Dynamic Programming

Dynamic programming, like thedivide-and-conquer® method, solves
problems by combining the solutions to subproblems.

Richard Bellman (1920-1984) gave the name “dynamic prograng” to
the technique discussed here.

In the first place | was interested in planning, decision mgkin
thinking. But planning i s not a good word for various reasdns
decided therefore to use the word “programming”. | wantegetb
across the idea that this was dynamic, this was multistagew@as
time-varying — | thought, let’s kill two birds with one stone

%e.g. quicksort

If two subproblems share subsubproblems then a dividecanduer
algorithm does more work than necessary, repeatedly gptlismcommon
subsubproblems.

Divide-and-conquer algorithms partition the problem imdependent
subproblems, solve the subproblems recursively, and therbinie their solutions
to solve the original problem.

In contrast, dynamic programming is applicable (and ofehrisable)
when the subproblems are not independent, that is, whemahibms
share subsubproblems. A dynamic programming algorithnesavery
subproblem just once and then saves its answer in a tabtepthe
avoiding the work of recomputing the answer every time tHipsoblem
is encountered.

Dynamic programming is typically applied to optimisatiomplems.

Cookbook recipe for dynamic programming

The development of a dynamic programming algorithm can blkesr
into a sequence of four steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution ibattom-up® fashion.
4. Construct an optimal solution from computed information

Steps 1-3 form the basis of a dynamic programming soluti@npmblem. Step 4
can be omitted if only the value of an optimal solution is riegd. When we do
perform step 4, we sometimes maintain additional inforaratluring the
computation of step 3 to “ease” the construction of an ogtsohution.

“|.e. solving simplest subproblems first.

Exercises
1. How do we multiply two matrices together? ... You tell me!
2. How many multiplications do we need to @8, x As) x A3?
3. How many multiplications do we need to dg x (As x A3)?
4

. Given4,; ann; x n;41 matrix, fori € {1,..., N}, what bounds can
you get on the maximum and minimum number of scalar
multiplications which may possibly be needed as a functicth®
smallest and largest of thg’s?

Matrix-chain multiplication

We are given a sequence (chain)ofmatrices and we wish to compute
their product. For example, if = 3

1 2 24 11
1 —1

-1 0 1 1 1 -2 -3

X X 1 1 =

-3 -1 0 -5 3 —-17 —-13
2 3

4 =2 —-14 4

Al X A2 X Ag = B

To multiply two matrices (assuming for simplicity that thember of
columns of the first one matches the number of rows of the skopa)
we use the well-known algorithm

MATRIX-MULTIPLY (A, B)
for i < 1torows(A)
for j < 1to columngB)
Cli,j] <0
for k — 1to columngA)
Cli.j] — C[i, 4] + Ali, K] - Blk, j]

but it is interesting to note that the running time of our aitjon heavily
depends on the order in which we multiply the matrices.

Problem definition

Given a sequence of matricel, ..., Ay such thatA;
has dimensions:; x n;.1, find the way to compute
A1 x ... x A, that minimises the number of scalar mul-
tiplications.

The problem is an optimisation one. The set of instancesm#s with
sequences of integers, ns, . .., nxy1 for some fixed integeN. A
solution to the given problem is an ordering of tNe— 1 multiplications.
The cost of an ordering is the number of scalar multiplicaiperformed
and the problem seeks a minimum cost ordering.

The cost function depends on the input and on the otitput
mult(A, B) denote%the number of multiplications idl x B.

Claim. j; andj, correspond to two minimum cost orderings of the chai
multiplicationsA; ; andAx.1. N

Else, if the ordering for; ;, was suboptimal we could have chosen an
optimal one and reduced cégt_n, k).

Thus, an optimal solution to an instance of the matrix-chmairtiplication
problem contains within it optimal solutions to subproblerstances!

@Actually on a very small part of the output.
bThis number actually depends only on the dimensions of tlerhatrices, not on the
values of the matrices.

-

11

Next we present a dynamic programming heuristic for solting
problem. We follow the four step recipe highlighted at thgibeing of
the chapter.

Structure of optimal sequence of multiplications

Letus denoted; x ... x A; by A; ;.

An optimal ordering ofd; x ... x Ay splits the product afl:
Ay X ... X AN = A1k X Agy1.N

We have

cost(Ay. N, k) =
cost(A1. k, j1) + cost(Apt1. N, j2) + mult(A; x X Agr1.n)

Recursive decomposition

The second step of the dynamic programming paradigm is toeldfe
value of an optimal solution recursively in terms of the oyl solutions
to subproblems.

We pick as our subproblems the problems of determining timénmim
costofanorderingofl; x ... x A;for1 <i<j <N.

Letm[i, j] be the minimum number of scalar multiplications needed to
compute the matri¥d; ;.

The cost of a cheapest way to compute should bemn[1, N].

10

12

Definition of m|i, j]
e If i = j, the chain consists of a single matry ; = A;, no scalar

multiplication is needed and therefards, ;] = 0.

e If i < j thenml[i, j] can be computed by taking advantage of the
structure of an optimal solution, as described in the previgection.
Therefore, the optimal cost ordering 4f. ; is obtained multiplying
A;.r and Ay, ; then we can define

mli, j] = mli, k] + m[k + 1, j]4+ mult(A4; 5, Apt1.5)-
Notice thatA;_ ; is an; x ni41 matrix andA . ; is an
nr+1 X ;1 Matrix. Therefore multiplying them takes
ni+1 - N - i+ Multiplications. Hence

mli, j] = mli, k] + m[k + 1, §] + ngg1 - ni - njga.
... but, alas! We do not know!!

Computing the optimal costs

Let's write together a simple recursive program that, gitrensequence
ni,na,...,nN+1, cOMputesn|l, NJ.

How long does this program take?

13

15

No problem, there can only be— i possible values fok, we can try

all of them. Formally we thus have
o 0 =]
mli,jl=1q . . o
min; <p<j{mi, k] + m[k + 1, j] + ngpinming a1} 0 <j

Key Observation!

There are relatively few subproblems: one for each
choice ofi and; (that's () + NN in total).

Instead of computing the solution to the recurrence receinsi
(top-down), we perform the third step of the dynamic prograny
paradigm and compute the optimal costs of the subprobleige as
bottom-up approach.

The following pseudocode assumes the matrphas dimensions
n; x n;41 fori € {1,..., N}. The input sequence is;, na, ..., nN+1-

14

16

MATRIX-CHAIN-ORDER (11, n2,...,nN+1, IV)
I First, fill all the elements in the diagonal with zerg
fori —1to N mli,i] «— 0
/I Next, fill all elements at distandefrom the diagonal
foril—1toN —1
fori— 1toN —1
je—i+1
definem(i, j] as the minimum of
m[i, k?] + m[k =+ 1,]] + NiNg41Mj+1
fori <k <j.

17

Appendix: Linear Algebra

A matrix is a rectangular bi-dimensional array. Here is an example

12 1 -5 0
6 11 5 9
2 -8 -4 -3
This could be declared in Java as follows
int [][] A=newint[3][4];

Input. Applications.

18

Transpose
ail a2 cee A1m aii a1 an1
a21 G22 ... Q2m . . a12 422 An?2
is the matrix
an1 an2 cee Anm A1m a2m Anm
19
Scalar Product
/\all)\alg .)\alm
/\a21)\(122 .)\agm
ANl Ap2 ... Aapm
20

Addition
31.2 2.6 —13 0 1 0 0 0
15.6 28.6 33.8 234 + 1 2 0 0
52 —-20.8 —-104 -7.8 1 2 3 0
is the matrix
32.2 26 —13 0
16.6 306 33.8 234
6.2 —188 —-74 -—-7.8
21
Matrix Multiplication
The result of multiplying the matrices:
b b b
11 a2 a1z ai4 11 12 13
b21 b22 b23
21 Q422 a23 Q24 X
b1 b3a b33
asi as2 aszs as4
ba1 baz bas

is the matrix

111 Xb11+a12 Xba1+a13 Xb31+a14 Xba1
121 X b11+a22 Xba1 +az3 X b31 +az4 Xbagy
131 X b11+a32 Xba1+a33 Xb31 +a34 X bay

a11 Xbi2+a12 Xboa+a13 xb32+a14 X ba2
a21 Xb12+a22 X baa+a23 X b3z +a24 X bga
a31 Xb12+a32 X b2a+a33 X b3a+az4 X baz

21-1

a11 Xbiz+aiz X ba:
a21 X b1z +a22 X ba:
a31 X b1z +aszz X ba:

