
Longest Common Subsequence

LCS is an interesting variation on the classical string matching

problem: the task is that of finding the common portion of two strings

(more precise definition in a couple of slides).

Applicationsa?

• Molecular biology. DNA sequences (genes) can be represented as

sequences of four letters ACGT, corresponding to the four submolecules

forming DNA. When biologists find a new sequence, they typically

want to know what other sequences it is most similar to. One way of

computing how similar two sequences are is to find the length of their

longest common subsequence.

aThanks to David Eppstein’s web page:

http://www.ics.uci.edu/ eppstein/161/960229.html+

1

• File comparison. The Unix programdiff is used to compare two

different versions of the same file, to determine what changes have been

made to the file. It works by finding a longest common subsequence of

the lines of the two files; any line in the subsequence has not been

changed, so what it displays is the remaining set of lines that have

changed. In this instance of the problem we should think of each line of

a file as being a single complicated character in a string.

• Screen redisplay. Many text editors likeemacs display part of a file on

the screen, updating the screen image as the file is changed. For slow

dial-in terminals, these programs want to send the terminalas few

characters as possible to cause it to update its display correctly. It is

possible to view the computation of the minimum length sequence of

characters needed to update the terminal as being a sort of common

subsequence problem (the common subsequence tells you the parts of

the display that are already correct and don’t need to be changed).

2

Definitions

Given a sequence (i.e. a string of characters)X = x1x2 . . . , xm,

another sequenceZ = z1z2 . . . zk is asubsequenceof X if there

exists a (strictly increasing) list of indices ofX i1, i2, . . . , ik such

that for allj ∈ {1, 2, . . . , k}, we havexij
= zj .

Example. The sequenceZ = BCDB is a subsequence ofX =

ABCBDAB with corresponding index list:2, 3, 5, 7.

The sequenceZ = 1011 is a subsequence ofX = 1011011 with

corresponding index list:1, 2, 3, 4.

The empty sequence is a subsequence of all sequences.

3

Given two sequencesX andY , we say that a sequenceZ is a

common subsequenceof X andY if Z is a subsequence of bothX

andY .

Examples.The sequenceABC is a common subsequence of both

X = ACBCD andY = ABCBD.

The sequenceABCD is a longer (indeed the longest) common

subsequence ofX andY (and so isACBD).

4

In the longest common subsequence problemwe are givena two

sequencesX andY and wish to find a maximum-length common

subsequence (or LCS) of bothX andY .

Exercises.

1. Design a solution for the given optimisation problem, i.e. define

an algorithm which returns one of the largest common

subsequences of the two given sequencesX andY .

2. Analyse the time complexity of your solution.

Would a greedy algorithm work?
aNotice that no explicit assumption about the basic alphabetis needed. IfX andY

do not share a common alphabet LCS(X, Y) = 0.

5

Characterising a longest common subsequence

The LCS problem has an optimal-substructure property. A natural

class of sub-problems to consider corresponds to pairs of prefixes of

the two input sequences.

Let X = x1x2 . . . xm, andY = y1y2 . . . yn be sequences. and

let Z = z1z2 . . . zk be any LCS ofX andY .

1. If xm = yn, then

zk = xm = yn andZk−1 is a LCS ofXm−1 andYn−1.

2. If xm 6= yn, then

if zk 6= xm thenZ is a LCS ofXm−1 andY ;

if zk 6= yn thenZ is a LCS ofX andYn−1.

6

Explanation

Let X andY be two sequences as in the statement of the result andZ

be an LCS of the two.

(Case 1.) Let’s assume the two sequencesX andY end with the
same character, butzk 6= xm. ThenZxm is a common subsequence
that is longer thanZ (impossible). Thereforezk = xm = yn. Now,
Zk−1 is a common subsequence of lengthk − 1 of Xm−1 andYn−1.
Suppose by contradiction that there exists a common subsequenceW
of Xm−1 andYn−1 with |W | > k − 1. ThenWzk is a common
subsequence ofX andY which is longer thanZ. HenceZk−1 is one
of the longest common subsequences ofXm−1 andYn−1.

(Case 2.) Let’s assumezk 6= xm thenZ is actually a common
subsequence ofXm−1 andY . As above, ifZ wasn’t the LCS of
Xm−1 andY the longest such sequence could be extended to be an
LCS forX andY . The casezk 6= yn is symmetrical.

7

A recursive solution to subproblems

A recursive solution to the LCS problem also has the

overlapping-subproblems property. The analysis so far implies that to

find the LCS ofX andY we either havexm = yn, in which case the

problem is reduced to compute the LCS ofXm−1 andYn−1 or else

we find an LCS inXm−1 andY or X andYn−1. Each of these

subproblems has LCS(Xm−1, Yn−1) as common sub-problem.

The recursive definition of the optimal cost is readily completed. If

lcs[i, j] is the longest common subsequence ofXi andYj , then

lcs[i, j] =

0 i = 0 ∨ j = 0

lcs[i− 1, j − 1] + 1 i, j > 0 ∧ xi = yj

max{lcs[i, j − 1], lcs[i− 1, j]} i, j > 0 ∧ xi 6= yj

8

Computing the length of an LCS

One can easily write an exponential time recursive algorithm to
computelcs. However, since there are onlyΘ(nm) distinct
subproblems, we can also use dynamic programming to computethe
solutions bottom up.

The following procedure takes two sequencesX = x1x2 . . . xm and
Y = y1y2 . . . yn and stores the output in a two dimensional arraylcs,
whose entries are computed in row-major order.

The tableb[1..m, 1..n] will be used later to simplify the construction
of an optimal solution.

On completionlcs[m, n] contains the size of an LCS betweenX and
Y .

The overall running time of the procedure isO(nm) since each table
entry takesO(1) time to compute.

9

LCS (X , Y)
m← length(X)
n← length(Y)
for i← 1 to m lcs[i, 0]← 0
for j ← 0 to n lcs[0, j]← 0
for i← 1 to m

for j ← 1 to n

if xi = yj

lcs[i, j]← lcs[i− 1, j − 1] + 1
b[i, j]← “↖”

else iflcs[i− 1, j] ≥ lcs[i, j − 1]
lcs[i, j]← lcs[i− 1, j]
b[i, j]← “↑”

else
lcs[i, j]← lcs[i, j − 1]
b[i, j]← “←”

return lcs andb

9-1

Constructing an LCS

Theb table returned by the LCS procedure can be used quickly to

construct an optimal solution for the given instance. We simply begin

at b[m, n] and trace through the table “following directions”: the “↖”

symbol implies thatxi = yj is an element of the LCS.

10

PRINT-LCS (b, X , i, j)

if i = 0 ∨ j = 0

return
if b[i, j] = “↖”

PRINT-LCS (b, X , i− 1, j − 1)

print xi

else ifb[i, j] = “↑”

PRINT-LCS (b, X , i− 1, j)

else
PRINT-LCS (b, X , i, j − 1)

The procedure takesO(n + m) time, since at least one ofi andj is

decremented in each stage of the recursion.

11

Example

Let X = 10010101 andY = 010110110.

To trace the algorithm execution it is convenient to follow the way in

which the tablelcs is filled. First of all, all entries in the first row and

column are filled with zeroes. So, just before the thirdfor loop in

LCS is started ,lcs will look like the table on the next page.

12

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1

0
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

12-1

Next we seti to one andj to one and we checkx1 = 1 againsty1 = 0. They are different, so we

checklcs[0, 1] ≥ lcs[1, 0]. These are both zero, hence the check succeeds. Solcs[1, 1] is set to

lcs[0, 1] andb[1, 1] is set to “↑”.

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0

1 1 ↑

0 0
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

12-2

Next j ← 2 (we are comparingX1 ≡ 1 with Y2 ≡ 01). x1 = 1 = y2 hence
lcs[1, 2]← lcs[0, 1] + 1 andb[1, 2]← “↖”.

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0

1 1 ↑ ↖

0 0 1
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

12-3

Next j ← 3 (we are comparingX1 ≡ 1 with Y2 ≡ 010). x1 = 1 but y3 = 0. We then check

lcs[0, 3] ≥← lcs[1, 2]. The test gives a FALSE answer aslcs[1, 2] = 1, hence such value is

copied tolcs[1, 3] and andb[1, 2]← “←”.

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0

1 1 ↑ ↖

0 0 1 ← 1
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

12-4

Next j ← 4 (we are comparingX1 ≡ 1 with Y2 ≡ 0101). x1 = y4. So
lcs[1, 4]← lcs[0, 3] + 1 andb[1, 4]← “↖”.

j 0 1 2 3 4 5 6 7 8 9
i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0

1 1 ↑ ↖ ↖

0 0 1 ← 1 1
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

12-5

The process should be clear now. Here is the final table.
j 0 1 2 3 4 5 6 7 8 9

i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0
1 1 ↑ ↖ ↖ ↖ ↖ ↖

0 0 1 ← 1 1 1 ← 1 1 1 ← 1
2 0 ↖ ↑ ↖ ↖ ↖

0 1 1 2 ← 2 ← 2 2 ← 2 ← 2 2
3 0 ↖ ↑ ↖ ↑ ↑ ↖ ↖

0 1 1 2 2 2 3 ← 3 ← 3 3
4 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖

0 1 2 2 3 3 3 4 4 ← 4
5 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 3 3 4 4 4 5
6 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 4 4 5 5 5
7 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 4 4 5 5 5 6
8 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 5 5 6 6 6

12-10

And here is the common subsequence (just pick the characterscorresponding to a “↖” value
of b starting fromb[m, n]).

j 0 1 2 3 4 5 6 7 8 9

i yi 0 1 0 1 1 0 1 1 0
0 xi

0 0 0 0 0 0 0 0 0 0

1 1 ↑ ↖ ↖ ↖ ↖ ↖

0 0 1 ← 1 1 1 ← 1 1 1 ← 1

2 0 ↖ ↑ ↖ ↖ ↖

0 1 1 2 ← 2 ← 2 2 ← 2 ← 2 2

3 0 ↖ ↑ ↖ ↑ ↑ ↖ ↖

0 1 1 2 2 2 3 ← 3 ← 3 3

4 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖

0 1 2 2 3 3 3 4 4 ← 4
5 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 3 3 4 4 4 5

6 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 4 4 5 5 5

7 0 ↖ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↖

0 1 2 3 4 4 5 5 5 6
8 1 ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↑

0 1 2 3 4 5 5 6 6 6

12-11

Improvements

It is often the case that once you have developed an algorithmyou

find out that it is possible to improve it. Some improvements give no

asymptotic improvement in the performance, others yield to

substantial asymptotic savings in time and space.

• It is possible to eliminate theb table altogether. Each entrylcs[i, j]

depends on only three other values:lcs[i − 1, j − 1], lcs[i − 1, j], and

lcs[i, j − 1]. Givenlcs[i, j] we can determine inO(1) time which of the

three values was used to compute it. Thus, we can reconstructan LCS in

O(n + m) time using a procedure similar to PRINT-LCS (exercise!).

Although we saveΘ(mn) space by this method, the auxiliary space

requirement for computing an LCS does not asymptotically decrease,

since we still needΘ(mn) space for the tablelcs.

• We can reduce the asyptotic space requirements since the main

procedure to filelcf only needs two rows at a time: the one being

13

computed and the previous row. This improvement works if we only

needlcs; if we need to reconstruct an optimal solution then the smaller

table does not keep enough information to retrace our steps in

O(n + m) time.

• Currently David Eppstein, Zvi Galil, Raffaele Giancarlo and Giuseppe

Italiano hold the record for the fastest LCS algorithm:

Actually, if you look at the matrix above(MZ, this is lcs), you

can tell that it has a lot of structure – the numbers in the matrix

form large blocks in which the value is constant, with only a

small number ofcornersat which the value changes. It turns out

that one can take advantage of these corners to speed up the

computation. The current (theoretically) fastest algorithm for

longest common subsequences (due to myself and co-authors)

runs in timeO(n log |A| + c log log min(c,mn/c)) wherec is

the number of these corners, andA is the set of characters

appearing in the two strings.

14

