Edmonds’ algorithm

There are many many details about the algorithm that we hatve n
considered. As usual the best is to see this with an examplesi@er the
following graph and try Edmonds’ algorithm on it.
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Reduced graph

) Catoo-8-10-7-5
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In summary we can always do one of the following:
e enlargef’ (if there is an outer vertex adjacentgas V(M) \ V(F)),

e enlargelM (if two outer vertices in different components are
adjacent),

e decreaseV (G)| (if we find a “blossom” or a “flower”), or
e stop

What can we say about the “quality” 8f when we stop?
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Correctness

Thedeficiencyof a graphG is def(G) = |V (G)| — 2v(G) (i.e. the number of
vertices left uncovered by a maximum cardinality matching)

¢o(G) = the number of connected components of odd siz&.in

Theorem. (Berge formula) dgiG) = max{c,(G\ X) — | X|: X CV(G)}.

_1 even
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(def(G) > maxxcy(g){co(G\ X) — [ X]}) Let X be any set of vertices
in G and letM be a maximum matching i¢. Let

G1,Ga,...,G;, ..., Gy be the odd cardinality connected components in
G\ X. Without loss of generality assume the firstf these have at least
one vertex not covered hy/. This has two consequences:

1. defG) > 4;

2. |X| > k — i (because for each of thle— ¢ odd components af \ X
whose vertices are completely coveredMythere must béan edge
of M with one endpoint inX and one inG).

The saught inequality follows.

“Each of these components has an odd number of vertices soitsnveftices must be
covered by an edge dff that joins the given component 6.
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(def(G) < maxxcv(a){c.(G\ X) — | X|}) We will show that there exists aki
for which equality holds. We prove this by induction on themer of vertices of
G.

BASE: trivial.
STEP: Two cases need to be considered.

Casel. Jvv(G\v) < v(G). By definition of deficiency
def(G\v) =n—1-2(v(G) — 1) = def(G) + 1. By the induction
hypothesis there exists a set of verticésin G \ v such that
def(G\ v) = co(G\ v\ X’) — | X']. Let X = X’ U {v}. Using the two last
equations we have

def(G)+ 1 =co(G\ X) — | X|+ A.

Case2. Vv v(G\v) =v(G). ... Well, in this case we will prove th&t has a
matching that misses exactly one vertex from eacti’sfconnected
components ... but to prove this we need another result first!
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A theorem of Gallai

A graph@ is said to bdactor-critical (or hypomatchableif G — v has a
perfect matching for every € v(G). Itis clear that ifG is factor-critical
thenv (G — v) = v(G) for eachv € V(G).

Gallai proved that for connected graphs the converse hsleseH.

Theorem. If G is connected and(G — v) = v(G) for eachw € V(G)
thenG is factor-critical.
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Back to Edmonds’ algorithm
At each iteration, once the foreBtis completed three cases arise.
Case 1 There exist two adjacent outer vertices in different congmis
AUGMENTING PATH!
Case 2 There exist two adjacent outer vertices in the same componen
SWITCH & CYCLE SHRINKING!
Case 3 All neighbours of the outer vertices are inner vertices.

THE MATCHING IS MAXIMUM!

(Exercise: convince yourself that no other case arises).
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Close-up on Case 3
Suppose thak’ containsm inner vertices and outer vertices.
Clearly|S| =n —m.

Furthermore if we delete all the inner verticesfofrom G, the remaining
graph will contain all the outer vertices &f as isolated points (i.e. odd
components!).

Hence defG) > n —m = |S|.

But M misses exactlyS| vertices, and so it must be a maximum
matching!
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