Maximum matching using alternating paths

Let G be a graph and/ any matching in7 (see figure to the left). A path
P =wy,...,v,, is said to be amlternating path with respect td/ or an
M-alternating pathf {v;,v;11} € M ifand only if {v; 41, v;42} € M
for 1 <i < m — 2 (see the green path in the graph in the middle).
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Berge’s result

A matching) in a graphG is a maximum match
ing if and only if there exists no augmenting path
in G with respect ta\/.

We have dealt with the “only if” part (to re-iterate, by caadiction if
there was an augmenting path we could enlarge the matchveg)eed to
prove the “if” statement.

Let M be a matching in a grapfl and assume there exists no augmentil
path inG with respect ta\/.

Then, consider any maximum matchifd§/ of G and take the graph
Mo M.

eIf G1 andG> are graphs on the same set of vertitésthenG; & G» contains all the
edges inE(G1) U E(G2) butthose inE(G1) N E(G2).
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A vertexw is exposedor unmatchegdunsaturategnot coverefiwith

respect to matchind/ if no edge ofM is incident withv. Clearly if G

contains an\/-alternating path joining two exposed vertices ttién

cannot be a maximum matching, for one can easily obtain adarg

matching by simply removing the lines /AN A and adding those in

P — M (see figure below).
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An alternating path joining two exposed vertices is called a
M-augmenting patlisee the red path in the graph in the middle).

The components of such a graph are cycles and path (becahsesifvas
a vertex of degree three eith&f or M’ wouldn't be a matching).

Furthermore, none of these components can have odd lengithferwise
either M or M’ would have an augmenting path and this is not possible
for M (by assumption), and it is not possible fof’ becauséll’ is a
maximum matching (we have already proved, in the contrapptmm,
that maximum matchings do NOT have augmenting paths).

But then| M| = |M’|, because each component\df$ M’ contains the
same number of edges frold andM’. So M is maximum cardinality as
well!

... still we have NO efficient algorithm for finding a maximunatching
of a bipartite graph!




But there is a way ...

Essentially all we need is a data structure to handle the anting paths
in a graph.

A forestF' is a collection of trees ...

Let G = (V4, V3, E) be given along with some matchidd (this may be
found by QREEDY-MATCHINGL or it could indeed be just a single edge
of G).

Let U; be the set of exposed verticeslip fori = 1, 2.
We build a (maximal) foresk’ in G with the following properties:
(P1) each vertex iV (F') N V4 has degree two and belongsitd M/ );

(P2) each component @f contains a point if/;.

Detailed forest construction

We build (greedily) a collection of treé rooted at for eachu € U; .
Vertices at different depth in each tree will belong to difiet color classes.
Level zero is a vertex € U;.

Vertices at level one are all vertices adjacent.to

We further develop only those vertices adjacent twhich are inV: \ U by
adding for each leaf the corresponding edge in the matckimgvé are back in
Vi).

No contraint on the degree of verticeslin then for every vertex iy we putin
the tree at the next level all vertices adjacent.

We stop building a tree if we find at least one leatin (in which case we have
found an augmenting path!) or we can’t expand the tree artlidu(in which case
we may start building another tree).
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Hungarian algorithm

The approach given below seems to have first appeared in ttkeofvo
Konig (1916, 1931, 1936) and Egéary (1931) who reduced the problem
with general non-negative weights on the edges to the umiegigase.

HUNGARIAN-MATCHING (G)
let M be any matching it
repeat
form a maximal forest” having
properties (P1) and (P2)
if there is an edge joininy (F) N V; to
a vertex inU;
M «— AugmentM, F')
else return M
until TRUE
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Correctness

Let G = (V4, Va, E) be a bipartite graphl/ be a matcht
ing in G, U; be the set of vertices unmatchedlihand
F a maximal forest built by algorithm BNGARIAN-
MATCHING. ThenM is a maximum matching if and only
if no vertex inUs is adjacent to a vertex if'.

Vi-VE A
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Proof
(M| =v(G) = Az € V(F),uz € Uz {z,us} € E)
Let's assume there exisisc V (F),u2 € Uz such thaf{z, u2} € E. Then, by
the way in whichZ" has been constructed there is a pBtfrom x to some
u1 € Ui. ThereforeP U {z, u2} is an augmenting path i@. M is not maximum.
Contradiction.
(Bx € V(F),u2 € Uz {z,u2} € E = |M| =v(Q))
Define X =V \V(F) Y =V(F)NnVa.
We will prove
1. | XUY|=|M|
2. X UY is avertex cover ofy.

The result (and the correctness of the Hungarian algorithithjollow from
Konig’s theorem, because we have

7(G) < [XUY[=[M| <v(G)

Maximum matching using flows

Let D = (V, E) be a directed graph with two distinguished vertices
(thesourcg andt (thesink). Letc: E(D) — IR be a function which
associates with each edge, v) € E(D) a non-negative real numbe
c(u,v) called thecapacityof the edge. The quadrupleD, ¢, s,t) is
called anetwork

=
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Lete € M. Then eithere is incident
toay € Y (and in this case the other
endpoint ofe cannot be inX) oreis in-
cident to somer € X (and hence both
its endpoints are NOT part df (F)).
Thereford X UY| = |M|.

Suppose now that there exists an edlgeb} that is not covered byX U Y, with,
say,a € V1. It must be the case thate V(F) andb ¢ V(F') andb & Us. By
hypothesisM coversh by some edgéa’, b}, anda’ must be different frona. In
such case we can extettby adding{a, b} and{d’, b}. Contradiction!

Any function f : E(D) — TR* is called aflow in (D, ¢, s,t) if it
satisfies the following properties:
1.5, flu,v) =", flv,w)forallv,w € V(D)\{s,t} (conserva
tion of flow), and
2. f(u,v) < c(u,v) forall (u,v) € E(D).

Thevalueof a flow f is the quantityd ©, f(s,u) — >, f(u,s).

An important computational problem (a.k.a. tmetwork flow problemis
that of determining a flow of maximum value that can be “agfjlie a
given networkD.

The best existing algorithms for solving the bipartite rhitig problem
are based on network flows through the following reduction.
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Given a bipartite grapl = (V1, V2, E) one can define a netwoiR as follows:

1. the set of vertices in the networkWs U V> U {s, t} wheres andt are two
“new” vertices that will act as source and sink respectively

2. the set of directed edges bX; is formed by the edges @F directed fromV;
to Va, |V1| “new” edges from the source 6, namely and edgeés, v) for
eachv € V4, and, similarly| V2| “new” edges froml to the target.

3. ¢(u,v) = 1 for every edge in the resulting graph.
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