
Recap

• String matching problem.

• Brute force solution

• Good points / Bad points about it.

• Better solution? Try using automata.

Today:

• Brute-force implementation.

• How do we use automata? String-matching automaton.

• Examples + analysis.

1

Brute force Implementation

algorithm

BruteMatchAlgorithm

+ match (int counter[], StringBuffer source, StringBuffer target, String alphabet)

KMPMatchAlgorithm

+ match (int counter[], StringBuffer source, StringBuffer target, String alphabet)

MatchAlgorithm

− parent: Test

− stopRequested: boolean

− pause ()

− pause (int H1)

− pause (int H1, int H2)

+ stop ()

+ setParent (Test p)

+ init ()

+ match (int counter[], StringBuffer source, StringBuffer target, String alphabet)

+ match (int counter[], StringBuffer source, StringBuffer target, String alphabet)

BoyerMatchAlgorithm

Test

− kicker: Thread

+ arbit: StringBuffer

+ search: StringBuffer

+ font: Font

+ alphabeta: String

+ blanks: String

+ position: int

+ arr: int[]

+ h1: int

+ h2: int

+ old: int

+ algName: String

+ counter: int[]

+ scramble ()

+ pause ()

+ init ()

+ paint (Graphics g)

+ run ()

+ stop ()

+ startStop ()

+ mouseUp (Event evt, int x, int y)

2

class BruteMatchAlgorithm extends MatchAlgorithm{

void match(int counter[], // ??
StringBuffer T, // text
StringBuffer P, // pattern
String alphabet // not used by BruteMatch
) throws Exception{

counter[0] = 0;
int n = T.length(); // length of the input text
int m = P.length(); // length of the pattern

// finding all the matchings of P in T
for (int s = 0 ; s <= n - m ; s++) {

if(stopRequested)
return;

counter[1] = 0;
// checking equality of P and T[s + 0..s + m - 1]
for (int j = 0 ; j < m ; j++)

if ((T.toString()).charAt(s + j) != (P.toString()).charAt(j))
counter[1] = 1;

counter[0] = (s*6)\%900;
pause(1,1);
counter[1]=0;

}
}

}

2-1

String-matching automaton, Example

Let’s consider again the patternP ≡ abc, and let’s define the

string-matching automaton in this case (for simplicity let’s assume the

alphabetS = {a, b, c}).

• Q = {0, 1, 2, 3}, the automaton will have four states.

• The initial state is (always)q0 = 0.

• The only accepting state is (always)m.

5

Transition function

The only step that needs some care is the definition of the transition

function. We can represent it as a table with rows indexed by characters

and columns indexed by states.

Let’s start withδ(0,a). By definition ofσP this is “the length of the

longest prefix ofP that is a suffix ofP0a(≡ a)”. Thereforeδ(0,a) = 1.

Next comesδ(1,a). This is “the length of the longest prefix ofP that is a

suffix of P1a(≡ aa)”. Again δ(1,a) = 1. Iterating this process one can

getδ’s full definition (reported in the following table).

0 1 2 3

a 1 1 1 1

b 0 2 0 0

c 0 0 3 0

6

Simulation

Let T = aababcabcbb.

T a a b a b c a b c b b

q 0 1 1 2 1 2 3 1 2 3 0 0

output 3 6

7

Time complexity analysis ... cheating!

• The simple loop structure of FINITE-AUTOMATON-MATCHING

implies that its running time isO(|T |).

• However, this does not include the time to compute the transition

functionδ: we will look at this later!

• Correctness? Not easy, brace yourself!

Let’s start by understanding what correctness means.

8

Main Result

For eachi ≤ n, the value ofq after theith iteration of the main

for loop in FINITE-AUTOMATON-MATCHING isσP (Ti), i.e. the

length of the longest prefix of the patternP that is a suffix ofTi.

By definition ofσP , σP (Ti) = m if and only if P is a suffix ofTi, i.e. a

matching has just occurred, therefore the result “says” that the process

returns all the valid shifts of the given pattern.

9

Suffix-function inequality

σ(xa) ≤ σ(x) + 1, for any stringx and charactera.

Case 1. If σ(xa) = 0, then the result trivially holds, becauseσ is a

positive function.

Case 2.Otherwise,

Pσ(xa) is a suffix ofxa, by definition ofσ.

FurthermorePσ(xa)−1 must be a suffix ofx (we just drop the end of

both strings).

But thenσ(x) is the largestk such thatPk is a suffix ofx, then

σ(xa)− 1 must be at mostσ(x).

10

Suffix-function recursion lemma

σ(xa) = σ(Pσ(x)a), for any stringx and charactera.

To prove this one shows that

σ(xa) ≤ σ(Pσ(x)a) andσ(xa) ≥ σ(Pσ(x)a).

1. P
σ(x) is a suffix ofx (by definition ofσ).

2. P
σ(x)a is a suffix ofxa (just add the same character to both strings),

3. ... and, obviously, so isP
σ(xa)!

4. We thus have two suffixes ofxa,

P
σ(xa) andP

σ(x)a

and, by the previous Lemmaσ(xa) ≤ σ(x) + 1 = |P
σ(x)a|. Hence it must

be thatP
σ(xa) is a suffix ofP

σ(x)a.

5. Thereforeσ(xa) ≤ σ(P
σ(x)a).

The opposite inequality is proved similarly (see Cormen page 920).

11

Proof of Main Result

By induction oni. If i = 0, thenT0 = ε and the theorem holds. Else we

assumeσ(Ti) is the value ofq after theith iteration and prove thatq will

be set toσ(Ti+1) the next time around.

To simplify notations letq = σ(Ti) anda = T [i + 1].

The next value ofq will be δ(q, a) (just look at the code!).

By definition ofδ the value above is equal toσ(Pqa), which is

σ(Pσ(Ti)a) by definition ofq.

Now we use the recursion lemma,

σ(Pσ(Ti)a) = σ(Tia)

and we are done (!) sinceTia = Ti+1.

12

Computing the transition function

The following procedure computes the transition functionδ from a given

patternP and alphabetA.

COMPUTE-TRANSITION-FUNCTION (P ,A)

m← length(P)

for q ← 0 to m

for eacha ∈ A

k ← min(m + 1, q + 2)

repeatk ← k − 1 until Pk is a suffix ofPqa

δ(q, a)← k

The running time isO(m3|Σ|) ... why?

Complexity improvable toΘ(m|Σ|), which is best possible.

13

The picture so far

• Defined the String Matching problem.

• Defined, implemented and seen examples of the brute-force

algorithm. Time complexityΘ((n−m)m).

• Defined and seen examples of an alternative approach based on

automata theory. Time complexityO(n + m|Σ|).

So? Can we actually solve pattern matching in linear time?

14

