Recap
e String matching problem.

e Brute force solution

e Good points / Bad points about it.

e Better solution? Try using automata.

Today:

¢ Brute-force implementation.

¢ How do we use automata? String-matching automaton.

e Examples + analysis.

Brute force Implementation

MatchAlgorithm

- parent: Test
- stopRequested: boolean

- pause ()

- pause (intH1)

- pause (int H1, int H2)
+ setParent (Testp)

+stop ()
+init ()

cl ass BruteMat chAl gorithm extends Mat chAl gorithn{

void match(int counter[], 1?2
StringBuffer T, /'l text
StringBuffer P, /1 pattern
String al phabet /1 not used by BrutelMatch

) throws Exception{

counter[0] = O;
int n=T.length(); // length of the input text
int m=P.length(); // length of the pattern

/1 finding all the matchings of Pin T
for (int s=0; s<=n- m; s++) {
i f (stopRequest ed)
return;
counter[1] = 0;
/'l checking equality of Pand T[s + 0..s + m- 1]
for (int j =0; jJ <m; j++)
if ((T.toString()).charAt(s +j) != (P.toString()).charAt(j))
counter[1l] = 1;
counter[0] = (s*6)\%00;
pause(1, 1);
count er [1] =0;

2-1

Test

+ match (int counter[], StringBuffer source, StringBuffer target, String alphabet,

algorithm

BruteMatchAlgorithm

+ match (int counter[], StringBuffer source, StringBuffer target, String alphabet,

KMPMatchAlgorithm

+ match (int counter(], StringBuffer source, StringBuffer target, String alphabet)

- kicker: Thread

+ arbit: StringBuffer
+ search: StringBuffer
+ font: Font

+ alphabeta: String
+ blanks: String

+ position: int
+arr:int[]

+ht:int

+h2:int

+old: int

+ algName: String
+ counter: int[]

+ scramble ()

+ pause ()

+init ()

+ paint (Graphics g)
+run ()

+ stop ()

+ startStop ()

+mouseUp (Event evt, int x, int y)|

BoyerMatchAlgorithm

+ match (int counterf], StringBuffer source, StringBuffer target, String alphabet;

String-matching automaton, Example

Let's consider again the pattefh= abc, and let's define the
string-matching automaton in this case (for simplicitysleissume the
alphabetS = {a, b, c}).

e Q =10,1,2,3}, the automaton will have four states.
e The initial state is (always)y = 0.

e The only accepting state is (always)

Transition function

The only step that needs some care is the definition of theitiam
function. We can represent it as a table with rows indexedhayacters
and columns indexed by states.

Let's start with§(0,a). By definition ofop this is “the length of the
longest prefix ofP that is a suffix ofPya(= a)”. Therefored(0,a) = 1.
Next comesi(1,a). This is “the length of the longest prefix éf that is a
suffix of Pya(= aa)”. Again d(1,a) = 1. Iterating this process one can
geto’s full definition (reported in the following table).

o 3

2

11
0 O
3 0

O N k|

all
b |0
c|O

Time complexity analysis ... cheating!

e The simple loop structure ofIRITE-AUTOMATON-MATCHING
implies that its running time i©(|T'|).

e However, this does not include the time to compute the ttiamnsi
functioné: we will look at this later!

e Correctness? Not easy, brace yourself!
Let’s start by understanding what correctness means.

Simulation
Let T = aababcabcbb.

Main Result

For eachi < n, the value of; after theith iteration of the main
for loop in ANITE-AUTOMATON-MATCHING isop(T;), i.e. the
length of the longest prefix of the pattefhthat is a suffix off;.

By definition ofop, op(T;) = m if and only if P is a suffix of T}, i.e. a
matching has just occurred, therefore the result “sayd"ttreaprocess
returns all the valid shifts of the given pattern.

Suffix-function inequality

‘ o(za) < o(x) + 1, for any stringr and charactet.

Case 1.1f o(za) = 0, then the result trivially holds, becausés a
positive function.

Case 2. Otherwise,
Py (za) s a suffix ofza, by definition ofo.
FurthermoreF, ,.,)—; must be a suffix of (we just drop the end of
both strings).
But theno () is the largest such thatP; is a suffix ofz, then
o(xza) — 1 must be at most(z).

Proof of Main Result

By induction oni. If i = 0, thenTy = ¢ and the theorem holds. Else we
assumer(T;) is the value of; after theith iteration and prove thatwill
be set tar(T;,1) the next time around.

To simplify notations ley = o(T;) anda = T'[i + 1].
The next value ofy will be §(q, a) (just look at the code!).

By definition of § the value above is equal tq P,a), which is
o(Py(1,)a) by definition ofq.

Now we use the recursion lemma,
U(Pa(Ti)a) = o(T;a)

and we are done (!) sincBa = T;41.

10

12

Suffix-function recursion lemma

o(xa) = 0(P,(y)a), for any stringr and charactes.

To prove this one shows that
o(za) < 0(Py(zya) ando(za) > o(Py(g)a).
. P, (s is a suffix ofz (by definition ofo).
. P,(zyais a suffix ofza (just add the same character to both strings),

. ... and, obviously, S0 iB; (,4)!

A W N P

. We thus have two suffixes ef,
Pg(xa) andP(,(z)a
and, by the previous Lemm#(za) < o(x) + 1 = |P,(z)al. Hence it must
be thatP,) is a suffix of P, ,a.
5. Thereforer(za) < o(Py(x)a).

The opposite inequality is proved similarly (see Cormenep220).

Computing the transition function

The following procedure computes the transition functiddrom a given
patternP and alphabet.

COMPUTE-TRANSITION-FUNCTION (P, A)
m «— length(P)
for g — Otom
for eacha € A
k — min(m +1,q+ 2)
repeatk < k — 1 until Py is a suffix of P,a
0(q,a) — k

The running time i€ (m?|3|) ... why?

Complexity improvable t®(m|X|), which is best possible.

11

13

The picture so far
¢ Defined the String Matching problem.

e Defined, implemented and seen examples of the brute-force
algorithm. Time complexit¥((n — m)m).

e Defined and seen examples of an alternative approach based on
automata theory. Time complexiy(n + m|X|).

So? Can we actually solve pattern matching in linear timg?

14

