
APX−complete

MultiProcScheduling

VertexCover

Max3SAT
Clique

PTAS

APX

NPO

1

Clique

MultiProcScheduling

VertexCover

Max3SAT

PTAS

APX

NPO

2

For anyε > 0 approximating CLIQUE with ratio 1 + ε is NP-hard,

wheren is the number of vertices in the input graph.

There is anε > 0 such that approximating CLIQUE with rationε

is NP-hard, wheren is the number of vertices in the input graph.

3

Significance

(Rather negative result) Ifε was 1
2 and the largest cliques in graphs on

n vertices had sizeO(
√

n) we would not be guaranteed to find (in

polynomial time) a clique with more thanO(1) vertices.

(Better picture in practice) On average the largest cliquesof ann

vertex graph chosen at random have sizeO(log n) (therefore

exhaustive search should give us, in polynomial time, some good

candidates).

4

Beyond APX, theCLIQUE problem

The hardness result for CLIQUE relies upon its interesting

self-improvement behavior when we take graph products. The next

example describes this behavior.

For a graphG = (V, E) let Ê denoteE with all self-

loops added, that is,̂E = E ∪ {(u, u) : u ∈ V }. For

graphsG1 = (V1, E1) andG2 = (V2, E2), theirproduct

G1 ×G2 is the graph whose vertex set is the setV1 × V2,

and edge set is

{((u1, v1), (u2, v2)) : (u1, u2) ∈ Ê1 ∧ (v1, v2) ∈ Ê2}

5

Generalisation ofGk we saw last week.

b

1

3

2

a (1,a)

(1,b)

(3,a)

(3,b)

(2,a)

(2,b)

Let ω(G) be the size of the largest clique in a graph. It is easily

checked thatω(G1 × G2) = ω(G1) · ω(G2).

6

Self-improvement technique

Now suppose a reductionh exists from SAT to CLIQUE, such that the
graph produced by the reduction has clique number eitherl, or
(1 − ε)l, depending on whether or not the SAT formula was
satisfiable or not.

Claim: It is NP-hard to approximate CLIQUE with any constant ratio.

Suppose we had ac-approximation algorithmA for CLIQUE.

Choosek so thatc < (1 − ε)−k (e.g.k = dlog1/(1−ε) ce would

do).

To decide SAT reduce it to CLIQUE, then compute LetH, be the

product ofh(G) with itself k times.

ω(H) is eitherlk or (1 − ε)k
l
k.

But c < (1 − ε)−k, hence you can useA to verify whether the

optimal cliques inh(G)k are “small” or “large”.

This decides SAT deterministically in polynomial time!

7

Key property. (Self-improvement) The gap in clique numbers,

(1 − ε)−k, can be made arbitrarily large by increasingk enough.

Note however thatH has sizenO(k), sok must remainO(1) if the

above construction has to work in polynomial time.

8

The rapid increase in problem size when using self-improvement may

seem hard to avoid. Surprisingly, the following combinatorial object

often allows us to do just that.

Let n be an integer. A(n, k, α) booster is a collection

S of subsets of{1, 2, . . . , n}, each of sizek. For every

subsetA ⊆ {1, 2, . . . , n}, the sets in the collection that

are subsets ofA constitute a fractiona between(|A|
n
−α)k

and(|A|
n

+ α)k of all sets inS.

a When |A|
n

< 1.1α, the quantity(|A|
n

− α)k should be considered to be 0.

9

Example

The setP(n) of all subsets of{1, 2, . . . , n} of sizek is a booster with

α ∼ 0. For anyA ⊆ {1, 2, . . . , n}, with |A| = O(n), the fraction of

subsets ofA in P(n) is
(

|A|
k

)

/
(

n
k

)

, which is approximately(|A|/n)k.

Unfortunately|P(n)| =
(

n
k

)

= O(nk), hencek must beO(1) if the

booster has to be used in polynomial-time reductions.

In the following treatment we would likek to be as large as possible.

10

More specifically, taken = 7 andk = 3. The following collection of
subsets of{1, 2, 3, 4, 5, 6, 7} is a (3,7,0)-booster.

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5},

{1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5},

{1, 2, 6}, {1, 3, 6}, {2, 3, 6}, {1, 4, 6}, {2, 4, 6},

{3, 4, 6}, {1, 5, 6}, {2, 5, 6}, {3, 5, 6}, {4, 5, 6},

{1, 2, 7}, {1, 3, 7}, {2, 3, 7}, {1, 4, 7}, {2, 4, 7},

{3, 4, 7}, {1, 5, 7}, {2, 5, 7}, {3, 5, 7}, {4, 5, 7},

{1, 6, 7}, {2, 6, 7}, {3, 6, 7}, {4, 6, 7}, {5, 6, 7}

Take setA = {1, 2, 5, 6, 7}. There are
(

5
3

)

= 10 elements of the
booster that are subsets ofA:

{1, 2, 5}, {1, 2, 6}, {1, 5, 6}, {2, 5, 6}, {1, 2, 7},

{1, 5, 7}, {2, 5, 7}, {1, 6, 7}, {2, 6, 7}, {5, 6, 7}

and0.2857 = 10
35 ∼

(

|A|
n

)3

= 0.3644.

11

Technical result

For anyk = O(log n) andα > 0, an(n, k, α) booster of

size poly(n) can be constructed in poly(n) time.

The proof of this result is beyond the scope of this module, but it has

very important consequences in our main argument.

12

Booster product

Let G be a graph onn vertices. Thebooster product of G,

B(G, n, k, α) is a graph whose vertices are the sets of a

(n, k, α)-boosterS, and there is an edge between setsSi andSj if

and only ifSi ∪ Sj is a clique inG.

What is this? Why do we need all this?

13

For any graphG, and any(n, k, α) booster, the clique number

of the booster product ofG lies between(ω(G)
n

− α)k|S| and

(ω(G)
n

+ α)k|S|.

In other words:

Option 1 Using graph products we go fromω(G) to ω(G)k.

Option 2 Using booster products we go fromω(G) to ω(G)knO(1)

Using option 2 we “inflate” the gap even more!

14

Argument

Let A ⊆ {1, 2, . . . , n} be a clique of sizeω(G) in graphG.

Then the number of sets fromS that are subsets ofA is between

(ω(G)
n

− α)k|S| and(ω(G)
n

+ α)k|S|.
Clearly, all such sets form a clique in the booster product.

Conversely, given the largest cliqueB in the booster product, letA be

the union of all sets in the clique.

ThenA is a clique inG, and hence must have size at mostω(G).

The booster property implies that the size ofB is as claimed.

15

Finally we come to the most important consequence of the argument

so far:

There is anε > 0 such that approximating CLIQUE with ratio

nε is NP-hard, wheren is the number of vertices in the input

graph.

16

(1) LetG be the graph obtained from the usual 3SAT to CLIQUE

reduction, and suppose it hasN vertices (remember thatN is three

times the number of clauses in the original formula).

(2) The reduction ensures, for some fixedβ > 0, thatω(G) is either

at leastN/3 or at mostN(1 − β)/3, and it is NP-hard to decide

which case holds.

(3) Now construct a(N, log N, α) booster,S, by choosingα = β/9.

(4) Construct the booster product ofG. The number of vertices in the

booster product is|S|, and Lemma above says the clique number is

either at least((3 − β)/9)log N |S| or at most((3 − 2β)/9)log N |S|.
Hence the gap is nowNγ for someγ > 0, and further,|S| = NO(1),

so this gap is|S|ε for someε > 0.

17

That’s all folks!

• Two major design paradigms: greedy + dynamic programming.

• A number of application areas. We looked more deeply into

string algorithms and graph matching algorithms.

• A quick glimpse in space complexity theory.

• The broad and very widely used area approximation algorithms.

18

What should you keep of this?

• The definition of greedy + dynamic programming algorithms,

and the “feeling” that these paradigms can lead to very good

quality solutions in some cases.

• Advises on how to design a program in several different cases.

• The knowledge of what an approximation algorithm is and how

can you prove results about them.

Many big industrial projects in Europe (e.g. a recent railway

optimisation project in Switzerland, Germany, Italy, Greece).

19

