Exercise
Simulate the string-matching automaton algorithm for
P = abababa
and
T = abacbababababaacbacaababababaababababababacac.
Hints. You will need to:
1. Define the automaton (in particular compute its transitimction).

2. Simulate step-by-step the algorithiNFE-AUTOMATON-MATCHING.

We will go through this together during the lecture but, pkary it
on your own first.

Prefix function

The prefix functiorfor a patternP, is the function
m:{l,...,m} —{0,...,m — 1} such that
7[q] = max{k : Py is a proper suffix of?, }

Example. Let P =113 111 513 113. The corresponding prefix
function is

g |1]|2|3]|4|5|6|7|8|9|10]11]12
mggloj1|ol1|2|2]|0ofl1]|0|l1]2]3

To define, sayr|[6] we consider”, = 113 111, and then all prefixes
P,_1,Py_o,...,e. We find out thatP» (= 11) is a suffix of P,.
Hencer[6] = 2.

Knuth, Morris, Pratt algorithm

The major inefficiency of the automaton algorithm is in the
computation of the automaton itself.

Knuth, Morris, and Pratt’s algorithm achieves running tiinear in
n + m by using just an auxiliary function, defined over the states of
the automaton, precomputed from the pattern in tinfez).

Roughly speaking, for any stageand any character € A, 7[q]
contains the information that is independent.afnd is needed to
compute “on the fly’s(q, a).

Algorithm
KMP-MATCHING (T, P)
n — lengthT’)
m « length(P)
7+ COMPUTE-PREFIX-FUNCTION (P)
q—0
fori— 1ton
* while (¢ > 0A Plg+1] #T[i]) q < 7[q]
* if (Plg+1]=T[]) q—q+1
ifg=m
print “pattern occurs with shift — m”
*) q < 7lq]

COMPUTE-PREFIX-FUNCTION (P)

m «— length(P)

7[1] « 0

k0

forg«—2tom
while (k > 0 A Pk + 1] # Plq])
if (Plk+1]=Plq]) k—k+1
g — k

k — (k]

cl ass KMPAI gorithm extends MatchAl gorithn{

void match(int counter[],
StringBuffer T,
StringBuffer P,
String al phabet) throws Exception{

counter[0] = O;
int i, k, q;
int pi[] = newint[100];

/] conputation of the pi function
int m= P.length();

pi[0] = O;
k = 0;
for(g =1; g<m ; g++) {
while((k>0 &&
((P.toString()).charAt(k) !'= (P.toString()).charAt(q)))
k = pi[k - 1];
if ((P.toString()).charAt(k) == (P.toString()).charAt(q))
k = k + 1;
pifa] = k;

5-1

/1 pattern matching
int n =T length();
q=0;
for(i =0; i <n;
counter[1l] = 1,
i f (stopRequested)
return;

i++) {

while((g > 0) &&
((P.toString()).charAt(q) !'= (T.toString()).charAt(i)))

q=pi[q- 1];
if ((P.toString()).charAt(q) == (T.toString()).charAt(i))
q=q+ 1

counter[0] = ((i
if (((i-q) <n-

-q+1)%6);
m) & (g '= m)) pause(l,1);

if (g==m){
counter[1] = 0;
counter[0] = ((i - m+ 1)*6);
pause(1, 1);
q=pilqg- 1];
}
}
}
}
5-2
Exercises

1. Simulate the behaviour of the three algorithm we have
considered on the pattefh = abc and the textl” =
aabcbcbabcabcabc.

2. Count the number of instructions executed in each casérahd
out how the algorithms rank with respect to running time.

3. Repeat exercise 1. and 2. with the t&xt
abababababababab. Comment on the results!

One more exercise
Let T = abdcababdcabdcb and P = abdcabd.

(1) We first compute the prefix function.

g |1]|2|3|4a|5|6]|7
mlgg lojo|lo]jo|1|2]3

(2) Next we simulate KMP-MTCHING, starting withn = 12,
m = 7andq = 0.

15

i =1, ¢ is NOT positive so thevhile loop is skippedP[q + 1] is equal taT'[7]

soq becomes one, and we move to the next iteration

i |1 2 3 4 5 6 7 8 9 10 11 12 13 14

b d ¢ a b a b d ¢ a b d ¢

a
qg | 0 1

i = 2, q IS positive, butP[q + 1] = T[i] so thewhile loop is skipped again,

andgq is increased to two, and we move to the next iteration.

i1 |1 2 3 4 5 6 7 8 9 10 11 12 13 14

a
q | 0 1 2

1= 3,1 =4 uptoi = 6 same storyy is successively increased, and each time

we move to the next iteration.

i |1 2 3 4 5 6 7 8 9 10 11 12 13 14

b d ¢ a b a b d ¢ a b d c

oo
I
N
w
H
)]
[¢]

q

7-1

i =17, q|S positive AND P[q + 1] # Ti], we rung < m|q] inside thewhile
loop twice (after the first time we ackowledge overall faflinut we try to find
P; = abd, after the second time we have completely given up and weldeci
we will start almost from scratch, having matchBd= a).

7 1 2 3 5 6 7 8 9 10 11 12 13 14 15
a b d c¢c a b a b d c a b d c b
q 0 1 2 3 4 5 6 1
2
0

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a
g |0 1 2 3 4 5 6 1 2 3 4 5 6

. ¢ = 13 again we skip thevhile loop and increase and ... ops there is a
match! So we rulg — 7[q] in the finalif statement. Thereforgis set to three.

7-2

-
N
N
w
IN
6]
o
~
o]
©
=
o
=
=
=
N
=
w
=
~
=
ol

1 = 14, gives a match, hencgis increase but fof = 15, ¢ IS positive and
a mismatch occurs, hence we enter Wigle loop and reseg to zero ... and
that’s the end of it!

1 1 2 3 5 6 7 8 9 10 11 12 13 14 15
a b d c¢c a b a b d ¢ a b d ¢ b
q| 0 1 2 3 4 5 6 1 2 3 4 5 6 3 4
2 7 0
0 3
7-3

Remarks

BRUTE-MATCHING would have performed 23 character-wise
comparisons.

If we disregard repeated comparisons (we can always saveshk
of a comparison in a boolean variable and reuse it!) and weptio n
take into account the preprocessing to compute the values of
KMP-MATCHING performs only one comparison in each of its 15
iterations of the maiffor loop plus two more the first time we run thq
while loop and one more the second time. That's 18 in total.

FINITE-AUTOMATON-MATCHING would have been even quicker
than KMP-MATCHING, but it would have required longer
preprocessing time.

