
Maximum matching using alternating paths

Let G be a graph andM any matching inG (see figure to the left). A path

P = v1, . . . , vm is said to be analternating path with respect toM or an

M -alternating pathif {vi, vi+1} ∈M if and only if {vi+1, vi+2} 6∈M

for 1 ≤ i ≤ m− 2 (see the green path in the graph in the middle).

6

1

2

3
4

5
6

1

2

3
4

5
6

1

2

3
4

5

4

A vertexv is exposed(or unmatched, unsaturated, not covered) with

respect to matchingM if no edge ofM is incident withv. Clearly if G

contains anM -alternating path joining two exposed vertices thenM

cannot be a maximum matching, for one can easily obtain a larger

matching by simply removing the lines inP ∩M and adding those in

P −M (see figure below).

6

1

2

3
4

5
6

1

2

3
4

5
6

1

2

3
4

5

An alternating path joining two exposed vertices is called an

M -augmenting path(see the red path in the graph in the middle).

5

Berge’s result

A matchingM in a graphG is a maximum match-

ing if and only if there exists no augmenting path

in G with respect toM .

We have dealt with the “only if” part (to re-iterate, by contradiction if

there was an augmenting path we could enlarge the matching),we need to

prove the “if” statement.

Let M be a matching in a graphG and assume there exists no augmenting

path inG with respect toM .

Then, consider any maximum matchingM ′ of G and take the grapha

M ⊕M ′.
aIf G1 andG2 are graphs on the same set of verticesV , thenG1 ⊕ G2 contains all the

edges inE(G1) ∪ E(G2) but those inE(G1) ∩ E(G2).

6

The components of such a graph are cycles and path (because ifthere was

a vertex of degree three eitherM or M ′ wouldn’t be a matching).

Furthermore, none of these components can have odd length for otherwise

eitherM or M ′ would have an augmenting path and this is not possible

for M (by assumption), and it is not possible forM ′ becauseM ′ is a

maximum matching (we have already proved, in the contrapposite form,

that maximum matchings do NOT have augmenting paths).

But then|M | = |M ′|, because each component ofM ⊕M ′ contains the

same number of edges fromM andM ′. SoM is maximum cardinality as

well!

... still we have NO efficient algorithm for finding a maximum matching

of a bipartite graph!

7

But there is a way ...

Essentially all we need is a data structure to handle the augmenting paths

in a graph.

A forestF is a collection of trees ...

Let G = (V1, V2, E) be given along with some matchingM (this may be

found by GREEDY-MATCHING1 or it could indeed be just a single edge

of G).

Let Ui be the set of exposed vertices inVi, for i = 1, 2.

We build a (maximal) forestF in G with the following properties:

(P1) each vertex inV (F) ∩ V2 has degree two and belongs toV (M);

(P2) each component ofF contains a point inU1.

8

Detailed forest construction

We build (greedily) a collection of treesT rooted atu for eachu ∈ U1.

Vertices at different depth in each tree will belong to different color classes.

Level zero is a vertexu ∈ U1.

Vertices at level one are all vertices adjacent tou.

We further develop only those vertices adjacent tou which are inV2 \ U2 by

adding for each leaf the corresponding edge in the matching (so we are back in

V1).

No contraint on the degree of vertices inV1 then for every vertex inV1 we put in

the tree at the next level all vertices adjacent.

We stop building a tree if we find at least one leaf inU2 (in which case we have

found an augmenting path!) or we can’t expand the tree any further (in which case

we may start building another tree).

9

Example
1 2 3 4 5 6 7

8 9 10 11 12 13

10

Example
1 2 3 4 5 6 7

8 9 10 11 12 13

11

Example
1 2 3 4 5 6 7

8 9 10 11 12 13

12

Example
1 2 3 4 5 6 7

8 9 10 11 12 13

13

Hungarian algorithm

The approach given below seems to have first appeared in the work of
König (1916, 1931, 1936) and Egerváry (1931) who reduced the problem
with general non-negative weights on the edges to the unweighted case.

HUNGARIAN-MATCHING (G)

let M be any matching inG

repeat
form a maximal forestF having

properties (P1) and (P2)

if there is an edge joiningV (F) ∩ V1 to

a vertex inU2

M ← Augment(M, F)

else returnM

until TRUE

14

Correctness

Let G = (V1, V2, E) be a bipartite graph,M be a match-

ing in G, Ui be the set of vertices unmatched inVi and

F a maximal forest built by algorithm HUNGARIAN-

MATCHING. ThenM is a maximum matching if and only

if no vertex inU2 is adjacent to a vertex inF .

2 U
2

U
1

a

b
V(F) & V

V − V(F)
1

15

Proof
(|M | = ν(G) ⇒6 ∃x ∈ V (F), u2 ∈ U2 {x, u2} ∈ E)

Let’s assume there existsx ∈ V (F), u2 ∈ U2 such that{x, u2} ∈ E. Then, by

the way in whichF has been constructed there is a pathP from x to some

u1 ∈ U1. ThereforeP ∪ {x, u2} is an augmenting path inG. M is not maximum.

Contradiction.

(6 ∃x ∈ V (F), u2 ∈ U2 {x, u2} ∈ E ⇒ |M | = ν(G))

Define X = V1 \ V (F) Y = V (F) ∩ V2.

We will prove

1. |X ∪ Y | = |M |

2. X ∪ Y is a vertex cover ofG.

The result (and the correctness of the Hungarian algorithm)will follow from

König’s theorem, because we have

τ(G) ≤ |X ∪ Y | = |M | ≤ ν(G)

16

?

?

Let e ∈ M . Then eithere is incident

to a y ∈ Y (and in this case the other

endpoint ofe cannot be inX) or e is in-

cident to somex ∈ X (and hence both

its endpoints are NOT part ofV (F)).

Therefore|X ∪ Y | = |M |.

Suppose now that there exists an edge{a, b} that is not covered byX ∪ Y , with,

say,a ∈ V1. It must be the case thata ∈ V (F) andb 6∈ V (F) andb 6∈ U2. By

hypothesisM coversb by some edge{a′, b}, anda′ must be different froma. In

such case we can extendF by adding{a, b} and{a′, b}. Contradiction!

17

Maximum matching using flows

3

23

2

4 4

5

5
121132

4

4 4

23

23
6

115 3

2 6

5

Let D = (V, E) be a directed graph with two distinguished verticess

(thesource) andt (thesink). Let c : E(D)→ IR+ be a function which

associates with each edge(u, v) ∈ E(D) a non-negative real number

c(u, v) called thecapacityof the edge. The quadruple(D, c, s, t) is

called anetwork.

18

Any function f : E(D) → IR+ is called aflow in (D, c, s, t) if it

satisfies the following properties:

1.
∑

u
f(u, v) =

∑
w

f(v, w) for all v, w ∈ V (D)\{s, t} (conserva-

tion of flow), and

2. f(u, v) ≤ c(u, v) for all (u, v) ∈ E(D).

Thevalueof a flowf is the quantity
∑

u
f(s, u)−

∑
u

f(u, s).

An important computational problem (a.k.a. thenetwork flow problem) is

that of determining a flow of maximum value that can be “applied” to a

given networkD.

The best existing algorithms for solving the bipartite matching problem

are based on network flows through the following reduction.

19

Given a bipartite graphG = (V1, V2, E) one can define a networkDG as follows:

1. the set of vertices in the network isV1 ∪ V2 ∪ {s, t} wheres andt are two

“new” vertices that will act as source and sink respectively.

2. the set of directed edges ofDG is formed by the edges ofG directed fromV1

to V2, |V1| “new” edges from the source toV1, namely and edge(s, v) for

eachv ∈ V1, and, similarly|V2| “new” edges fromV2 to the targett.

3. c(u, v) = 1 for every edge in the resulting graph.

20

