For anye > 0 approximating CIQUE with ratio 1 4 € is NP-hard
wheren is the number of vertices in the input graph.
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MultiProcScheduling There is are > 0 such that approximating lGQUE with ratio n¢
is NP-hard, where is the number of vertices in the input graph.

Significance

(Rather negative result) tfwas% and the largest cliques in graphs o
n vertices had siz&(,/n) we would not be guaranteed to find (in

VertexCover polynomial time) a clique with more thaf(1) vertices.

(Better picture in practice) On average the largest cliqpiesn
vertex graph chosen at random have $iéog n) (therefore
PTAS exhaustive search should give us, in polynomial time, soowelg
candidates).
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Beyond APX, the CLIQUE problem

The hardness result forl@UE relies upon its interesting
self-improvement behavior when we take graph products. The next
example describes this behavior.

For a graphG = (V, E) let E denoteE with all self-
loops added, that is? = E U {(u,u) : v € V}. For
graphsG; = (V4, E1) andGy = (Va, E»), their product
G, x G5 is the graph whose vertex set is the Betx V5,
and edge set is

{((u1,v1), (u2,v2)) : (u1,u2) € E1 A (v1,v2) € En}

Self-improvement technique

Now suppose a reductignexists from SAT to CIQUE, such that the
graph produced by the reduction has clique number elttwar

(1 — €)l, depending on whether or not the SAT formula was
satisfiable or not.

Claim: Itis NP-hard to approximate KTQUE with any constant ratio.

Suppose we had@approximation algorithmA for CLIQUE.
Choosek so thatc < (1 —¢)~* (e.9.k = [log, (; _,, ¢] would
do).

To decide SAT reduce it to IGQUE, then compute Lel, be the
product ofh(G) with itself k£ times.

w(H) is eitherl” or (1 — €)*1*.

Butc < (1 — ¢)~*, hence you can us to verify whether the
optimal cliques imh(G)* are “small” or “large”.

This decides SAT deterministically in polynomial time!

Generalisation o&* we saw last week.
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(2.b)

Letw(G) be the size of the largest clique in a graph. It is easily
checked tha (G x G2) = w(G1) - w(Ga).

Key property. (Self-improvement) The gap in clique numbers,
(1 —¢)~*, can be made arbitrarily large by increasingnough.

Note however thatl has size:“®), sok must remairO(1) if the
above construction has to work in polynomial time.




The rapid increase in problem size when using self-imprammay
seem hard to avoid. Surprisingly, the following combinitioobject
often allows us to do just that.

Let n be an integer. An,k,a) booster is a collection
S of subsets of 1,2,...,n}, each of sizé:. For every
subsetd C {1,2,...,n}, the sets in the collection that
are subsets ofl constitute a fractioh betweer(% —a)k
and (2l o)¥ of all sets inS.

@ When!4l < 1.1q, the quantily(ﬂ — a)* should be considered to be 0.
n n

More specifically, takes = 7 andk = 3. The following collection of
subsets 0f1,2,3,4,5,6, 7} is a (3,7,0)-booster.

{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,5},
{1,3,5}, {2,3,5}, {1,4,5}, {2,4,5}, {3,4,5},
{1,2,6}, {1,3,6}, {2,3,6}, {1,4,6}, {2,4,6},
{3,4,6}, {1,5,6}, {2,5,6}, {3,5,6}, {4,5,6},
{1,2,7%, {1,3,7}, {2,3,7}, {1,4,7}, {2,4,7},
{3,4,7%, {1,5,7%, {2,5,7}, {3,5,7}, {4,5,7},
{1,6,7}, {2,6,7}, {3,6,7}, {4,6,7}, {5,6,7}
Take setd = {1,2,5,6,7}. There are(g) = 10 elements of the
booster that are subsets Af
{1,2,5}, {1,2,6}, {1,5,6}, {2,5,6}, {1,2,7},
{1,5,7%, {2,5,7}, {1,6,7}, {2,6,7}, {5,6,7}

3
and0.2857 = 32 ~ (141)" = 0.3644.

Example

The setP(n) of all subsets of1,2,...,n} of sizek is a booster with
a~ 0. ForanyA C {1,2,...,n}, with |A| = O(n), the fraction of
subsets oft in P(n) is (1) /(7), which is approximately| A| /n)*.
Unfortunately|P(n)| = (}) = O(n*), hencek must beO(1) if the
booster has to be used in polynomial-time reductions.

In the following treatment we would liké to be as large as possible.
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Technical result
For anyk = O(logn) anda > 0, an(n, k, «) booster of
size polyn) can be constructed in pdly) time.

The proof of this result is beyond the scope of this modulgjtthas
very important consequences in our main argument.
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Booster product

Let G be a graph om vertices. Thebooster product of G,
B(G,n, k,«) is a graph whose vertices are the sets of a

(n, k, a)-boostetS, and there is an edge between sgtandsS; if
and only ifS; U S; is a clique inG.

What is this? Why do we need all this?

Argument

Let A C {1,2,...,n} be aclique of sizes(G) in graphG.
Then the number of sets frofithat are subsets of is between
(LD ayk|s|and (L9 1 a)k|S].

Clearly, all such sets form a clique in the booster product.

Conversely, given the largest cliquizin the booster product, let be
the union of all sets in the clique.

ThenA is a clique inG, and hence must have size at mo§t).

The booster property implies that the sizeR®fs as claimed.
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For any graplz, and any(n, k, o) booster, the cligue number
of the booster product aF lies betweer(@ —a)¥|S| and
(5 +a)"|S].

In other words:
Option 1 Using graph products we go from(G) to w(G)*.
Option 2 Using booster products we go fraoi{G) to w(G)*n© ™)

Using option 2 we “inflate” the gap even more!

Finally we come to the most important consequence of thenaegt
so far:

There is are > 0 such that approximating . GQUE with ratio
n® is NP-hard, where is the number of vertices in the input
graph.
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(1) LetG be the graph obtained from the usual 3SAT ta@JE
reduction, and suppose it hAsvertices (remember thé¥ is three
times the number of clauses in the original formula).

(2) The reduction ensures, for some fixed- 0, thatw(G) is either
at leastV/3 or at mostN (1 — 3)/3, and it is NP-hard to decide
which case holds.

(3) Now construct &N, log N, o) booster,S, by choosingy = 3/9.

(4) Construct the booster product@f The number of vertices in the
booster product i§S|, and Lemma above says the clique number is
either at least(3 — (3)/9)'°2 V|S| or at most((3 — 23)/9)°s V|S|.
Hence the gap is noW” for somey > 0, and further|S| = N9,
so this gap i$S|© for somee > 0.
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What should you keep of this?

e The definition of greedy + dynamic programming algorithms,
and the “feeling” that these paradigms can lead to very good
guality solutions in some cases.

e Advises on how to design a program in several different cases

e The knowledge of what an approximation algorithm is and how
can you prove results about them.
Many big industrial projects in Europe (e.g. a recent rajiwa
optimisation project in Switzerland, Germany, Italy, Gree

That's all folks!

e Two major design paradigms: greedy + dynamic programming.

e A number of application areas. We looked more deeply into
string algorithms and graph matching algorithms.

e A quick glimpse in space complexity theory.

e The broad and very widely used area approximation algogthm
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