
Keywords

The following terms should be well-known to you.

1. P, NP, NP-hard, NP-complete.

2. (polynomial-time) reduction.

3. Cook-Levin theorem.

4. NPO problems. Instances. Solutions.

1

Approximation Complexity Theory: historical
remarks

In general, proving the NP-hardness of an optimization problem

involves areduction from SAT (or any other NP-complete problem)

to the problem.

To prove the hardness of approximation, this reduction mustproduce

a gap in the value of the optimum.

For instance, proving the NP-hardness of approximating themaximum clique

problem within a factorg requires coming up with a reduction from SAT to

CLIQUE that maps satisfiable formulae to graphs with clique number at least

K (for someK), and unsatisfiable formulae to graphs with clique number at

mostK/g.

2

For a long time it was unclear how to construct suchgap producing

reductions for CLIQUE and many other important optimization

problems.

The Cook-Karp-Levin technique seemed more suited for proving the

hardness of decision problems (for example, non-optimization

problems such as SAT or TILING) than of optimization problems.

Recent work has yielded a fairly general technique for constructing

gap-producing reductions. This new technique, relies uponnew

probabilistic characterizations of the NP class in terms ofinteractive

proof systems. The most well-known such characterization is the

so-called PCP Theorem, written as NP = PCP(log n, 1).

3

What’s PCP?

Remember Interactive Proof Systems?

A verifier is (r(n), q(n))-restricted if on each input of sizen it uses

at mostO(r(n)) random bits for its computation and queries at most

O(q(n)) bits of the P-to-V communication tape.

A languageL is in PCP(r(n), q(n)) if there is an

(r(n), q(n))-restricted verifierM that probabilistically checks

membership proofs forL.

4

The proof of the PCP Theorem involves complicated algebraic

techniques from complexity theory, and will not be given here.

Luckily, understanding the proof is not a prerequisite for using the

theorem in inapproximability results.

In particular, we will look at few major inapproximability results, but

the reader will only need some familiarity with the basic notions of

NP-completeness (the first few chapters of the well-known book by

Garey and Johnson provide all necessary background).

In our treatment we will divide problems into two broad classes,

based on the approximation ratio that is provably hard to achieve.

These approximation ratios are, respectively,1 + ε for some fixed

ε > 0, andω(n). Inapproximability results for problems within a

class (sometimes also across classes) share common ideas. Note that

problems in Class I cannot belong to PTAS, unless P = NP.

5

MAX 3-SAT

The input is a 3CNF boolean formulaφ(x1, x2, x3), like

(x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

The goal is to find an assignment that maximises the number of satisfied

clauses.

Solutions are truth assignments, i.e. assignments of values in{TRUE,

FALSE} to the variables in the formula. For instance one could setx1 andx2

to FALSE andx3 to TRUE. We will denote truth-assignments by Greek letters

like α andβ.

Cost of a truth assignment is thefraction of clauses that it satisfies. In the

examplec(φ, α) = 3/4.

We let optMax3SAT(φ) denote the maximum value of the objective function

for a 3CNF formulaφ.

6

Plan

Reductions from MAX 3-SAT will be used to prove all

inapproximability results in this notes. Thus Max 3-SAT plays a role

in the theory of inapproximability analogous to the one played by

3SAT in the classical theory of NP-completeness.

First we need to know that MAX 3-SAT itself is NP-hard to

approximate! (analogue of the Cook-Levin Theorem).

7

A very important result

There is a fixedε > 0 and a polynomial time reduction

h from SAT to MAX 3-SAT such that for every boolean

formulaφ:

φ ∈ SAT ⇒ optMax3SAT(h(φ)) = 1

φ 6∈ SAT ⇒ optMax3SAT(h(φ)) < 1

1+ε

In other words achieving a ratio1 + ε for MAX 3-SAT is

NP-hard.

The proof of this result is much beyond the scope of this module. We

will however repeatedly invoke this result to prove furthercomplexity

results.

8

Gap-preserving reductions

Let Π andΠ′ be two maximization problems. Agap-preserving

reduction from Π to Π′ with parameters (c, ρ), (c′, ρ′) is a

polynomial-time algorithmf . For each instancex of Π, algorithmf

generates an instancex′ = f(x) of Π′ such that the optima ofx and

x′ satisfy the following property.

opt(x) ≥ c ⇒ opt(x′) ≥ c′,

opt(x) < c
ρ
⇒ opt(x′) < c′

ρ′ .

Herec andρ are (positive) values that depend on|x|, the size of

instancex, andc′, ρ′ are positive values depending on|x′|. Also,

ρ, ρ′ ≥ 1.

9

Remarks

(1) Suppose we wish to prove the inapproximability of problem Π′. If we

have a polynomial time reductionh from SAT toΠ that ensures, for every

boolean formulaφ, that

φ ∈ SAT⇒ opt(h(φ)) ≥ c, and

φ 6∈ SAT ⇒ opt(h(φ)) < c

ρ
,

then composing this reduction with the gap-preserving reduction gives an

algorithm that translates instances of SAT into instances of Π′ such that:

φ ∈ SAT⇒ opt(f(h(φ))) ≥ c′, and

φ 6∈ SAT⇒ opt(f(h(φ))) < c
′

ρ′ .

This algorithm shows that achieving an approximation ratioρ′ for Π′ is

NP-hard. This idea of composing reductions underlies our inapproximability

results.

10

(2) Gap-preserving reductions map solutions to solutions in an

obvious way. For instance, given a solutionx′ of value at leastc′, a

solution tox of value at leastc can be produced in polynomial time.

(3) The above definition can be modified in an obvious way when one

(or both) of the optimization problems involve minimization

Let P andQ be two minimisation problems. Agap-preserving

reduction from P to Q with parameters(c, ρ), (c′, ρ′) is a poly-

nomial time algorithmf translating each instancex of P into

f(x) so that

opt(x) ≤ c ⇒ opt(f(x)) ≤ c′

opt(x) > ρc ⇒ opt(f(x)) > ρ′c′

11

(4) The gap-preserving reduction could behave arbitrarilyon an

instancex for which c/ρ ≤ opt(x) < c. Thus its “niceness” holds

only on a partial domain.

Papadimitriou and Yannakakis (1991) (see the chapters on

approximation algorithms in Papadimitriou textbook) defined an

alternative notion of reduction (L-reduction), whose “niceness” can

be maintained onall instances ofΠ. An L-reduction, coupled with

an approximation algorithm forΠ′, yields an approximation

algorithm forΠ. This statement is false for a gap-preserving

reduction. On the other hand, for exhibiting merely the hardness of

approximation, it suffices (and is usually easier) to find

gap-preserving reductions.

(5) The name “gap-preserving” is a bit inaccurate, since thenew gap

ρ′ could be much bigger or much smaller than the old gapρ.

12

PTAS vs APX

We start this section with a “familiar” example of a hard problem:

CLIQUE. This proof of hardness will be used later to show a stronger

inapproximability result for CLIQUE.

For everyε > 0, there is a gap-preserving reduction

from MAX 3-SAT to CLIQUE that has parameters(c, 1+

ε), (cN/3, 1 + ε) whereN is the number of vertices in

the new graph. In other words, CLIQUE does not have a

PTAS.

13

Argument

Let φ be a 3-CNF formula in variablesx1, . . . , xn with m clauses.

By replicating literals within clauses we can ensure that each clause

has 3 literals (e.g., if the clause isxi then change it toxi ∧ xi ∧ xi).

Construct a graphh(φ) on3m vertices as follows. Represent each

clause(`1 ∧ `2 ∧ `3) by a triplet of vertices, one for each literal.

Put no edge between vertices within the same triplet.

If u, v are vertices in two different triplets, put an edge between them

iff the literals they stand for are NOT the negations of each other.

14

A clique in this graph can contain only one vertex per triple.

Furthermore, it cannot contain two vertices representing literals that

are negations of each other.

In other words, by looking at the literals represented in theclique we

can write in a natural way a partial assignment that satisfiesas many

clauses as there are vertices in the clique. Thus,

optMax3SAT(φ) = c ⇒ ω(h(φ)) = cm

optMax3SAT(φ) < c
1+ε

⇒ ω(h(φ)) < cm
1+ε

15

~

2x

3x

x1

x1

2x

x1

2x

3x

2x

3x

x1

3x

~ ~

~

~

~

15-10

~

2x

3x

x1

x1

2x

x1

2x

3x

2x

3x

x1

3x

~ ~

~

~

~

15-11

~

2x

3x

x1

x1

2x

x1

2x

3x

2x

3x

x1

3x

~ ~

~

~

~

15-12

Vertex cover

We already know the following relationships

• ω(G) = α(G)

• τ(G) = |V (G)| − α(G)

Here is the main inapproximability result for vertex cover.

For everyε > 0, there is a gap-preserving reduction

from MAX 3-SAT to VERTEX COVER that has param-

eters(c, 1 + ε), ((3− c)m, 1 + ε) wherem is the number

of clauses of the given formula. In other words, VERTEX

COVER does not have a PTAS.

16

Argument

Given an instance of the MAX 3-SAT problemφ onn variables and

m clauses, define a graphGφ whose vertices areφ’s literals and

whose edges join pairs of literals in the same clause and pairs of

complementary literals in different clauses (this graph has3m

vertices).

Assume now that there exists an assignmentα satisfying at leastcm

clauses ofφ, then we can pick a distinct literal inGφ from each

triplet corresponding to a satisfied clause. LetU be this set. The set

V (Gφ) \ U is a vertex cover inGφ of size at most3m − cm.

Conversely if there exists an assignmentα satisfying at mostcm
1+ε

clauses ofφ, then the resulting cover (built in exactly the same way)

will have size at least(3 − c
1+ε

)m which is at least3−c
1+ε

m.

17

APX−complete

MultiProcScheduling

VertexCover

Max3SAT
Clique

PTAS

APX

NPO

18

