Keywords

The following terms should be well-known to you.
1. P, NP, NP-hard, NP-complete.
2. (polynomial-time) reduction.
3. Cook-Levin theorem.

4. NPO problems. Instances. Solutions.

Approximation Complexity Theory: historical
remarks

In general, proving the NP-hardness of an optimization lerob
involves areduction from SAT (or any other NP-complete problem)
to the problem.

To prove the hardness of approximation, this reduction mrsiuce
agap in the value of the optimum.

For instance, proving the NP-hardness of approximatingrdeémum clique
problem within a factorg requires coming up with a reduction from SAT to
CLIQUE that maps satisfiable formulae to graphs with clique numbleaat
K (for someK), and unsatisfiable formulae to graphs with clique number @t
mostK/g.

For a long time it was unclear how to construct sgep producing
reductions for CIQUE and many other important optimization
problems.

The Cook-Karp-Levin technique seemed more suited for pgpthie
hardness of decision problems (for example, non-optintnat
problems such as SAT or TILING) than of optimization probgem

Recent work has yielded a fairly general technique for coting
gap-producing reductions. This new technique, relies upn
probabilistic characterizations of the NP class in termisitgfractive
proof systems. The most well-known such characterizatdhe
so-called PCP Theorem, written as NP = RIcEn, 1).

What's PCP?

Remember Interactive Proof Systems?

A verifier is (r(n), ¢(n))-restricted if on each input of size it uses
at mostO(r(n)) random bits for its computation and queries at mos
O(q(n)) bits of the P-to-V communication tape.

A languageL is in PCRr(n), ¢(n)) if there is an

(r(n), q(n))-restricted verifietM that probabilistically checks
membership proofs fof..

The proof of the PCP Theorem involves complicated algebraic
techniques from complexity theory, and will not be giveneher

Luckily, understanding the proof is not a prerequisite feing the
theorem in inapproximability results.

In particular, we will look at few major inapproximabilitgsults, but
the reader will only need some familiarity with the basicioons of
NP-completeness (the first few chapters of the well-knowwkhy
Garey and Johnson provide all necessary background).

In our treatment we will divide problems into two broad clkess
based on the approximation ratio that is provably hard téezeh
These approximation ratios are, respectively ¢ for some fixed

e > 0, andw(n). Inapproximability results for problems within a
class (sometimes also across classes) share common idgaghat
problems in Class | cannot belong to PTAS, unless P = NP.

MAX 3-SAT
The input is a 3CNF boolean formujgx1, 2, x3), like
(Il V -z V xg) AN (Il V xo V —|x3) A (—|x1 V xo V Ig) AN (Il Vxo V —\xg)

The goal is to find an assignment that maximises the numbetisfied
clauses.

Solutions are truth assignments, i.e. assignments of ¥aueT RUE,

FALSE} to the variables in the formula. For instance one couldcsetndz

to FALSE andx3 to TRUE. We will denote truth-assignments by Greek lette
like o andg.

Cost of a truth assignment is tf@ction of clauses that it satisfies. In the
examplec(¢, o) = 3/4.

We let optraxssat (¢) denote the maximum value of the objective function
for a 3CNF formulap.

n

Plan

Reductions from Mx 3-SAT will be used to prove all
inapproximability results in this notes. Thus Max 3-SATyda role
in the theory of inapproximability analogous to the one plapy
3SAT in the classical theory of NP-completeness.

First we need to know that Mx 3-SAT itself is NP-hard to
approximate! (analogue of the Cook-Levin Theorem).

A very important result

There is a fixed > 0 and a polynomial time reductign
h from SAT to Max 3-SAT such that for every boolean
formula¢:

¢ € SAT = optyaxssar (h(¢)) = 1
¢ & SAT = optyassar(h(9)) <
In other words achieving a ratio+ ¢ for MAx 3-SAT is
NP-hard.

The proof of this result is much beyond the scope of this madvile
will however repeatedly invoke this result to prove furtbemplexity
results.

Gap-preserving reductions

Let IT andII’ be two maximization problems. gap-preserving
reduction fromII to II" with parameters (¢, p), (¢, p') is a
polynomial-time algorithrmy. For each instance of II, algorithm f
generates an instaneé = f(z) of I’ such that the optima of and
2’ satisfy the following property.

opt(z) > ¢ = opt(z’) > ¢,

opt(z) < £ = opt(z') < .

Herec andp are (positive) values that depend |of, the size of
instancer, andc’, p’ are positive values depending fri|. Also,
psp > 1.

(2) Gap-preserving reductions map solutions to solutiarai
obvious way. For instance, given a solutiohof value at least’, a
solution tox of value at least can be produced in polynomial time.

(3) The above definition can be maodified in an obvious way when ¢
(or both) of the optimization problems involve minimizatio

Let P and@ be two minimisation problems. gap-preserving
reduction from P to Q with parametergc, p), (¢, p') is a poly-
nomial time algorithmf translating each instaneeof P into
f(x) so that

opt(z) < ¢ = opt(f(z)) < ¢

opt(z) > pc = opt(f(z)) > p'c

11

Remarks

(1) Suppose we wish to prove the inapproximability of probld’. If we
have a polynomial time reductidnfrom SAT toII that ensures, for every
boolean formulap, that

¢ € SAT = opt(h(¢)) > ¢, and
¢ & SAT = opt(h(¢)) < £,

then composing this reduction with the gap-preservingetdn gives an
algorithm that translates instances of SAT into instané¢d$ such that:

¢ € SAT = opt(f(h(¢))) > ¢, and

’

¢ & SAT = opt(f(h(¢))) < 7.

This algorithm shows that achieving an approximation ratifor I is
NP-hard. This idea of composing reductions underlies cappnoximability
results.

(4) The gap-preserving reduction could behave arbitrarilyan
instancer for whichc¢/p < opt(x) < ¢. Thus its “niceness” holds
only on a partial domain.

Papadimitriou and Yannakakis (1991) (see the chapters on
approximation algorithms in Papadimitriou textbook) deéiran
alternative notion of reduction (L-reduction), whose ‘&riess” can
be maintained oall instances ofl. An L-reduction, coupled with
an approximation algorithm fdi’, yields an approximation
algorithm forII. This statement is false for a gap-preserving
reduction. On the other hand, for exhibiting merely the hass of
approximation, it suffices (and is usually easier) to find
gap-preserving reductions.

(5) The name “gap-preserving” is a bit inaccurate, sincentwve gap
p’ could be much bigger or much smaller than the old gap

10

12

PTASvs APX

We start this section with a “familiar” example of a hard peoh:
CLIQUE. This proof of hardness will be used later to show a stronger
inapproximability result for CIQUE.

A cligue in this graph can contain only one vertex per triple.

Furthermore, it cannot contain two vertices representitegdls that
are negations of each other.

In other words, by looking at the literals represented indicpue we
For everye > 0, there is a gap-preserving reduction can write in a natural way a partial assignment that satiaesany
from MAX 3-SAT to QLIQUE that has parametes, 1+ clauses as there are vertices in the clique. Thus,

€),(cN/3,1 + €) where N is the number of vertices i OPtyaxssat (@) = ¢ = w(h(¢)) = cm

the new graph. In other words,LQUE does not have g

>

PTAS. OptuaxasaT(®) < 15 = w(h(9)) < {7+
13 15
Argument
Let ¢ be a 3-CNF formula in variables, . . ., z,, with m clauses.

By replicating literals within clauses we can ensure thahedause
has 3 literals (e.g., if the clauseasthen change it ta:; A z; A x;).

Construct a graph(¢) on 3m vertices as follows. Represent each
clause({; A €5 A L3) by a triplet of vertices, one for each literal.
Put no edge between vertices within the same triplet.

If u, v are vertices in two different triplets, put an edge betwdemt
iff the literals they stand for are NOT the negations of eaitien

14

15-10

15-11

15-12

Vertex cover

We already know the following relationships
e w(G)=a(G)
o 7(G) = [V(G)] - a(G)

Here is the main inapproximability result for vertex cover.

For everye > 0, there is a gap-preserving reduction
from MAX 3-SAT to VERTEX COVER that has param
eters(c, 1+ ¢), ((3 — ¢)m, 1 + €) wherem is the numbey
of clauses of the given formula. In other wordssRTEX
CovVEeR does not have a PTAS.

16

Argument

Given an instance of the Mk 3-SAT problemy onn variables and
m clauses, define a grajgh, whose vertices arg’s literals and
whose edges join pairs of literals in the same clause and phir
complementary literals in different clauses (this grapthha
vertices).

Assume now that there exists an assignneesatisfying at leastm
clauses ofy, then we can pick a distinct literal i, from each

triplet corresponding to a satisfied clause. Uebbe this set. The set
V(Gy) \ U is a vertex cover iz, of size at mos8m — cm.
Conversely if there exists an assignmargatisfying at most
clauses ofp, then the resulting cover (built in exactly the same way
will have size at least3 — £,)m which is at leas=<m.

17

- _ APX-complete

MultiProcScheduling

18

