Longest Common Subsequence

LCS is an interesting variation on the classical string tmiatg
problem: the task is that of finding the common portion of tiwrings
(more precise definition in a couple of slides).

Application$?

e Molecular biology. DNA sequences (genes) can be repredeiste
sequences of four letters ACGT, corresponding to the foomslecules
forming DNA. When biologists find a new sequence, they tylpica
want to know what other sequences it is most similar to. Oneafa
computing how similar two sequences are is to find the lenftheir
longest common subsequence.

aThanks to David Eppstein’s web page:
http://ww. ics.uci.edu/ eppstein/161/960229. htm +

Definitions

Given a sequence (i.e. a string of charactéfsy zixs ..., zm,
another sequencg = z 2, . .. z; is asubsequencef X if there
exists a (strictly increasing) list of indices &f i1, is, . . ., i; such
thatforallj € {1,2,...,k}, we haver;, = z;.

Example. The sequencgZ = BCDB is a subsequence of =
ABCBDAB with corresponding index lisg, 3, 5, 7.

The sequencg = 1011 is a subsequence of = 1011011 with
corresponding index listt, 2, 3, 4.

The empty sequence is a subsequence of all sequences.

e File comparison. The Unix progradi f f is used to compare two
different versions of the same file, to determine what chamg&e been
made to the file. It works by finding a longest common subsecpieh
the lines of the two files; any line in the subsequence haseen b
changed, so what it displays is the remaining set of linetstaee
changed. In this instance of the problem we should think ohéiae of
a file as being a single complicated character in a string.

e Screen redisplay. Many text editors likeacs display part of a file on
the screen, updating the screen image as the file is changeslo
dial-in terminals, these programs want to send the ternsis&w
characters as possible to cause it to update its displagattyrlt is
possible to view the computation of the minimum length segeef
characters needed to update the terminal as being a sonnoficn
subsequence problem (the common subsequence tells yoartsep
the display that are already correct and don't need to beggthn

Given two sequenceX andY’, we say that a sequencgis a
common subsequenoéX andY if Z is a subsequence of bof
andY'.

Examples.The sequencABC is a common subsequence of both
X =ACBCD andY = ABCBD.

The sequencABCD is a longer (indeed the longest) common
subsequence of andY (and so iSACBD).

In thelongest common subsequence probleeare giveAtwo
sequence& andY and wish to find a maximum-length common
subsequence (or LCS) of bokh andY'.

Exercises.

1. Design a solution for the given optimisation problem, define
an algorithm which returns one of the largest common
subsequences of the two given sequencemndY’.

2. Analyse the time complexity of your solution.

Would a greedy algorithm work?

aNotice that no explicit assumption about the basic alphsbeteded. 1£X andY
do not share a common alphabet LGS{Y") = 0.

Explanation

Let X andY be two sequences as in the statement of the resulfZanfd
be an LCS of the two.

(Case 1.) Let’s assume the two sequenkesndY end with the
same character, buf, # x,,,. ThenZz,, is a common subsequence
that is longer thar¥ (impossible). Therefore, = x,, = y... Now,
Z_1 is a common subsequence of length 1 of X,,,_; andY,,_;.
Suppose by contradiction that there exists a common subeeqil/
of X,,—1 andY,,_; with |W| > k — 1. ThenW 2, is a common
subsequence of andY which is longer tharZ. HenceZ,,_, is one
of the longest common subsequenceXof | andY,, ;.

(Case 2.) Let's assumg # x.,,, thenZ is actually a common

subsequence of,,,_; andY. As above, ifZ wasn't the LCS of
Xn_1 andY the longest such sequence could be extended to be gn
LCS for X andY. The casey, # y, is symmetrical.

Characterising a longest common subsequence

The LCS problem has an optimal-substructure property. Araht
class of sub-problems to consider corresponds to pairsefikps of
the two input sequences.

Let X = x125...2, andY = y1y> ...y, be sequences. and
let Z = z129 ...z, be any LCS ofX andY'.

1. If z,, = y,, then
2k = Ty = yn andZ;_, isa LCS ofX,,,_; andY,,_;.
2. If &, # yn, then

if zx # x,, thenZisalLCS ofX,,_; andY;
if zi # vy, thenZisaLCS ofX andY,,_;.

A recursive solution to subproblems

A recursive solution to the LCS problem also has the
overlapping-subproblems property. The analysis so fatignphat to
find the LCS ofX andY we either have:,,, = y,, in which case the
problem is reduced to compute the LCSXf, ; andY,,_; or else
we find an LCS inX,,,_; andY or X andY,,_;. Each of these
subproblems has LGX,,,_1,Y,,_1) as common sub-problem.

The recursive definition of the optimal cost is readily coetet. If
lesli, j] is the longest common subsequence&gfandY;, then
0 i=0Vj=0
les[i, j]l = Qles[li — 1,5 — 1]+ 1 i,j >0 Az =y;
max{les[i,j — 1], les[i — 1,4]} 4,5 >0 A a; #y;

Computing the length of an LCS

One can easily write an exponential time recursive algorith
computelcs. However, since there are ony(nm) distinct
subproblems, we can also use dynamic programming to cortipeite
solutions bottom up.

The following procedure takes two sequenées- zizs .. .z, and
Y = y19s ...y, and stores the output in a two dimensional atkay
whose entries are computed in row-major order.

The tableb[1..m, 1..n] will be used later to simplify the construction
of an optimal solution.

On completiorics[m, n] contains the size of an LCS betwe&nhand
Y.

The overall running time of the procedure$nm) since each table
entry takegD(1) time to compute.

Constructing an LCS

Theb table returned by the LCS procedure can be used quickly to
construct an optimal solution for the given instance. Wepbjrbegin
atb[m, n| and trace through the table “following directions”: tHe "
symbol implies that:; = y; is an element of the LCS.

LCS (X,Y)
m « length X)
n < length'Y)
for i — 1tomles[i, 0] — 0
for j — 0tonles[0,5] < 0
fori — 1tom
for j«— 1ton
if Ty =1Y;
lcs[i,j] — lcs[i —-1,7 — 1] +1
bl] — N\
else iflcs[i — 1,] > les[i, j — 1]
lesli, j] « lesli — 1, 5]
blé, j] < *1”
else
lesli, j] « lesi, j — 1]
bli,) "
return lcs andb

9-1

10

PRINT-LCS (, X, i, j)
ifi=0vji=0
return
if bli,] = “\"
PRINT-LCS (b, X,i— 1,7 — 1)
print z;
else ifbfi, j] =“1"
PRINT-LCS (b, X,7— 1, j)
else
PRINT-LCS (b, X,4,7 — 1)

The procedure take3(n + m) time, since at least one ofindj is
decremented in each stage of the recursion.

11

Example
Let X = 10010101 andY = 010110110.

To trace the algorithm execution it is convenient to folldwe tvay in
which the tabldcs is filled. First of all, all entries in the first row and

column are filled with zeroes. So, just before the ttiadloop in
LCS is started jcs will look like the table on the next page.

12
sj !/ o 1 2 3 4 5 6 7 8
i % O 1 0o 1 1 0o 1 1
x;
o o0 o o o o o o o
1 1
0
2 0
0
3 0
0
4 1
0
5 0
0
6 1
0
7 0
0
8 1
0

12-1

Next we set to one andj to one and we check; = 1 againsty; = 0. They are different, so we
checkics[0,1] > les[1,0]. These are both zero, hence the check succeedi:s891] is set to

les[0, 1] andb[1, 1] is set to 7"

il o 1] 2 3 4 5 & 7 8 9
i yi 1 0 1 o 1 1 o0
0

o o o o 0 0 0 0 0 0
[1] 1 T

o 0
2 0

0
3 0

0
4 1

0
5 0

0
6 1

0
7 0

0
8 1

0

12-2

Nextj «— 2 (we are comparing(; = 1 with Y = 01). x; = 1 = y, hence
les[1,2] « les[0,1] + 1 andb[1, 2] « “N".

j| o 1 2] 3 4 5 6 7 8 9
i w o0 1 o 1 1 0 1 1 0
0 x;

o o o 0 ©O0O O O0 0 0 o
1] 1 TN
o o 1
2 0
0
3 0
0
4 1
0
5 0
0
6 1
0
7 0
0
8 1
0

12-3

Nextj «— 3 (we are comparing(; = 1 with Y> = 010). =; = 1 butys = 0. We then check
les]0,3] >« les[1,2]. The test gives aALSE answer adces[1,2] = 1, hence such value is

copied tolcs(1, 3] and andb[1, 2] « “«".

il o 1 2 [8 4 5 6 7 8 9
i % 0 1 06 1 1 0o 1 1 o0
Oxi

o o o o0 ©o0 0 0 0 0 O
[2] 2 TN
O O 1 <1
2 0
0
3 0
0
4 1
0
5 0
0
6 1
0
7 0
0
g8 1
0

12-4

Nextj < 4 (we are comparing{; = 1 with Y> = 0101). z; = y4. SO
les[1,4] « les[0,3] + 1 andb[1, 4] «— “N".

j| o 1 2 3 [4 5 6 7 8 9
i vi 1 0 1 o 1 1 0
0 x;

o o o 0 ©O0O O 0 0 0 o
1] 1 TN N
0o 0 1 <1 1
2 0
0
3 0
0
4 1
0
5 0
0
6 1
0
7 0
0
8 1
0

12-5

The process should be clear now. Here is the final table.

i 0 1 2 3 4 5 6 7 8 9
7 vy 0 1 0 1 1 0 1 1 0
Oa:i

0 0 0 0 0 0 0 0 0 0
11 T NN NN

0 0 1 «— 1 1 1 «— 1 1 1 «— 1
2 0 LN N N

0 1 1 2 — 2 «— 2 2 — 2 «— 2 2
3 0 TN TN AN

0 1 1 2 2 2 3 <3 <3 3
4 1 T NN NN

0 1 2 2 3 3 3 4 4 — 4
5 0 TN T TN T

0 1 2 3 3 3 4 4 4 5
6 1 T NN TN N T

0 1 2 3 4 4 4 5 5 5
7 0 S J N S AN

0 1 2 3 4 4 5 5 5 6
8 1 T NN TN N T

0 1 2 3 4 5 5 6 6 6

12-10

And here is the common subsequence (just pick the charaxeesponding to @< ” value

of b starting fromb[m, n]).

J 0 1 2 3 4 5 6 7 8 9
i i 1] fo] 1+ 1 Jof [s] [1] [o]
Oa:i

0 0 0 0 0 0 0 0 0 0
1[4 1 N NN

0 0 1 « 1 1 1 « 1 1 1 « 1
2 [o] AN N N

0 1 1 2 «— 2 2 2 — 2 «— 2 2
3 o] 1 11

0 1 1 2 2 2 3 «— 3 « 3 3
4 [1] 1 AN NN

0 1 2 2 3 3 3 4 4 — 4
5 0 TN T TN T TN

0 1 2 3 3 3 4 4 4 5
6 [1] 1 TN NN 1

0 1 2 3 4 4 4 5 5 5
7 o] TN TN TN

0 1 2 3 4 4 5 5 5 6
8 1 1 TN NN 1

0 1 2 3 4 5 5 6 6 6

12-11

Improvements

It is often the case that once you have developed an algogitm
find out that it is possible to improve it. Some improvemerite Qo
asymptotic improvement in the performance, others yield to
substantial asymptotic savings in time and space.

e Itis possible to eliminate thitable altogether. Each enthys|i, j]
depends on only three other valuéss[i — 1,5 — 1], les[i — 1, j], and
les[i, j — 1]. Givenlesli, j] we can determine i®(1) time which of the
three values was used to compute it. Thus, we can reconamudEs in
O(n + m) time using a procedure similar tRINT-LCS (exercise!).
Although we savé® (mn) space by this method, the auxiliary space
requirement for computing an LCS does not asymptoticalbrekese,
since we still nee® (mn) space for the tablks.

e We can reduce the asyptotic space requirements since tine mai
procedure to fildcf only needs two rows at a time: the one being

13

computed and the previous row. This improvement works if wg o
needics; if we need to reconstruct an optimal solution then the senall
table does not keep enough information to retrace our steps i

O(n + m) time.

e Currently David Eppstein, Zvi Galil, Raffaele GiancarlaaBiuseppe
Italiano hold the record for the fastest LCS algorithm:

Actually, if you look at the matrix abo(®1Z, this isics), you

can tell that it has a lot of structure — the numbers in the nxatr
form large blocks in which the value is constant, with only a
small number o€ornersat which the value changes. It turns out
that one can take advantage of these corners to speed up the
computation. The current (theoretically) fastest algamit for
longest common subsequences (due to myself and co-authors)
runs in timeO(n log |.A| 4 clog log min(c, mn/c)) wherec is

the number of these corners, agdis the set of characters
appearing in the two strings.

14

