The Hungarian algorithm 1 2 3 4 5

We will start today’s lecture by running through an exam@ensider the
graph below. We will compare the results oREEDY-MATCHING1 with
those of HUINGARIAN-MATCHING.

1 2 3 4 5

10 9 8 7 6
You are warmly invited to try this at home with paper and pkfirit. 10 9 8 7 6

GREEDY-MATCHING1 (G)
M~
while E(G) # 0 1
* pick the lexicographically first € E(G)
M — MU {e}
removee and all
edges adjacent ©
from E(G)
return M

Assume the edges in the given graph emdered pairs (i.e. put a
top-down direction on them). 10

E(G) = {(1’ 6)7 (17 9)7 (1’ 10)’ (2’ 7)7 (27 8)7 (2’ 9)’ (27 10)7 (37 7)7 (3’ 8)’ (47 6)7 (47 7)’ (4’ 8)7 (57 6)}

@

10 9 38 I 6 10
5 1
@

Hungarian algorithm

The approach given below seems to have first appeared in ttkeofvo
Konig (1916, 1931, 1936) and Egéry (1931) who reduced the problem
with general non-negative weights on the edges to the umiegigase.

HUNGARIAN-MATCHING (G)
let M be any matching it
repeat
form a maximal forest” having
properties 1. and 2.
if there is an edge joininy (F) NV to
a vertex inU,
M «— AugmentM, F')
else return M
until TRUE

10

11

12

14

Maximum matching in general graphs

We presented an algorithm for finding a maximum matching ifpartite
graph.

From a mathematical point of view, this algorithm is essahytino more
involved than the proof of Bnig’'s equality.

For non-bipartite graphs the situation is quite differégfrtown poly-time
algorithms for finding a maximum matching in a general graghasnong
the most involved combinatorial algorithms.

Most of them are based on augmentation along alternatirgs pBut
important new ideas are needed to turn these tricks intcpatyal time
algorithms.

15

Edmonds’ algorithm

The first polynomial time matching algorithm for generalgra was
constructed by Edmonds.

In this algorithm the key idea of “shrinking” certain odd &yswas
introduced.

Up to the present time most matching algorithms — certalmdyrhost
successful ones — are based (implicitly or explicitly) ois itlea.

We begin with a lemma which will enable us to reduce the sizbef
graph under consideration in many cases.

The lemma help us understand the crucial step of “cycle kimgri and
lends us confidence that we are not losing necessary infammahen
carrying out such shrinking.

16

Shrinking Lemma. Let G be a graph and/ a matching inG. Let Z be a
cycle of length2k + 1 which containg: lines of M and is vertex-disjoint
from the rest ofM/. Let G’ be the graph obtained fro by shrinkingZ
to a single vertex. Thef!” = M \ E(Z) is a maximum matching it

if and only if M is a maximum matching it.

17

Proof
(IM'| = v(G") = |M| = v(G)) Assume thatM| < v(G). Then there
exists an augmenting pafhrelative toM. Two cases arise:

P vertex-disjoint from Z In such caseP is also anM/’-augmenting
path, and hencg\/’| < v(G’). Contradiction!

P does intersectZ W.l.0.g. there must be an endpoint, sgyf P that
is notinZ. Let z be the first vertex in the patR which also belongs

to Z. The path@ from z to z is mapped onto an/’-augmenting path

whenZ is contracted. Hencd/{’| < v(G’). Contradiction!

(IM] = v(G) = |M'| = v(G")) This time assum@/’ is not maximum.
Take a maximum matchindy’ in G’. Then expand and define a
matchingN in G. Then|N| = |[N'| + k > |M'| + k = |[M|, i.e. M is not
a maximum matching. Contradiction!

18

Algorithm description

We now turn to an informal description of Edmonds Matchingdkithm.

We are given a grap&y. Let M be a matching i.
If M is perfect we are done!
Otherwise letS be the set of vertices that are not coverediby

Construct (as in the bipartite case) a forEssuch that every connected
component oft” contains exactly one vertéxf .S, every point ofS
belongs to exactly one componentiof and every edge of' which is at
an odd distance from a point #1belongs taM/.

%]t may be defined as the root of the component under considerat

19

19-1

Properties of F’
Every vertex ofF’ which is at an odd distance frofhas degree two iff'.

Such vertices will be callethner vertices, while the remaining vertices in
F will be calledouter vertices (in particular all vertices ifi are outer).

Such a forest is called/-alternating forest.

Clearly, the (trivial) forest with vertex sét and no line is an
M -alternating forest (although not a very useful one!).

20

“External” outer vertices

Next we consider the neighbours of outer vertices. If we fimdater
vertexx adjacent to a vertex not in F', then we can enlargg by adding
the edgeqz,y} and{y, z} € M.

21

“Adjacent” outer vertices in different components

If F' has two adjacent outer verticesandy belonging to different
components of”, then the roots of these two componentsaédire
connected by ai/-augmenting path. We can obtain a larger matching!
And after this we restart the process by constructing a neval(sr) F'.

22

“Adjacent” outer vertices in the same component

Alternating path
after switching

Blossom before shrinking

23

If F" has two outer vertices andy in the same connected component
which are adjacent i, then letC' be the cycle formed by the linge, y}
and the path from: toy in F'. Let P denote the (unique) pdthn F e enlargef’,
connectingC to a root of . Clearly P is anM -alternating path, so if we
“switch” on P, we obtain another matchiny; of the same size ak/.

But M, andC satisfy the conditions of the shrinking Lemma, and so if e decreaseV (G)|, or
we shrinkC to a single point to obtain a new graph, we have reduced
the task of finding a matching larger thaf in G to the task of finding a
matching larger tha/; \ E(C) in the smaller grapld’.

In summary we can always do one of the following:

e enlargeM,

e stop with a maximum matching!

Thus it is clear that the algorithm terminates in polynortirake with a
maximum matching irG.

%We allowC to pass through the root, in which caBeconsists of a single point.

24 26

Finally, if every outer vertex has only inner vertices agjhbours, then
we claimthat the matching/ is already maximum. For suppose ttiét
containsm inner vertices and outer vertices. Clearly5| = n — m.
Furthermore if we delete all the inner verticesfofrom G, the remaining
graph will contain all the outer vertices &f as isolated points. Hence
def(G) > n —m = |S|. But M misses exactlyS| vertices, and so it must
be a maximum matching.

25

