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In this chapter | will describe a number of beautiful algamiic results in Graph Theory. The
interested reader is referred to the following texts:

e Harary (1969)Graph Theory.
e Gibbons (1985Algorithmic Graph Theory.

e Deistel (1997)Graph Theory (available on-line from the author’s web page).

1 Preliminaries

Most of the graph-theoretic terminology will be taken fro8].[ A (simple undirected) graph G =
(V, E) is a pair consisting of a finite nonempty dét= V(G) of vertices (or nodes or points) and
a collectionE = E(G) of distinct subsets of each consisting of two elements calledes (or
lines). If e = {u,v} € E then the verticess andv areadjacent, vertexu and the whole edge are
incident (or else we say that belongs tce, sometimes using the set-theoretic notatioa ¢). Also

if f={v,w} € Ethene andf are incident. IfF' C E(G) thenV (F) is the set of vertices incident
to somee € F. For everyU C V(G), N(U) will denote the set of vertices adjacent to some U
and not belonging t&/. If U = {v} we write N (v) instead ofN ({v}). If U, W C V then cutU, V')
is the set of edges having one endpointimand the other ifV.

Thedegree of a vertexv is defined agleg; v =4 |N(v)|. Theminimum (resp.maximum) degree
of Gisd = §(G) = minyey degg v (resp.A = A(G) = max,ey degg v). Foralli € {0,...,n—1}
letV;(G) = {v € V : deggv = i}. A multiset is a collection of objects in which a single object can
appear several time. Aultigraph is a pairH = (U, E) in which U is the set of vertices an#l is a
multiset of edges. 1€ appears:. > 1 times inE then each of its occurrences iparallel edge. The
skeleton of a multigraphH = (U, E) is a graphG with V(G) = U and E(G) containing a single
copy of every parallel edge il plus all thee € E with x. = 1. A graph isdirected if the edges are
ordered pairs. Round brackets will enclose vertices béhgnig a directed edge.

A graph islabelled if its vertices are distinguished from one another by nanfégure 1 shows
the 64 different labelled graphs on four vertices. Some e$e¢hgraphs only differ for the labelling
of their vertices, their topological structure is the sarivore formally, two graphs>; andG, are
isomorphic if there is a one-to-one correspondence between theirdaltgth preserves adjacencies.
A graph isunlabelled if it is considered disregarding all possible labelling tsfvertices that preserve
adjacencies. Figure 2 shows the eleven unlabelled grapfmiorertices.

A graph is completely determined by either its adjacencigts incidences. This information can
be conveniently stated in matrix form. Thdjacency matrix of a labelled undirected (resp. directed)
graphG = (V, E) with n vertices, is am x n matrix A such that, for alb;,v; € V, 4; j = 1if v; is
adjacent tay; (resp. if(v;,v;) € E) andA; ; = 0 otherwise.

A subgraph of G = (V, E) is a graphH = (W, F) with W C V andF C E. H is aspanning
subgraph if W = V and it is aninduced subgraph if wheneveru,v € W with {u,v} € E then

o SRR 7 S I
Jdon SN IR R N
OO By N N e Y
I S o I NI N R
s gl 2N
I o K NG
I haH bz
iz ol N
ol = N
N X .
L e N
N A A

Figure 1: The 64 distinct labelled graphs on 4 vertices.

{u,v} € F. If W C V(G) we will denote byG[IW] the induced subgraph ¢ with vertex seti?’.
K, is thecomplete simple graph om vertices. It has:(n — 1)/2 edges. Every graph onvertices is
a subgraph of<,.

AgraphG = (V, E) is bipartite if V can be partitioned in two set§ andV; such that every line
of G joins a vertex inV; with a vertex inV,. K, ,, is the complete bipartite graph en= n; + ny
vertices. A graph iplanar if it can be drawn on the plane so that no two edges intersect.

If Gis agraph and € V thenG — v is the graph obtained froi& by removingv and all edges
incidentto it; ifv ¢ V thenG +v = (V U, E). If e = {u,v} € EthenG —e = (V,E \ {e}) and
G+ e= (VU{u,v}, EUe). These operations extend naturally to sets of vertices dgelse
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Figure 2: The 11 distinct unlabelled graphs on 4 vertices.

A path in a graphG = (V, E) is an ordered sequence of vertices formed Isjaeting vertex v
followed by a path whose starting vertex belongs\v). The path issimple if all vertices in the
sequence are distinct. Thength of a path P = (v1,...,v;) is k — 1. A cycleis a simple path

P = (v1,...,v;) such that;, = v;. A single vertex is a cycle of length zero. SinceZ N(v) there
is no cycle of length one. An edde:,v} € E belongs to a pattP = (vy,...,v;) if there exists
i€ {1,...,k — 1} such that{u, v} = {v;,v;11}. Two verticesu andv in a graph areonnected if

there is a pattP = (v1, ..., v;) such that{u, v} = {v1, v }. Thedistance dst¢(u, v) between them
is the length of a shortest path between them. The subsgnpill be omitted when clear from the
context. Aconnected component is a subgraph whose vertex setisC V, such that alk, v € U are
connected and no € V' \ U is connected to some € U. A graph isconnected if all its vertices are
connected. Areeis a connected graph containing no cycles. Any graph withyates is aforest. A
tree in which one vertex, theot, is distinguished, is calledoted-tree. In a rooted-tree any vertex



of degree one, except the root, is calleba. There is precisely one path between any two vertices

of a tree. Thelepth or level of a vertex in a rooted-tree is the length of the path from tia# to that
vertex. If{u, v} is an edge of a rooted-tree such thdies on the path from the root tg thenu is the

father of v andw is achild of u. An ancestor of: is any vertex of the path from to the root of the
tree. Similarly, ifu is an ancestor of, thenv is adescendant of «. Finally abinary tree (resp.k-ary

tree) s a rooted-tree in which every vertex, unless it is a lead, the (resp k) children.

Graph Theory Applications. At least two:

Shortest tour through a number of cities This is known as the Travelling Salesman Problem. A

complete graph is given, with weights on the edges for thedée ... The minimum weight

spanning tree of that graph is computed ... we then walk atbegspanning tree edges to

complete the tour (shortcutting where necessary).
Timetabling Simplified setting:

o All lectures take place on Monday in 4 one hour time slots 4;etefer to slot9 + i to
10 + 4, fori € {0,...,3}.

e There are 6 modules to be allocated an hour slot (denotedbyor k = 1,...,6), each
taught in one hour slot.

e Students have to take 2 modules.

The graph has one vertex for each module and one edge for eacdf pnodules chosen by
a student. The colours are the classes. No edge can havedifsogn of the same colour
(example with a cubic graph on 6 vertices).
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Figure 3: A matching in a graph.

Graph Matchings. If G = (V, E) is agraph, aset/ C E is amatchingin G if e; Ney = () for all
e1,ea € M. Let V(M) be the set of vertices belonging to edges in the matching. &hiray M is
maximal if for everye € E '\ M, there existy’ € M such thate N f # 0 (we say thalf coverse).

A matchingM is induced if for every edgee = {u,v}, e € M if and only if u,v € V(M) and
e € E. A number of parameters can be defined to characterise mggchn graphs:
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Figure 4: An induced matching in a graph.

Definition 1 If G = (V, E) isagraph then
1. B(G) denotes the minimum cardinality of a maximal matching in G;
2. v(G) denotes the maximum cardinality of a matching in G;

3. v;(G) denotes the maximum cardinality of an induced matching in G.

We will look mainly atv(G). The problem of finding a maximum matching in a graph has a
glorious history and has an important place among combiistproblems. The class NP can be
characterised as the set of all decision problems for whiatirfg a solution among all possible can-
didates can take exponential time but checking whetherdidate is a solution only takes polynomial
time (see for example [1, Ch. 8]). Maximum matching is a nixaneple of a problem for which, de-
spite of the existence of an exponential number of candidatsolution can be found quickly. This
fact, discovered by [2], led to a number of algorithmic apgiions (see for example [4, 5]).
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