For anye > 0 approximating CIQUE with ratio 1 4 € is NP-hard
wheren is the number of vertices in the input graph.

A

AR

N
\

__ APX-complete

MultiProcScheduling There is are > 0 such that approximating lGQUE with ratio n¢
is NP-hard, where is the number of vertices in the input graph.

Significance

(Rather negative result) tfwas% and the largest cliques in graphs o
n vertices had siz&(,/n) we would not be guaranteed to find (in

VertexCover polynomial time) a clique with more thaf(1) vertices.

(Better picture in practice) On average the largest cliqpiesn
vertex graph chosen at random have $iéog n) (therefore
PTAS exhaustive search should give us, in polynomial time, soowelg
candidates).

~
Max3SAT 7

MultiProcScheduling

Beyond APX, the CLIQUE problem

The hardness result forl@UE relies upon its interesting
self-improvement behavior when we take graph products. The next
example describes this behavior.

For a graphG = (V, E) let E denoteE with all self-
loops added, that is? = E U {(u,u) : v € V}. For
graphsG; = (V4, E1) andGy = (Va, E»), their product
G, x G5 is the graph whose vertex set is the Betx V5,
and edge set is

{((u1,v1), (u2,v2)) : (u1,u2) € E1 A (v1,v2) € En}

Self-improvement technique

Now suppose a reductignexists from SAT to CIQUE, such that the
graph produced by the reduction has clique number elttwar

(1 — €)l, depending on whether or not the SAT formula was
satisfiable or not.

Claim: Itis NP-hard to approximate KTQUE with any constant ratio.

Suppose we had@approximation algorithmA for CLIQUE.
Choosek so thatc < (1 —¢)~* (e.9.k = [log, (; _,, ¢] would
do).

To decide SAT reduce it to IGQUE, then compute Lel, be the
product ofh(G) with itself k£ times.

w(H) is eitherl” or (1 — €)*1*.

Butc < (1 — ¢)~*, hence you can us to verify whether the
optimal cliques imh(G)* are “small” or “large”.

This decides SAT deterministically in polynomial time!

Generalisation o&* we saw last week.

(3.3)
3
a (1.2)
= b)
1 X \
2 b (L.b) (2.2)

(2.b)

Letw(G) be the size of the largest clique in a graph. It is easily
checked tha (G x G2) = w(G1) - w(Ga).

Key property. (Self-improvement) The gap in clique numbers,
(1 —¢)~*, can be made arbitrarily large by increasingnough.

Note however thatl has size:“®), sok must remairO(1) if the
above construction has to work in polynomial time.

The rapid increase in problem size when using self-imprammay
seem hard to avoid. Surprisingly, the following combinitioobject
often allows us to do just that.

Let n be an integer. An,k,a) booster is a collection
S of subsets of 1,2,...,n}, each of sizé:. For every
subsetd C {1,2,...,n}, the sets in the collection that
are subsets ofl constitute a fractioh betweer(% —a)k
and (2l o)¥ of all sets inS.

@ When!4l < 1.1q, the quantily(ﬂ — a)* should be considered to be 0.
n n

More specifically, takes = 7 andk = 3. The following collection of
subsets 0f1,2,3,4,5,6, 7} is a (3,7,0)-booster.

{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,5},
{1,3,5}, {2,3,5}, {1,4,5}, {2,4,5}, {3,4,5},
{1,2,6}, {1,3,6}, {2,3,6}, {1,4,6}, {2,4,6},
{3,4,6}, {1,5,6}, {2,5,6}, {3,5,6}, {4,5,6},
{1,2,7%, {1,3,7}, {2,3,7}, {1,4,7}, {2,4,7},
{3,4,7%, {1,5,7%, {2,5,7}, {3,5,7}, {4,5,7},
{1,6,7}, {2,6,7}, {3,6,7}, {4,6,7}, {5,6,7}
Take setd = {1,2,5,6,7}. There are(g) = 10 elements of the
booster that are subsets Af
{1,2,5}, {1,2,6}, {1,5,6}, {2,5,6}, {1,2,7},
{1,5,7%, {2,5,7}, {1,6,7}, {2,6,7}, {5,6,7}

3
and0.2857 = 32 ~ (141)" = 0.3644.

Example

The setP(n) of all subsets of1,2,...,n} of sizek is a booster with
a~ 0. ForanyA C {1,2,...,n}, with |A| = O(n), the fraction of
subsets oft in P(n) is (1) /(7), which is approximately| A| /n)*.
Unfortunately|P(n)| = (}) = O(n*), hencek must beO(1) if the
booster has to be used in polynomial-time reductions.

In the following treatment we would liké to be as large as possible.

11

Technical result
For anyk = O(logn) anda > 0, an(n, k, «) booster of
size polyn) can be constructed in pdly) time.

The proof of this result is beyond the scope of this modulgjtthas
very important consequences in our main argument.

10

12

Booster product

Let G be a graph om vertices. Thebooster product of G,
B(G,n, k,«) is a graph whose vertices are the sets of a

(n, k, a)-boostetS, and there is an edge between sgtandsS; if
and only ifS; U S; is a clique inG.

What is this? Why do we need all this?

Argument

Let A C {1,2,...,n} be aclique of sizes(G) in graphG.
Then the number of sets frofithat are subsets of is between
(LD ayk|s|and (L9 1 a)k|S].

Clearly, all such sets form a clique in the booster product.

Conversely, given the largest cliquizin the booster product, let be
the union of all sets in the clique.

ThenA is a clique inG, and hence must have size at mo§t).

The booster property implies that the sizeR®fs as claimed.

13

15

For any graplz, and any(n, k, o) booster, the cligue number
of the booster product aF lies betweer(@ —a)¥|S| and
(5 +a)"|S].

In other words:
Option 1 Using graph products we go from(G) to w(G)*.
Option 2 Using booster products we go fraoi{G) to w(G)*n© ™)

Using option 2 we “inflate” the gap even more!

Finally we come to the most important consequence of thenaegt
so far:

There is are > 0 such that approximating . GQUE with ratio
n® is NP-hard, where is the number of vertices in the input
graph.

14

16

(1) LetG be the graph obtained from the usual 3SAT ta@JE
reduction, and suppose it hAsvertices (remember thé¥ is three
times the number of clauses in the original formula).

(2) The reduction ensures, for some fixed- 0, thatw(G) is either
at leastV/3 or at mostN (1 — 3)/3, and it is NP-hard to decide
which case holds.

(3) Now construct &N, log N, o) booster,S, by choosingy = 3/9.

(4) Construct the booster product@f The number of vertices in the
booster product i§S|, and Lemma above says the clique number is
either at least(3 — (3)/9)'°2 V|S| or at most((3 — 23)/9)°s V|S|.
Hence the gap is noW” for somey > 0, and further|S| = N9,
so this gap i$S|© for somee > 0.

17

What should you keep of this?

e The definition of greedy + dynamic programming algorithms,
and the “feeling” that these paradigms can lead to very good
guality solutions in some cases.

e Advises on how to design a program in several different cases

e The knowledge of what an approximation algorithm is and how
can you prove results about them.
Many big industrial projects in Europe (e.g. a recent rajiwa
optimisation project in Switzerland, Germany, Italy, Gree

That's all folks!

e Two major design paradigms: greedy + dynamic programming.

e A number of application areas. We looked more deeply into
string algorithms and graph matching algorithms.

e A quick glimpse in space complexity theory.

e The broad and very widely used area approximation algogthm

18

19

