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In this chapter I will describe a number of beautiful algorithmic results in Graph Theory. The
interested reader is referred to the following texts:

• Harary (1969)Graph Theory.

• Gibbons (1985)Algorithmic Graph Theory.

• Deistel (1997)Graph Theory (available on-line from the author’s web page).

1 Preliminaries

Most of the graph-theoretic terminology will be taken from [3]. A (simple undirected) graph G =
(V,E) is a pair consisting of a finite nonempty setV = V (G) of vertices (or nodes or points) and
a collectionE = E(G) of distinct subsets ofV each consisting of two elements callededges (or
lines). If e = {u, v} ∈ E then the verticesu andv areadjacent, vertexu and the whole edgee are
incident (or else we say thatu belongs toe, sometimes using the set-theoretic notationu ∈ e). Also
if f = {v,w} ∈ E thene andf are incident. IfF ⊆ E(G) thenV (F ) is the set of vertices incident
to somee ∈ F . For everyU ⊆ V (G), N(U) will denote the set of vertices adjacent to somev ∈ U
and not belonging toU . If U = {v} we writeN(v) instead ofN({v}). If U,W ⊆ V then cut(U, V )
is the set of edges having one endpoint inU and the other inW .

Thedegree of a vertexv is defined asdegG v =df |N(v)|. Theminimum (resp.maximum) degree
of G is δ = δ(G) = minv∈V degG v (resp.∆ = ∆(G) = maxv∈V degG v). For alli ∈ {0, . . . , n−1}
let Vi(G) = {v ∈ V : degG v = i}. A multiset is a collection of objects in which a single object can
appear several time. Amultigraph is a pairH = (U,E) in which U is the set of vertices andE is a
multiset of edges. Ife appearsxe > 1 times inE then each of its occurrences is aparallel edge. The
skeleton of a multigraphH = (U,E) is a graphG with V (G) = U andE(G) containing a single
copy of every parallel edge inH plus all thee ∈ E with xe = 1. A graph isdirected if the edges are
ordered pairs. Round brackets will enclose vertices belonging to a directed edge.

A graph islabelled if its vertices are distinguished from one another by names.Figure 1 shows
the 64 different labelled graphs on four vertices. Some of these graphs only differ for the labelling
of their vertices, their topological structure is the same.More formally, two graphsG1 andG2 are
isomorphic if there is a one-to-one correspondence between their labels which preserves adjacencies.
A graph isunlabelled if it is considered disregarding all possible labelling of its vertices that preserve
adjacencies. Figure 2 shows the eleven unlabelled graphs onfour vertices.

A graph is completely determined by either its adjacencies or its incidences. This information can
be conveniently stated in matrix form. Theadjacency matrix of a labelled undirected (resp. directed)
graphG = (V,E) with n vertices, is ann × n matrixA such that, for allvi, vj ∈ V , Ai,j = 1 if vi is
adjacent tovj (resp. if(vi, vj) ∈ E) andAi,j = 0 otherwise.

A subgraph of G = (V,E) is a graphH = (W,F ) with W ⊆ V andF ⊆ E. H is a spanning
subgraph if W = V and it is aninduced subgraph if wheneveru, v ∈ W with {u, v} ∈ E then
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Figure 1: The 64 distinct labelled graphs on 4 vertices.

{u, v} ∈ F . If W ⊆ V (G) we will denote byG[W ] the induced subgraph ofG with vertex setW .
Kn is thecomplete simple graph onn vertices. It hasn(n− 1)/2 edges. Every graph onn vertices is
a subgraph ofKn.

A graphG = (V,E) is bipartite if V can be partitioned in two setsV1 andV2 such that every line
of G joins a vertex inV1 with a vertex inV2. Kn1,n2

is the complete bipartite graph onn = n1 + n2

vertices. A graph isplanar if it can be drawn on the plane so that no two edges intersect.
If G is a graph andv ∈ V thenG − v is the graph obtained fromG by removingv and all edges

incident to it; if v 6∈ V thenG + v = (V ∪ v,E). If e = {u, v} ∈ E thenG − e = (V,E \ {e}) and
G + e = (V ∪ {u, v}, E ∪ e). These operations extend naturally to sets of vertices and edges.

Figure 2: The 11 distinct unlabelled graphs on 4 vertices.

A path in a graphG = (V,E) is an ordered sequence of vertices formed by astarting vertex v
followed by a path whose starting vertex belongs toN(v). The path issimple if all vertices in the
sequence are distinct. Thelength of a path P = (v1, . . . , vk) is k − 1. A cycle is a simple path
P = (v1, . . . , vk) such thatv1 = vk. A single vertex is a cycle of length zero. Sincev 6∈ N(v) there
is no cycle of length one. An edge{u, v} ∈ E belongs to a pathP = (v1, . . . , vk) if there exists
i ∈ {1, . . . , k − 1} such that{u, v} = {vi, vi+1}. Two verticesu andv in a graph areconnected if
there is a pathP = (v1, . . . , vk) such that{u, v} = {v1, vk}. Thedistance dstG(u, v) between them
is the length of a shortest path between them. The subscriptG will be omitted when clear from the
context. Aconnected component is a subgraph whose vertex set isU ⊆ V , such that allu, v ∈ U are
connected and nov ∈ V \ U is connected to someu ∈ U . A graph isconnected if all its vertices are
connected. Atree is a connected graph containing no cycles. Any graph with no cycles is aforest. A
tree in which one vertex, theroot, is distinguished, is called arooted-tree. In a rooted-tree any vertex
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of degree one, except the root, is called aleaf. There is precisely one path between any two vertices
of a tree. Thedepth or level of a vertex in a rooted-tree is the length of the path from the root to that
vertex. If{u, v} is an edge of a rooted-tree such thatu lies on the path from the root tov, thenu is the
father of v andv is achild of u. An ancestor ofu is any vertex of the path fromu to the root of the
tree. Similarly, ifu is an ancestor ofv, thenv is adescendant of u. Finally abinary tree (resp.k-ary
tree) s a rooted-tree in which every vertex, unless it is a leaf, has two (resp.k) children.

Graph Theory Applications. At least two:

Shortest tour through a number of cities This is known as the Travelling Salesman Problem. A
complete graph is given, with weights on the edges for the distance ... The minimum weight
spanning tree of that graph is computed ... we then walk alongthe spanning tree edges to
complete the tour (shortcutting where necessary).

Timetabling Simplified setting:

• All lectures take place on Monday in 4 one hour time slots Letsi refer to slot9 + i to
10 + i, for i ∈ {0, . . . , 3}.

• There are 6 modules to be allocated an hour slot (denoted byMk, for k = 1, . . . , 6), each
taught in one hour slot.

• Students have to take 2 modules.

The graph has one vertex for each module and one edge for each pair of modules chosen by
a student. The colours are the classes. No edge can have its end-point of the same colour
(example with a cubic graph on 6 vertices).

Figure 3: A matching in a graph.

Graph Matchings. If G = (V,E) is a graph, a setM ⊆ E is amatching in G if e1 ∩ e2 = ∅ for all
e1, e2 ∈ M . Let V (M) be the set of vertices belonging to edges in the matching. A matchingM is
maximal if for every e ∈ E \ M , there existsf ∈ M such thate ∩ f 6= ∅ (we say thatf covers e).

A matchingM is induced if for every edgee = {u, v}, e ∈ M if and only if u, v ∈ V (M) and
e ∈ E. A number of parameters can be defined to characterise matchings in graphs:
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Figure 4: An induced matching in a graph.

Definition 1 If G = (V,E) is a graph then

1. β(G) denotes the minimum cardinality of a maximal matching in G;

2. ν(G) denotes the maximum cardinality of a matching in G;

3. νI(G) denotes the maximum cardinality of an induced matching in G.

We will look mainly atν(G). The problem of finding a maximum matching in a graph has a
glorious history and has an important place among combinatorial problems. The class NP can be
characterised as the set of all decision problems for which finding a solution among all possible can-
didates can take exponential time but checking whether a candidate is a solution only takes polynomial
time (see for example [1, Ch. 8]). Maximum matching is a nice example of a problem for which, de-
spite of the existence of an exponential number of candidates, a solution can be found quickly. This
fact, discovered by [2], led to a number of algorithmic applications (see for example [4, 5]).
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