —1 Prock Prock+1 Prock+ 2
p1 D2 Pr—1 Pk empty empty

p1 D2 Pk—1 empty pg empty

D1 D2 empty Pk—1 Dk empty

D1 D2 Pk—2 Pk—1 Dk empty
empty p1 Pk—2 Pk—1 Pk empty
empty p1 Pk—2 Pk—1 ~ empty Pk

Similar (slightly more complicate) enumeration schemedeesaf

k > m.

LetT =" | p; be the total run-time of the jobs. We now conclude that
T = m(c(z, Ax(x)) — pj) + 5"
Since the jobs are arranged in non-increasing order ofirnest we have that
T > me(z, Ak(z)) — (m — 1)pry1.
Observing that offt:) is at leastl’/m, we have the following inequality.
c(z, Ag(z)) < opt(z) + (1 — 1/m)pri1
If we show thaipy1 is not too large in terms of ofit), we will be done.

Consider thek largest jobs which were scheduled in Step 1. In an optimal
schedule, some processor must be assigned atlleast /m | of these jobs.
Since each of these has run-time at least as largg_as we conclude that

opt(x) > (1 + [k/m])pr+1

which, combined with previous inequalities gives us thdrddgesult.

10

Arbirarily good algorithm
We can now extract the promised PTAS from the above result.

Let Ac.go0a, fOr anye > 0, be the algorithmd,, with £ chosen such
that the performance ratio is at mdst e. (Exercise. Verify that this
will be the case provided > 1=<m).

11

Initial listing

We have left out one crucial detail in the description of tlgodathm
Aj. How does Step 1 get implemented? It is not very hard to see t
there is a brute-force algorithm which compute an optimhésale

in time O(m*), for k jobs onm processors.

The running time of this step is polynomially bounded in thedth
of z for sufficiently small values ofn, say for constant.

na

12

Concluding remarks and exercises

Algorithm A..400diS by N0 means a practical algorithm even for
relatively small value ofn.

The running time is exponential #T! and so ratios arbitrarily close
to 1 will not be achieved in reasonable time.

This trade-off between running-time and approximationrgotees is
an important feature of any approximation scheme. In génsea

would like the trade-off to be such that the running time doets
increase too fast with a decrease in the performance ratio.

Exercises.

1. Exactly how large cam be without making the time of the
approximation scheme super-polynomial?

2. ltis instructive to compute the running time 4f.go0q for small values
of e. For example, what is the running time when= 10 ande = 0.1?

13

An example

Assumem = 2, andn = 10, and

p1 = 20,p2 =12, p3 = ps = 6,p5 = 5,p6 = p7 = 3,ps = P9 = 2,p10 = 1.

We want to look atd 1 44,4 that finds al + 1 solution (i.e.e = 0.25).
4

We then set: = 1=<m = 6.

We then run through all possible ways of assigning the sixiest
jobs.

In each case we complete the assignment greedily.

14

Approximation scheme for KNAPSACK

Definition: A collection of items is given, each having a sizeand a
profit p; associated with them. The goal is to pack items in a
knapsack of capacity/ to maximise the total profit.

Greedy algorithm ... not enough even for constant appraxama

Approximation scheme? Along similar lines as for multiprssor
scheduling.

More specifically

1. We will define a suitable notion @éducibility (roughly,
translation) between different problems. A reduction fram
“hard-to-approximate” problerfl; to a problemiI, would
imply thatII, is “hard to approximate”, in the sense that a “goo
approximation” forll; would imply P=NP.

2. We will then build a library of reductions, thus enlargihg
class of problems that are hard to approximate.

3. Finally we will describe a reduction from an NP-complete
problem to an optimisation problem. This reduction alonthwi
all other reductions shown earlier on imply the hardness of
approximating these problems.

[N

15

Existence of good approximation algorithms

A poly-time approximation scheme for an optimisation pesblis
rightfully considered the next best thing to a poly-tiexact
algorithm.

For NP-hard optimisation problems an important questianhisther
such a scheme exists.

Also, even if the previous question is answered in the negaine
may still be able to come up with a fixed constant approxinmatio
ratio.

Since individual questions of this sort are rather hard swaam, in the
following sections we will build up on the theory of NP-corafgness
to prove a number of results predicated oa=N\pP".

16

17

