
Exercise

Simulate the string-matching automaton algorithm for

P ≡ abababa

and

T = abacbababababaacbacaababababaababababababacac.

Hints. You will need to:

1. Define the automaton (in particular compute its transition function).

2. Simulate step-by-step the algorithm FINITE-AUTOMATON-MATCHING.

We will go through this together during the lecture but, please, try it

on your own first.

1

Knuth, Morris, Pratt algorithm

The major inefficiency of the automaton algorithm is in the

computation of the automaton itself.

Knuth, Morris, and Pratt’s algorithm achieves running timelinear in

n + m by using just an auxiliary functionπ, defined over the states of

the automaton, precomputed from the pattern in timeO(m).

Roughly speaking, for any stateq and any charactera ∈ A, π[q]

contains the information that is independent ofa and is needed to

compute “on the fly”δ(q, a).

2

Prefix function

Theprefix functionfor a patternP , is the function

π : {1, . . . , m} → {0, . . . , m− 1} such that

π[q] = max{k : Pk is a proper suffix ofPq}

Example. Let P = 113 111 513 113. The corresponding prefix
function is

q 1 2 3 4 5 6 7 8 9 10 11 12

π[q] 0 1 0 1 2 2 0 1 0 1 2 3

To define, say,π[6] we considerPq ≡ 113 111, and then all prefixes

Pq−1, Pq−2, . . . , ε. We find out thatP2(≡ 11) is a suffix ofPq.

Henceπ[6] = 2.

3

Algorithm

KMP-MATCHING (T , P)

n← length(T)

m← length(P)

π ← COMPUTE-PREFIX-FUNCTION (P)

q ← 0

for i← 1 to n

(*) while (q > 0 ∧ P [q + 1] 6= T [i]) q ← π[q]

(*) if (P [q + 1] = T [i]) q ← q + 1

if q = m

print “pattern occurs with shifti−m”

(*) q ← π[q]

4

COMPUTE-PREFIX-FUNCTION (P)

m← length(P)

π[1]← 0

k ← 0

for q ← 2 to m

while (k > 0 ∧ P [k + 1] 6= P [q]) k ← π[k]

if (P [k + 1] = P [q]) k ← k + 1

π[q]← k

5

class KMPAlgorithm extends MatchAlgorithm{

void match(int counter[],
StringBuffer T,
StringBuffer P,
String alphabet) throws Exception{

counter[0] = 0;
int i, k, q;
int pi[] = new int[100];

// computation of the pi function
int m = P.length();
pi[0] = 0;
k = 0;
for(q = 1 ; q < m ; q++) {

while((k > 0) &&
((P.toString()).charAt(k) != (P.toString()).charAt(q)))

k = pi[k - 1];
if ((P.toString()).charAt(k) == (P.toString()).charAt(q))

k = k + 1;

pi[q] = k;
}

5-1

// pattern matching
int n = T.length();
q = 0;
for(i = 0 ; i < n ; i++) {

counter[1] = 1;
if (stopRequested)

return;

while((q > 0) &&
((P.toString()).charAt(q) != (T.toString()).charAt(i)))

q = pi[q - 1];
if ((P.toString()).charAt(q) == (T.toString()).charAt(i))

q = q + 1;

counter[0] = ((i - q + 1)*6);
if (((i-q) < n - m) && (q != m)) pause(1,1);

if (q == m){
counter[1] = 0;
counter[0] = ((i - m + 1)*6);
pause(1,1);
q = pi[q - 1];

}
}

}
}

5-2

Exercises

1. Simulate the behaviour of the three algorithm we have

considered on the patternP ≡ abc and the textT =

aabcbcbabcabcabc.

2. Count the number of instructions executed in each case andfind

out how the algorithms rank with respect to running time.

3. Repeat exercise 1. and 2. with the textT =

abababababababab. Comment on the results!

6

One more exercise

Let T = abdcababdcabdcb andP = abdcabd.

(1) We first compute the prefix function.

q 1 2 3 4 5 6 7

π[q] 0 0 0 0 1 2 3

(2) Next we simulate KMP-MATCHING, starting withn = 12,

m = 7 andq = 0.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T a b d c a b a b d c a b d c b

q 0

7

i = 1, q is NOT positive so thewhile loop is skipped,P [q + 1] is equal toT [i]
soq becomes one, and we move to the next iteration

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T a b d c a b a b d c a b d c b
q 0 1

i = 2, q IS positive, butP [q + 1] = T [i] so thewhile loop is skipped again,
andq is increased to two, and we move to the next iteration.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T a b d c a b a b d c a b d c b
q 0 1 2

i = 3, i = 4 up toi = 6 same story,q is successively increased, and each time
we move to the next iteration.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6

7-1

i = 7, q IS positive ANDP [q + 1] 6= T [i], we runq ← π[q] inside thewhile
loop twice (after the first time we ackowledge overall failure but we try to find
P3 ≡ abd, after the second time we have completely given up and we decide
we will start almost from scratch, having matchedP1 ≡ a).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1

2
0

i = 8 up toi = 12, nothing exciting happens,q keeps increasing ...

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1 2 3 4 5 6

2
0

... i = 13 again we skip thewhile loop and increaseq and ... ops there is a
match! So we runq ← π[q] in the finalif statement. Thereforeq is set to three.

7-2

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1 2 3 4 5 6 3

2 7
0 3

i = 14, gives a match, henceq is increase but fori = 15, q IS positive and
a mismatch occurs, hence we enter thewhile loop and resetq to zero ... and
that’s the end of it!

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T a b d c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1 2 3 4 5 6 3 4

2 7 0
0 3

7-3

Remarks

BRUTE-MATCHING would have performed 23 character-wise

comparisons.

If we disregard repeated comparisons (we can always save theresult

of a comparison in a boolean variable and reuse it!) and we do not

take into account the preprocessing to compute the values ofπ,

KMP-MATCHING performs only one comparison in each of its 15

iterations of the mainfor loop plus two more the first time we run the

while loop and one more the second time. That’s 18 in total.

FINITE-AUTOMATON-MATCHING would have been even quicker

than KMP-MATCHING, but it would have required longer

preprocessing time.

8

