
Maximum (cardinality) matchings in graphs

Design an algorithm that returns a maximum cardinality matching in a

given graph.

Q1 Does it work? Are you sure it returns a maximum cardinality

matching?

Q2 How long does it take?

1

Maximal matchings

GREEDY-MATCHING1 (G)

M ← ∅

while E(G) 6= ∅

(*) pick e ∈ E(G)

M ←M ∪ {e}

removee and all

edges adjacent toe

from E(G)

return M

GREEDY-MATCHING2 (G)

M ← ∅

while E(G) 6= ∅

(*) pick e ∈ E(G)

if e is not adjacent to

anyf ∈M

M ←M ∪ {e}

E(G)← E(G) \ {e}

return M

2

Remarks

• in both casesM is a maximal matching (Exercise: prove it!)

• Question: does any of these algorithm return a maximum cardinality

matching?

The question is ill-posed since indeed each of the algorithms above really

represents a class of algorithms. In fact I gave no details onhow to perform

the (*) step. Different algorithms are obtained implementing step (*)

according to one of the following rules:

– Choosee at random among the available edges.

– Choosee as the “first” available edge.

– Choosee = {u, v} as the “first” edge among those for which

deg(u) + deg(v) is minimised.

3

Once we made either pseudo-codes into precise algorithms, what can be

said about the size of resulting matching?

Claim. Any maximal matchingM in a given graphG has at least half the

edges of a MAXIMUM cardinality matching. In symbols,|M | ≥ ν(G)
2 ,

for any maximal matchingM in G.

WHY?

4

Supporting argument

Let M1 andM2 be two maximal matchings inG (in particular think of

M1 as a minimum cardinality maximal matching andM2 as a

MAXIMUM cardinality matching).

Some edges may be both inM1 andM2. We focus on the edges inM2

which are NOT inM1. Let e ∈M2 \M1.

By the maximality condition, the setM1 ∪{e} is not a matching anymore.

Hence there existsφ(e) ∈M1 which is adjacent toe and sinceM2 is a

matching (i.e. a collection ofindependentedges),φ(e) ∈M1 \M2.

Indeedφ defines a function fromM2 \M1 to M1 \M2.

5

Let f be one of the edges in the range ofφ. A bound on the number of

edgese ∈M2 \M1 that can be the pre-image off ∈M1 \M2 is needed.

In the worst case there can be at most 2 suche (incident to each end-point

of f).

Hence|M2 \M1| ≤ 2|M1 \M2|.

Therefore

|M1| = |M1 ∩M2|+ |M1 \M2| ≥ |M1 ∩M2|+
|M2\M1|

2 ≥ |M2|
2 .

6

Independence Systems

An independence system is a pair(X,F) whereX is a finite

set andF a collection of subsets ofX with the property that

wheneverF ⊂ G ∈ F thenF ∈ F . The elements ofF are

calledindependent sets.

A maximal independent set is an element ofF that is not a subset

of any other element ofF .

The set of all matchings in a graphG, which we denote byM(G), forms

an independence system (Exercise: prove it!).

Theorem. (Korte and Hausmann)ν(G) ≤ 2 β(G) for any graphG.

7

Maximum Matching in trees

Trees are very simple graphs, with a nice hierarchical structure.

The maximum matching problem can be solved very efficiently on trees.

We will present a simple greedy solution to the problem of finding a

largest matching in a tree.

8

Algorithm

We assume the tree is given along with a vertex, chosen to be its root.

If all the children of a vertexv in the tree are leaves, then the subgraph

induced by the vertex and its children is called afan. The vertexv is

called thecentre of the fan.

The algorithm repeatedly finds a fan that is furthest from theroot, chooses

one of its edges to be added to the matching and then removes all other

edges of the fan from the tree along with the edge from the centre of the

fan to its father.

Remark. Notice that this is just a slight modification of

GREEDY-MATCHING1: at each step we are choosing an edge to be added

to the matching that is as far as possible from the root of the tree.

9

9-1

9-15

Analysis

We need to prove the two usual properties:

Greedy-choice an optimal solution can be found by making greedy

choices at each step.

Optimal substructure an optimal solution contains within it optimal

solutions to subproblems.

Remember! These are properties of the solutions to the problem, not of

the particular algorithm!!

10

The blob with the fan sticking out of it!

It’s the deepest fan.

Our greedy algorithm will pick, say,

the edge to the leftmost leaf.

Any matching which claims to be

optimal MUST hit at least one of

those edges!

Claim. Swapping such an edge

with the one chosen by our algo-

rithm can only improve things.

In the best case it will “free” the fa-

ther of the centre of the fan!

11

The blob with the fan sticking out of it!

Claim. If our algorithm claims to

be optimal, then it must find an op-

timal matching in the “blob”.

If not, well, then we can prove the

algorithm is not so good after all!

The algorithm returns a matching

M of the whole tree that, by defini-

tion, has an edgee from the deepest

fan and some matchingM ′ cover-

ing the rest of the edges.

AssumeM ′ is not best possible!

Well, pick a maximum matching of

the blobM∗ (notice that|M∗| >

|M ′|), then |{e} ∪ M∗| must be

larger than|M | = |{e}∪M ′|, con-

tradiction!

12

