Recap

- String matching problem.
- Brute force solution
- Good points / Bad points about it.
- Better solution? Try using automata.

Today:

- Brute-force implementation.
- How do we use automata? String-matching automaton.

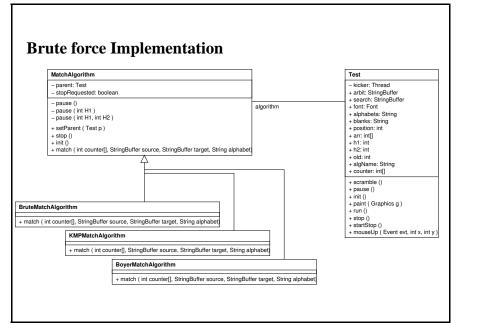
1

• Examples + analysis.

class BruteMatchAlgorithm extends MatchAlgorithm{

```
void match(int counter[],
                              // ??
       StringBuffer T,
                              // text
       StringBuffer P,
                              // pattern
       String alphabet
                              // not used by BruteMatch
       ) throws Exception{
counter[0] = 0;
int n = T.length(); // length of the input text
int m = P.length(); // length of the pattern
// finding all the matchings of P in T
for (int s = 0; s <= n - m; s++) {
    if(stopRequested)
        return;
    counter[1] = 0;
    // checking equality of P and T[s + 0..s + m - 1]
    for ( int j = 0 ; j < m ; j++ )
        if ((T.toString()).charAt(s + j) != (P.toString()).charAt(j))
            counter[1] = 1;
    counter[0] = (s*6) \%900;
    pause(1,1);
    counter[1]=0;
```

2-1



String-matching automaton, Example

}

Let's consider again the pattern $P \equiv abc$, and let's define the string-matching automaton in this case (for simplicity let's assume the alphabet $S = \{a, b, c\}$).

- $Q = \{0, 1, 2, 3\}$, the automaton will have four states.
- The initial state is (always) $q_0 = 0$.
- The only accepting state is (always) m.

Transition function

The only step that needs some care is the definition of the transition function. We can represent it as a table with rows indexed by characters and columns indexed by states.

Let's start with $\delta(0,\mathbf{a})$. By definition of σ_P this is "the length of the longest prefix of P that is a suffix of $P_0\mathbf{a}(\equiv \mathbf{a})$ ". Therefore $\delta(0,\mathbf{a}) = 1$. Next comes $\delta(1,\mathbf{a})$. This is "the length of the longest prefix of P that is a suffix of $P_1\mathbf{a}(\equiv \mathbf{a}\mathbf{a})$ ". Again $\delta(1,\mathbf{a}) = 1$. Iterating this process one can get δ 's full definition (reported in the following table).

	0	1	2	3	_
а	1	1	1	1	-
b	0	2	0	0	
С	0	0	3	0	

Time complexity analysis ... cheating!

- The simple loop structure of FINITE-AUTOMATON-MATCHING implies that its running time is O(|T|).
- However, this does not include the time to compute the transition function *δ*: we will look at this later!
- Correctness? Not easy, brace yourself! Let's start by understanding what correctness means.

6

Simulation Let T = aababcabcbb. T a a b

_	1	a	a	b	a	b	C	a	b	C	D	b	
	q	0	1	1	2	1	2	3	1	2	3	0	0
	output							3			6		

8

Main Result

For each $i \leq n$, the value of q after the *i*th iteration of the main for loop in FINITE-AUTOMATON-MATCHING is $\sigma_P(T_i)$, i.e. the length of the longest prefix of the pattern P that is a suffix of T_i .

By definition of σ_P , $\sigma_P(T_i) = m$ if and only if P is a suffix of T_i , i.e. a matching has just occurred, therefore the result "says" that the process returns all the valid shifts of the given pattern.

Suffix-function inequality

 $\sigma(xa) \leq \sigma(x) + 1$, for any string x and character a.

Case 1. If $\sigma(xa) = 0$, then the result trivially holds, because σ is a positive function.

Case 2. Otherwise,

 $P_{\sigma(xa)}$ is a suffix of xa, by definition of σ .

Furthermore $P_{\sigma(xa)-1}$ must be a suffix of x (we just drop the end of both strings).

But then $\sigma(x)$ is the largest k such that P_k is a suffix of x, then $\sigma(xa) - 1$ must be at most $\sigma(x)$.

Proof of Main Result

By induction on *i*. If i = 0, then $T_0 = \varepsilon$ and the theorem holds. Else we assume $\sigma(T_i)$ is the value of *q* after the *i*th iteration and prove that *q* will be set to $\sigma(T_{i+1})$ the next time around.

To simplify notations let $q = \sigma(T_i)$ and a = T[i+1].

The next value of q will be $\delta(q, a)$ (just look at the code!).

By definition of δ the value above is equal to $\sigma(P_q a)$, which is $\sigma(P_{\sigma(T_i)}a)$ by definition of q.

Now we use the recursion lemma,

$$\sigma(P_{\sigma(T_i)}a) = \sigma(T_ia)$$

12

and we are done (!) since $T_i a = T_{i+1}$.

10

Suffix-function recursion lemma

 $\sigma(xa) = \sigma(P_{\sigma(x)}a)$, for any string x and character a.

To prove this one shows that

$$\sigma(xa) \leq \sigma(P_{\sigma(x)}a) \text{ and } \sigma(xa) \geq \sigma(P_{\sigma(x)}a).$$

1. $P_{\sigma(x)}$ is a suffix of x (by definition of σ).

- 2. $P_{\sigma(x)}a$ is a suffix of xa (just add the same character to both strings),
- 3. ... and, obviously, so is $P_{\sigma(xa)}$!
- 4. We thus have two suffixes of xa,

 $P_{\sigma(xa)}$ and $P_{\sigma(x)}a$ and, by the previous Lemma $\sigma(xa) \leq \sigma(x) + 1 = |P_{\sigma(x)}a|$. Hence it must be that $P_{\sigma(xa)}$ is a suffix of $P_{\sigma(x)}a$.

5. Therefore $\sigma(xa) \leq \sigma(P_{\sigma(x)}a)$.

The opposite inequality is proved similarly (see Cormen page 920).

Computing the transition function

The following procedure computes the transition function δ from a given

pattern P and alphabet A.

 $\begin{array}{l} \text{COMPUTE-TRANSITION-FUNCTION } (P, \mathcal{A}) \\ m \leftarrow \text{length}(P) \\ \textbf{for } q \leftarrow 0 \textbf{ to } m \\ \textbf{for each } a \in \mathcal{A} \\ k \leftarrow \min(m+1, q+2) \\ \textbf{repeat } k \leftarrow k-1 \textbf{ until } P_k \text{ is a suffix of } P_q a \\ \delta(q, a) \leftarrow k \end{array}$

The running time is $O(m^3|\Sigma|)$... why?

Complexity improvable to $\Theta(m|\Sigma|)$, which is best possible.

The picture so far

- Defined the String Matching problem.
- Defined, implemented and seen examples of the brute-force algorithm. Time complexity Θ((n - m)m).
- Defined and seen examples of an alternative approach based on automata theory. Time complexity $O(n + m|\Sigma|)$.

So? Can we actually solve pattern matching in linear time?

14