
String Matching

Finding all occurrences of a pattern in a text is a problem that arises

frequently in various contexts:

text-editing typically the text is a document being edited, and the pattern

searched for is a particular word supplied by the user.

DNA mapping in this case we are interested in finding a particular

pattern in a (long) DNA sequence.

WWW searching the text this time is the union of all web-pages in the

internet (...)

1

Problem definition.

Given an alphabetA, a textT (an array ofn characters inA) and a
patternP (another array ofm ≤ n characters inA), we say thatP occurs

with shifts in T (or P occurs beginning at positions + 1 in T) if
0 ≤ s ≤ n−m andT [s + j] = P [j] for 1 ≤ j ≤ m. A shift is valid if P

occurs with shifts in T andinvalid otherwise. The string-matching
problem is the problem of finding all valid shifts for a given choice ofP
andT .

Example

T ≡ tadadattaetadadadafa

P ≡ dada

Valid shifts are two, twelve and fourteen.

2

A Short History

The development of the algorithms that we’ll be examining has an
interesting history.

First came the obvious brute-force algorithm (still in widespread use).

Its worst-case running time isO(nm), but the strings which arise in
practice lead to a running timeO(n + m).

Furthermore, it is well suited to good architectural features on most
computer systems, so an optimised version provides a “standard” which is
difficult to beat with a clever algorithm.

In 1970, Steve Cook (Cook’s theorem, do you remember?) proved a
theoretical result about a particular type of abstract computer implying
that an algorithm exists which solves the pattern-matchingproblem in
timeO(n + m) (worst case). His theorem unfortunately did not explicitly
provide an effective way to implement such an algorithm.

3

Donald Knuth and V. R. Pratt laboriously followed through the
construction Cook used to prove his theorem to get an actual algorithm
which they were then able to refine to be a relatively simple practical
algorithm.

This seemed a rare and satisfying example of a theoretical result having
immediate (and unexpected) practical applicability. But it turned out that
J. H. Morris had discovered virtually the same algorithm as asolution to
an annoying practical problem that confronted him when implementing a
text editor (he didn’t want to ever “back up” in the text string).

Knuth, Morris, and Pratt didn’t get around to publishing their algorithm
until 1976, and in the meantime R. S. Boyer and J. S. Moore (and,
independently, R. W. Gosper) discovered an algorithm whichis much
faster in many applications, since it often examines only a fraction of the
characters in the text string. Many text editors use this algorithm to
achieve a noticeable decrease in response time for string searches.

4

Notations (1)

s, s Strings will be denoted either by single letters or, occasionally, by

boxed letters.

|s| if s is a string, denotes thelengthof s, i.e. the number of characters in

the string.

A∗ (“A-star”) the set of all finite-length strings formed usingcharacter

from the alphabetA.

ε theempty string, the unique string of length 0.

st is theconcatenationof stringss andt, obtained by appending the

characters oft after those ofs. Clearly|st| = |s|+ |t|.

5

Notations (2)

• A stringw is aprefixof x, if x ≡ wy for some stringy ∈ A∗. Of

course the length ofw cannot be larger than that ofx.

• A stringw is asuffixof x, if x = yw for some stringy ∈ A∗. We

have|w| ≤ |x|.

• If x, y are both suffix ofz then only three cases arise: if|x| ≤ |y|

thenx is also a suffix ofy, elsey is a suffix ofx. If particular

|x| = |y| impliesx = y.

6

Notations (3)

• We shall denote thek character prefix of a pattern, say,P , by Pk.

ThusP0 = ε, Pm = P , and the pattern matching problem is that of

finding all shiftss such thatP is a suffix ofTs+m.

• We will assume that checking equality between two strings takes

time proportional to the length of the shortest of the two.

7

Brute-Force

The obvious method that immediately comes to mind is just to check, for

each possible position in the text whether the pattern does in fact match

the text.

BRUTE-MATCHING (T , P)

n← length(T)

m← length(P)

for s← 0 to n−m

if P = T [s + 1..s + m]

print “pattern occurs with shifts”

8

How good isBRUTE-MATCHING

The algorithm finds all valid shifts in timeΘ((n−m + 1)m).

It is easy to verify the upper bound by inspecting the code.

If T = aa . . . a (n times) andP is a substring of lengthm of T , the

algorithm BRUTE-MATCHING will actually spendO(m) time for each of

the possiblen−m + 1 positions.

9

Examples

Consider the following text:

01010101010101001010101010101010100101010101

and the pattern

010100

10

The algorithm is often very good in practice. Find the wordjoy in the
following text:

A very popular definition of Argumentation is the one given in an
important Handbook, which in a way testifies the current period of good
fortune which Argumentation Theory is enjoying. The definition
characterises the process of argumentation as a “verbal and social
activity of reason aimed at increasing (or decreasing) the acceptability of
a controversial standpoint for the listener, by putting forward a
constellation of proposition intended to justify (or refute) the standpoint
before a rational judge”. Having described many of the characteristics of
argumentation theory in the previous chapter, here we will concentrate on
an important aspect of the arguing activity, that is that it is a process
involving two entities: a listener and a speaker. Dialogue, therefore, is
paramount to argumentation. The present chapter will examine the
dialogic component of the argumentation activities, by providing a survey
of literature in this subject, and concluding with our own approach to the
treatment of this aspect.

11

The text contains only 4 substrings matchingj, and just a single substring
matching bothjo andjoy:

A very popular definition of Argumentation is the one given in an
important Handbook, which in a way testifies the current period of good

fortune which Argumentation Theory is en j oying. The definition

characterises the process of argumentation as a “verbal and social
activity of reason aimed at increasing (or decreasing) the acceptability of
a controversial standpoint for the listener, by putting forward a

constellation of proposition intended to j ustify (or refute) the standpoint

before a rational j udge”. Having described many of the characteristics

of argumentation theory in the previous chapter, here we will concentrate
on an important aspect of the arguing activity, that is that it is a process
involving two entities: a listener and a speaker. Dialogue, therefore, is
paramount to argumentation. The present chapter will examine the
dialogic component of the argumentation activities, by providing a survey

of literature in this sub j ect, and concluding with our own approach to the

treatment of this aspect.

12

What is wrong with BRUTE-MATCHING?

The inefficiency comes from not using properly the partial matches.

If a pattern like:1010010100110111 has been matched to

10100101001... (and then a miss-match occurs) we may argue that we

don’t need to reset the pointer to theT string to consider

1 0100101001... .

The partial match (and our knowledge of the pattern) tells usthat, at least,

we may restart our comparison from10100 101001... . The subsequent

quest for aO(n + m) algorithm focused on efficient ways of using this

information.

13

String matching with finite automata

An alternative approach that, nearly, overcomes the inefficiencies of

BRUTE-MATCHING is based on the idea of avoiding any backward

movements on the textT by using a finite amount of information about

portions ofT that partially matchP .

The most natural framework to describe such information is provided by

the Theory of Finite State machines (or Automata).

The key idea is, givenP , to first construct a finite-state automatona and

then “hack” the way in which the finite-state machine “recognises”T to

perform the matching ofP as well.

ai.e. its transition table.

14

Finite State Machines

A (deterministic)finite state machineor automatonM is defined by

A a finite alphabet;

Q, a finite set ofstates: Q = {q0, q1, q2, . . . , qk};

S ∈ Q, theinitial state;

F ⊆ Q, the set offinal states;

δ : Q ×A → Q, thestate-transition function.

15

Automata spend their lives crunching strings.

Given string inA∗, the automaton will start in stateS. It will then read

one character at the time and while doing this it may decide tomove from

one state to another according to the state-transition function.

16

Finite State Machines: real-life examples

A CD player controller.

A lift.

A graphical user interface menu structure.

Few more examples from COMP209 lecture slides ... and later on this

week.

17

Automata as acceptors

A languageL is ... just a set of strings inA∗.

An automatonacceptsL if for each stringw, M , started in the initial state

on the leftmost character ofw, after scanning all characters ofw, enters a

final state if and only ifw ∈ L.

18

Example

A = {0, 1, . . . , 9}

Q = {BEGIN, EVEN, ODD}

S = BEGIN

F = {EVEN}

Here’s the definition of the functionδ.

s ∈ A

q 0 1 2 3 4 5 6 7 8 9

BEGIN ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD

EVEN EVEN ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD

ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD

19

A quick simulation

On reading 125, the automaton will start in the state BEGIN, reading the

leftmost digit (that’s “1”).δ(BEGIN,1) = ODD, so the automaton moves

to state “ODD”, before reading the next digit. Now it reads “2”, since

δ(ODD, 2) = EVEN, the automaton moves to state “EVEN”. Then reads

“5” and, sinceδ(EVEN, 5) = ODD, the automaton moves to state

“ODD”. Since the number is finished “ODD” is the final answer ofthe

automaton!

Exercises.Write an automaton that recognises multiples of 3.

20

String-matching automaton.
There will be an automaton for each patternP . First an important definition:

Let σP be a function that, for any stringx, returns the length of the longest

prefix ofP that is a suffix ofx.

Examples.Let P ≡abc. ThenσP (caba) = 1, σP (cabab) = 2, and

σP (cababc) = 3.

Here’s the definition of the automaton!

• Q = {0, 1, . . . , m}.

• q0 = 0

• The only accepting state ism.

• The input alphabet isΣ.

• The transition function is defined by the following equation:

δ(q, a) = σ(Pqa)

21

How is this to be used?

FINITE-AUTOMATON-MATCHING (T , δ, m)

n← length(T)

for i← 1 to n

q ← δ(q, T [i])

if q = m

print “pattern occurs with shifti−m”

22

