
The Hungarian algorithm

We will start today’s lecture by running through an example.Consider the

graph below. We will compare the results of GREEDY-MATCHING1 with

those of HUNGARIAN-MATCHING.
5

678910

1 2 3 4

You are warmly invited to try this at home with paper and pencil first.

1

GREEDY-MATCHING1 (G)

M ← ∅

while E(G) 6= ∅

(*) pick the lexicographically firste ∈ E(G)

M ←M ∪ {e}

removee and all

edges adjacent toe

from E(G)

return M

Assume the edges in the given graph areordered pairs (i.e. put a
top-down direction on them).

E(G) = {(1, 6), (1, 9), (1, 10), (2, 7), (2, 8), (2, 9), (2, 10), (3, 7), (3, 8), (4, 6), (4, 7), (4, 8), (5, 6)}

2

5

678910

1 2 3 4

3

1 2 3 4 5

678910

4

1 2 3 4 5

678910

5

1 2 3 4 5

678910

6

1 2 3 4 5

678910

7

1 2 3 4 5

678910

8

1 2 3 4 5

678910

9

Hungarian algorithm

The approach given below seems to have first appeared in the work of
König (1916, 1931, 1936) and Egerváry (1931) who reduced the problem
with general non-negative weights on the edges to the unweighted case.

HUNGARIAN-MATCHING (G)

let M be any matching inG

repeat
form a maximal forestF having

properties 1. and 2.

if there is an edge joiningV (F) ∩ V1 to

a vertex inU2

M ← Augment(M, F)

else returnM

until TRUE

10

1

2

1 2 3 4 5

678910

U

U

11

1

2

1 2 3 4 5

678910

U

U

12

1

2

1 2 3 4 5

678910

U

U

13

1 2 3 4 5

678910

14

Maximum matching in general graphs

We presented an algorithm for finding a maximum matching in a bipartite

graph.

From a mathematical point of view, this algorithm is essentially no more

involved than the proof of K̈onig’s equality.

For non-bipartite graphs the situation is quite different.Known poly-time

algorithms for finding a maximum matching in a general graph are among

the most involved combinatorial algorithms.

Most of them are based on augmentation along alternating paths. But

important new ideas are needed to turn these tricks into polynomial time

algorithms.

15

Edmonds’ algorithm

The first polynomial time matching algorithm for general graphs was

constructed by Edmonds.

In this algorithm the key idea of “shrinking” certain odd cycles was

introduced.

Up to the present time most matching algorithms – certainly the most

successful ones – are based (implicitly or explicitly) on this idea.

We begin with a lemma which will enable us to reduce the size ofthe

graph under consideration in many cases.

The lemma help us understand the crucial step of “cycle shrinking” and

lends us confidence that we are not losing necessary information when

carrying out such shrinking.

16

Shrinking Lemma. Let G be a graph andM a matching inG. Let Z be a

cycle of length2k + 1 which containsk lines ofM and is vertex-disjoint

from the rest ofM . Let G′ be the graph obtained fromG by shrinkingZ

to a single vertex. ThenM ′ = M \E(Z) is a maximum matching inG′

if and only if M is a maximum matching inG.

17

Proof

(|M ′| = ν(G′)⇒ |M | = ν(G)) Assume that|M | < ν(G). Then there

exists an augmenting pathP relative toM . Two cases arise:

P vertex-disjoint from Z In such caseP is also anM ′-augmenting

path, and hence|M ′| < ν(G′). Contradiction!

P does intersectZ W.l.o.g. there must be an endpoint, sayx, of P that

is not inZ. Let z be the first vertex in the pathP which also belongs

to Z. The pathQ from x to z is mapped onto anM ′-augmenting path

whenZ is contracted. Hence|M ′| < ν(G′). Contradiction!

(|M | = ν(G)⇒ |M ′| = ν(G′)) This time assumeM ′ is not maximum.

Take a maximum matchingN ′ in G′. Then expandZ and define a

matchingN in G. Then|N | = |N ′|+ k > |M ′|+ k = |M |, i.e. M is not

a maximum matching. Contradiction!

18

Algorithm description

We now turn to an informal description of Edmonds Matching Algorithm.

We are given a graphG. Let M be a matching inG.

If M is perfect we are done!

Otherwise letS be the set of vertices that are not covered byM .

Construct (as in the bipartite case) a forestF such that every connected

component ofF contains exactly one vertexa of S, every point ofS

belongs to exactly one component ofF , and every edge ofF which is at

an odd distance from a point inS belongs toM .

aIt may be defined as the root of the component under consideration.

19

19-1

Properties ofF

Every vertex ofF which is at an odd distance fromS has degree two inF .

Such vertices will be calledinner vertices, while the remaining vertices in

F will be calledouter vertices (in particular all vertices inS are outer).

Such a forest is calledM -alternating forest.

Clearly, the (trivial) forest with vertex setS and no line is an

M -alternating forest (although not a very useful one!).

20

“External” outer vertices

Next we consider the neighbours of outer vertices. If we find an outer

vertexx adjacent to a vertexy not inF , then we can enlargeF by adding

the edges{x, y} and{y, z} ∈M .

21

“Adjacent” outer vertices in different components

If F has two adjacent outer verticesx andy belonging to different
components ofF , then the roots of these two components ofF are
connected by anM -augmenting path. We can obtain a larger matching!
And after this we restart the process by constructing a new (smaller)F .

22

“Adjacent” outer vertices in the same component

after switching

x

y

Blossom before shrinking

Alternating path

23

If F has two outer verticesx andy in the same connected component

which are adjacent inG, then letC be the cycle formed by the line{x, y}

and the path fromx to y in F . Let P denote the (unique) patha in F

connectingC to a root ofF . ClearlyP is anM -alternating path, so if we

“switch” on P , we obtain another matchingM1 of the same size asM .

But M1 andC satisfy the conditions of the shrinking Lemma, and so if

we shrinkC to a single point to obtain a new graphG′, we have reduced

the task of finding a matching larger thanM in G to the task of finding a

matching larger thanM1 \E(C) in the smaller graphG′.

aWe allowC to pass through the root, in which caseP consists of a single point.

24

Finally, if every outer vertex has only inner vertices as neighbours, then

we claimthat the matchingM is already maximum. For suppose thatF

containsm inner vertices andn outer vertices. Clearly|S| = n−m.

Furthermore if we delete all the inner vertices ofF from G, the remaining

graph will contain all the outer vertices ofF as isolated points. Hence

def(G) ≥ n−m = |S|. But M misses exactly|S| vertices, and so it must

be a maximum matching.

25

In summary we can always do one of the following:

• enlargeF ,

• enlargeM ,

• decrease|V (G)|, or

• stop with a maximum matching!

Thus it is clear that the algorithm terminates in polynomialtime with a

maximum matching inG.

26

