
Dynamic Programming

Dynamic programming, like thedivide-and-conquera method, solves

problems by combining the solutions to subproblems.

Richard Bellman (1920-1984) gave the name “dynamic programming” to

the technique discussed here.

In the first place I was interested in planning, decision making, in

thinking. But planning i s not a good word for various reasons. I

decided therefore to use the word “programming”. I wanted toget

across the idea that this was dynamic, this was multistage, this was

time-varying – I thought, let’s kill two birds with one stone.

ae.g. quicksort

1

Divide-and-conquer algorithms partition the problem intoindependent

subproblems, solve the subproblems recursively, and then combine their solutions

to solve the original problem.

1.2.1.2

1.1.1

1

1.1 1.2
1.65

1.1.2
1.2.1

1.2.2 1.2.3

1.2.1.1

2

1.65

1

1.1.1

1.1 1.2

If two subproblems share subsubproblems then a divide-and-conquer

algorithm does more work than necessary, repeatedly solving the common

subsubproblems.

3

In contrast, dynamic programming is applicable (and often advisable)

when the subproblems are not independent, that is, when subproblems

share subsubproblems. A dynamic programming algorithm solves every

subproblem just once and then saves its answer in a table, thereby

avoiding the work of recomputing the answer every time the subproblem

is encountered.

Dynamic programming is typically applied to optimisation problems.

4

Cookbook recipe for dynamic programming

The development of a dynamic programming algorithm can be broken

into a sequence of four steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in abottom-upa fashion.

4. Construct an optimal solution from computed information.

Steps 1–3 form the basis of a dynamic programming solution toa problem. Step 4

can be omitted if only the value of an optimal solution is required. When we do

perform step 4, we sometimes maintain additional information during the

computation of step 3 to “ease” the construction of an optimal solution.

aI.e. solving simplest subproblems first.

5

Matrix-chain multiplication

We are given a sequence (chain) ofn matrices and we wish to compute

their product. For example, ifn = 3













1 2

−1 0

−3 −1

4 −2













×

(

1 1 1

0 −5 3

)

×









1 −1

−1 1

2 3









=













24 11

−2 −3

−17 −13

−14 4













A1 × A2 × A3 = B

6

Exercises

1. How do we multiply two matrices together? ... You tell me!

2. How many multiplications do we need to do(A1 ×A2)×A3?

3. How many multiplications do we need to doA1 × (A2 ×A3)?

4. GivenAi anni × ni+1 matrix, for i ∈ {1, . . . , N}, what bounds can

you get on the maximum and minimum number of scalar

multiplications which may possibly be needed as a function of the

smallest and largest of theni’s?

7

To multiply two matrices (assuming for simplicity that the number of

columns of the first one matches the number of rows of the second one)

we use the well-known algorithm

MATRIX -MULTIPLY (A, B)

for i← 1 to rows(A)

for j ← 1 to columns(B)

C[i, j]← 0

for k ← 1 to columns(A)

C[i, j]← C[i, j] + A[i, k] ·B[k, j]

but it is interesting to note that the running time of our algorithm heavily

depends on the order in which we multiply the matrices.

8

Problem definition

Given a sequence of matricesA1, . . . , AN such thatAi

has dimensionsni × ni+1, find the way to compute

A1 × . . .×An that minimises the number of scalar mul-

tiplications.

The problem is an optimisation one. The set of instances coincides with

sequences of integersn1, n2, . . . , nN+1 for some fixed integerN . A

solution to the given problem is an ordering of theN − 1 multiplications.

The cost of an ordering is the number of scalar multiplications performed

and the problem seeks a minimum cost ordering.

9

Next we present a dynamic programming heuristic for solvingthis

problem. We follow the four step recipe highlighted at the beginning of

the chapter.

Structure of optimal sequence of multiplications

Let us denoteAi × . . .×Aj by Ai..j .

An optimal ordering ofA1 × . . .×AN splits the product atAk:

A1 × . . .×AN = A1..k ×Ak+1..N

We have

cost(A1..N , k) =

cost(A1..k, j1) + cost(Ak+1..N , j2) + mult(A1..k ×Ak+1..N)

10

The cost function depends on the input and on the outputa

mult(A, B) denotesb the number of multiplications inA×B.

Claim. j1 andj2 correspond to two minimum cost orderings of the chain
multiplicationsA1..k andAk+1..N .

Else, if the ordering forA1..k was suboptimal we could have chosen an
optimal one and reduced cost(A1..N , k).

Thus, an optimal solution to an instance of the matrix-chainmultiplication
problem contains within it optimal solutions to subprobleminstances!

aActually on a very small part of the output.
bThis number actually depends only on the dimensions of the two matrices, not on the

values of the matrices.

11

Recursive decomposition

The second step of the dynamic programming paradigm is to define the

value of an optimal solution recursively in terms of the optimal solutions

to subproblems.

We pick as our subproblems the problems of determining the minimum

cost of an ordering ofAi × . . .× Aj for 1 ≤ i ≤ j ≤ N .

Let m[i, j] be the minimum number of scalar multiplications needed to

compute the matrixAi..j .

The cost of a cheapest way to computeA1..N should bem[1, N].

12

Definition of m[i, j]

• If i = j, the chain consists of a single matrixAi..i = Ai, no scalar

multiplication is needed and thereforem[i, i] = 0.

• If i < j thenm[i, j] can be computed by taking advantage of the

structure of an optimal solution, as described in the previous section.

Therefore, the optimal cost ordering ofAi..j is obtained multiplying

Ai..k andAk+1..j then we can define

m[i, j] = m[i, k] + m[k + 1, j]+ mult(Ai..k, Ak+1..j).

Notice thatAi..k is ani × nk+1 matrix andAk+1..j is an

nk+1 × nj+1 matrix. Therefore multiplying them takes

nk+1 · ni · nj+1 multiplications. Hence

m[i, j] = m[i, k] + m[k + 1, j] + nk+1 · ni · nj+1.

... but, alas! We do not knowk!!!

13

No problem, there can only bej − i possible values fork, we can try

all of them. Formally we thus have

m[i, j] =







0 i = j

mini≤k<j{m[i, k] + m[k + 1, j] + nk+1ninj+1} i < j

14

Computing the optimal costs

Let’s write together a simple recursive program that, giventhe sequence

n1, n2, . . . , nN+1, computesm[1, N].

How long does this program take?

15

Key Observation!

There are relatively few subproblems: one for each

choice ofi andj (that’s
(

N

2

)

+ N in total).

Instead of computing the solution to the recurrence recursively

(top-down), we perform the third step of the dynamic programming

paradigm and compute the optimal costs of the subproblems usign a

bottom-up approach.

The following pseudocode assumes the matrixAi has dimensions

ni × ni+1 for i ∈ {1, . . . , N}. The input sequence isn1, n2, . . . , nN+1.

16

MATRIX -CHAIN -ORDER (n1, n2, . . . , nN+1, N)

// First, fill all the elements in the diagonal with zero

for i← 1 to N m[i, i]← 0

// Next, fill all elements at distancel from the diagonal

for l← 1 to N − 1

for i← 1 to N − l

j ← i + l

definem[i, j] as the minimum of

m[i, k] + m[k + 1, j] + nink+1nj+1

for i ≤ k < j.

17

Appendix: Linear Algebra

A matrix is a rectangular bi-dimensional array. Here is an example








12 1 −5 0

6 11 5 9

2 −8 −4 −3









.

This could be declared in Java as follows

int [][] A = new int[3][4];

Input. Applications.

18

Transpose














a11 a12 . . . a1m

a21 a22 . . . a2m

. . .

an1 an2 . . . anm















is the matrix















a11 a21 . . . an1

a12 a22 . . . an2

. . .

a1m a2m . . . anm















19

Scalar Product














λa11 λa12 . . . λa1m

λa21 λa22 . . . λa2m

.

λan1 λan2 . . . λanm















20

Addition








31.2 2.6 −13 0

15.6 28.6 33.8 23.4

5.2 −20.8 −10.4 −7.8









+









1 0 0 0

1 2 0 0

1 2 3 0









is the matrix








32.2 2.6 −13 0

16.6 30.6 33.8 23.4

6.2 −18.8 −7.4 −7.8









21

Matrix Multiplication
The result of multiplying the matrices:





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



×









b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43









is the matrix

(

a11×b11+a12×b21+a13×b31+a14×b41 a11×b12+a12×b22+a13×b32+a14×b42 a11×b13+a12×b23

a21×b11+a22×b21+a23×b31+a24×b41 a21×b12+a22×b22+a23×b32+a24×b42 a21×b13+a22×b23

a31×b11+a32×b21+a33×b31+a34×b41 a31×b12+a32×b22+a33×b32+a34×b42 a31×b13+a32×b23

21-1

