
Space Complexity

So far most of our theoretical investigation on the performances of the

various algorithms considered has focused on “time”.

Another important dynamic complexity measure that can be associated

with the execution of a program is “space”.

This week we will look at a number of complexity theoretic results

concerning this other measure.

Our treatment will be fairly general and rather abstract so we will

abandon the world of “real life” algorithms and we will go back to

counting steps and cell usage in Turing machines (think of itas looking at

algorithms written in machine code).

1

Back to basics

What is the minimum hardware needed to solve any computational
problem?

1. In COMP101, they taught us that we need a PC, with JAVA on it,and
we need to write a program, debug it and run it!

2. In more theoretical courses (COMP108, COMP202) they toldus
about pseudo-code: all one really need is plenty of paper, and some
well-specified set of instructions in a semi-formal pseudo-code.

3. Pseudo-code algorithms worked on integers, arrays, strings, perhaps
graphs.

4. If we really want to measure precisely the resource requirements of
such algorithms in a way that is independent from the particular PC
we may want to use to run the eventual program we need to simplify
our model even further.

2

Claim. All we need is:

1. the ability to use our senses and move our hands

2. an ordered sequence of boxes, each of which (at a given

time) contains either nothing or some object;

3. the ability to see, remove, or replace the object contained in

any given box at a given time;

4. one sheet of paper containing a set of rules that always tells

us what to do with the content of the particular box we are

looking at at a given time, and which box to look at next.

This is a very informal definition of what a Turing machine is.Now we

can be more formal.

4

Turing machines

A (deterministic)Turing machine(TM) is defined by

T = (Q, Σ, Γ, δ, q0, B, F)

where

Q is a finite set ofstates

Γ is a finite set of allowedtape symbols.

B is a symbol ofΓ, theblanksymbol.

Σ is a subset ofΓ not includingB of input symbols.

δ is thetransition function, a (partial) mapping fromQ × Γ to
Q × Γ × {L, R}.

q0 is theinitial (or start) state.

F is a set of states, thefinal states.

5

A TM can be pictured as a little box moving along a tape (or a string, or a

sequence of boxes to go back to the introductory example) changing

symbols on the tape according to the values of its transitionfunction

7

Finite
Control

1 2 3 4 5 6

6

Turing machine computations

A configurationof the TMT is a stringα1qα2 whereα1α2 ∈ Γ∗ and
q ∈ Q. It is meant to represent the full state of the machine at a given time
instant.

A moveof T rearranges the symbols of a configuration according to the
functionδ. So, for instance, if the configuration is

X1 . . .Xi−1qXi . . .Xh

andδ(q, Xi) = (p, Y, R) then the new configuration which describes the
global state ofT after the move has occurred is (assumingh ≥ i + 1)

X1 . . .Xi−1Y pXi+1 . . .Xh

A computationof T is an ordered sequence of configurations such that
each of them can be obtained from its predecessor by way of a single
move.

7

The languageL(T) accepted by the TMT is the set of all stringsx ∈ Σ∗

for which there is a computation ofT starting with the configurationq0x

and ending with a configuration containing a final state.

For anyx ∈ IN, let 〈x〉 ∈ {0, 1}∗ be the binary representation ofx.

A numerical functionf : IN → IN is computed bya TM T if for any

x ∈ IN there exists a computation ofT which starts with the configuration

q0〈x〉B . . .

and ends with the configuration

〈x〉B〈f(x)〉Bqf . . .

(whereqf is a final state ofT).

8

Warming-up example

Define a TM accepting the languageL = {0n1n : n ≥ 1}.

Let Q = {q0, q1, q2, q3, q4}, Σ = {0, 1}, Γ = Σ ∪ {X, Y, B} and

F = {q4}. The transition function is defined as follows:

State 0 1 X Y B

q0 (q1, X, R) (q3, Y, R)

q1 (q1, 0, R) (q2, Y, L) (q1, Y, R)

q2 (q2, 0, L) (q0, X, R) (q2, Y, L)

q3 (q3, Y, R) (q4, B,R)

q4

9

Explanation

Often such definitions are very dry. Use them always having inmind
some informal description of the meaning of each state. In the particular
example:

q0 Start of a session state: mark with anX the cell you are at if it contains a “0”.

The behaviour of the machine when in this state is NOT specified in any

other case, except when it finds aY (we will go back to this in the example)

q1 Look for the first “1”, skipping any “0” orY . Replace “1” byY and move to

stateq2.

q2 Move back looking for the rightmostX, skippingY ’s and “0”. As soon as an

X is found the machine moves right and goes back in stateq0.

q3 This state is entered if the machine has no more “0” left to match. In such state

the machine will skip anyY and look for the end of the input string (marked

by the leftmost “B”).

q4 This is the final state so nothing happens in this state.

10

Example

Assume the input is the string 000111, the resulting computation is listed

on the next page.

11

q0 0 0 0 1 1 1 B

X q1 0 0 1 1 1 B

X 0 q1 0 1 1 1 B

X 0 0 q1 1 1 1 B

X 0 q2 0 Y 1 1 B

X q2 0 0 Y 1 1 B

q2 X 0 0 Y 1 1 B

X q0 0 0 Y 1 1 B

X X q1 0 Y 1 1 B

X X 0 q1 Y 1 1 B

X X 0 Y q1 1 1 B

X X 0 q2 Y Y 1 B

X X q2 0 Y Y 1 B

X q2 X 0 Y Y 1 B

X X q0 0 Y Y 1 B

X X X q1 Y Y 1 B

X X X Y q1 Y 1 B

X X X Y Y q1 1 B

X X X Y q2 Y Y B

X X X q2 Y Y Y B

X X q2 X Y Y Y B

X X X q0 Y Y Y B

X X X Y q3 Y Y B

X X X Y Y q3 Y B

X X X Y Y Y q3 B

X X X Y Y Y B q4

11-1

Exercises

1. Modify the TM above so that any accepting computation endswith

the configuration0n1nBq4.

2. Simulate the same machine on the input 011.

3. Define a TM that computes the identity function (i.e. the function

that satisfiesf(x) = x for anyx ∈ IN).

4. Define a TM that computes the successor of a binary number (e.g.

100111 becomes 101000).

12

Solution to Exercise 3

The setΣ clearly contains only “0” and “1”. Letq0 be the initial state of

T . We will defineQ andΓ as we go along. Now we defineδ.

What do we want the machine to do? Following the definition given few

pages back, the machine should start with the configurationq0〈x〉B . . .

and end with the configuration〈x〉B〈f(x)〉Bqf . . . (where〈x〉 is the

binary for the decimal numberx, andqf is a final state ofT).

The transition function can then be defined drafted as follows:

The machine will move in “sessions” again. During each session it will

mark the next available bit, skip everything on the tape until the first

unused tape cell, copy the marked bit there and go back looking for a

new bit to mark.

13

A more precise definition is as follows:

State 0 1 Z U B

q0 (q10, Z, R) (q11, U, R) (q3, B,R)

q10 (q10, 0, R) (q10, 1, R) (q10s, B,R)

q10s (q10s, 0, R) (q10s, 1, R) (q2, 0, L)

q11 (q11, 0, R) (q11, 1, R) (q11s, B,R)

q11s (q11s, 0, R) (q11s, 1, R) (q2, 1, L)

q2 (q2, 0, L) (q2, 1, L) (q2s, B, L)

q2s (q2s, 0, L) (q2s, 1, L) (q0, 0, R) (q0, 1, R)

q3 (q3, 0, R) (q3, 1, R) (q4, B,R)

q4

14

Explanation

After reading the next “0”/”1” symbol, the machine “memorises” it in the

sense that it moves to a different state (q10 or q11) depending on the digit

that it just read.

In each of the states of the formq1∗ the machine is just moving towards

the right hand side, skipping anything on its way.

Once the first unused cell has been reached it is changed to thedigit that

is stored in machine state and the machine moves to stateq2.

In q2 (andq2s) the machine is going back to the symbol that was last

marked. It replaces it with the original digits and starts everything all over

again.

15

More Exercises

1. Simulate the TM just defined on input0, 10, and1101.

2. Complete the definition of the TM defined above (what isQ? what isΓ? ...)

3. Define a TM that computes the constant functionf(x) = 5.

4. (Worth 25% of the CA mark) A TM may compute functions with two or

more variables. For instancef(x, y) = x + y can be computed by a TM that

starts in configurationq0〈x〉#〈y〉B . . . and ends with the configuration

〈x〉#〈y〉B〈x + y〉Bqf

Define the TMs computing the functionsf(x, y) = x andg(x, y) = y.

5. (Worth 25% of the CA mark) Define a TM that computesf(x, y) = x + y.

6. (Worth 25% of the CA mark) Define a TM that computesf(x, y) = x · y

(Hint: it is easier to solve this problem if you look at the multiplication as a

repeated sum,3 × 4 = 3 + 3 + 3 + 3).

16

Generalisations

Two-way infinite tape

Multidimensional TM’s The tape is ak-dimensional grid.

Multiple heads The machine hask heads (but a single tape).

Multiple tapes The machine hask tapes andk heads (one for each tape).

Offline TM’s The machine hask working tapesplus a read-only input tape.

Nondeterministic TM’s (NTM) The machine’s transitions can be

non-deterministic. If the machine is in some stateq and sees a symbolS it

may (completely arbitrarily) make one move out of a range of possibilities

(not just one).

Hence a computation may not be a linear sequence of configurations. At

different time points the computation may branch off into different paths.

The TM accepts its input if it ends up in a final state in at leastone of its

computation paths.

17

Deterministic vs. Non-deterministic TMs

Let’s go back to a common subsequence problem. Suppose we wanted to

find a common subsequence of lengthk of two given stringsX andY ,

defined over the alphabet{0, 1}.

A deterministic machine for this problem would start with a configuration

of the form

q0X#Y #k

The TM could then exhaustively (or through dynamic programming) look

for all possible ways in which a subsequence of the appropriate length can

be shared byX andY and eventually leave the tape in the configuration

X#Y #kBZBqf

if Z is a common subsequence of lengthk of X andY .

18

Non-determinism ... it’s just magic!

The non-deterministic TM would guess a string of lengthk and then

simply check that it is a sub-string of bothX andY . Additional

complications are just a consequence of the very simple computational

model.

19

State description
With slightly more details:

1. In the initial stateq0 the machine will just replace the leftmost character

(either0 or 1) with Z or U respectively. Move right and into state “start1”.

2. In state “skp1” the machine would move right to the first ’#’leaving

everything unchanged (it is jumping over the first sequenceX). On reaching

’#’ the machine would move to state “skp2”.

3. In state “skp2” the machine would move right to the first ’#’leaving

everything unchanged (it is jumping over the sequenceY). On reaching ’#’

the machine would move to state “skp3”.

4. In state “skp3” the machine would move right to the firstB leaving

everything unchanged (it is jumping overk). On reachingB the machine

would move right and into state “guess”.

5. In state “guess” the machine guess a digit (either0 or 1), move left and into

state “bck”.

20

6. In state “bck” the machine moves back to the right end ofk and eventually in

state “dec”.

7. State “dec” is the initial state of part of the Turing machine that decreases the

current value ofk by one unit, ifk > 0. The machine then goes back to

guessing more symbols if the new value ofk is positive. Otherwise in the

final part of the computation the guessed stringZ is checked againstX and

Y (details omitted).

Such description can now help building the transition function δ. All we need to

do is to make sure that, on each possible input, the various states behave correctly

and on undesired inputs the machine either does nothing or enters some failure

state. The detailed description is hinted on the following slide

21

State 0 1 Z U # B

q0 (skp1,Z, R) (skp1,U, R)
skp1 (skp1,0,R) (skp1,1,R) (skp2,#,R)
skp2 (skp2,0,R) (skp2,1,R) (skp3,#,R)
skp3 (skp3,0,R) (skp3,1,R) (guess,B, R)
guess (guess,0,R) (guess,1,R) (bck,0,L) | (bck,1,L)
bck (bck,0,L) (bck,1,L) (dec,B, L)
dec . . .

The initial segment of computation onX = 1101 andY = 10 is sketched
below (’?’ stands for a guessed bit).

q0 1 1 0 1 # 1 0 # 1 0 B

U skp1 1 0 1 # 1 0 # 1 0 B

U 1 skp1 0 1 # 1 0 # 1 0 B

U 1 0 skp1 1 # 1 0 # 1 0 B

U 1 0 1 skp1 # 1 0 # 1 0 B

U 1 0 1 # skp2 1 0 # 1 0 B

U 1 0 1 # 1 skp2 0 # 1 0 B

U 1 0 1 # 1 0 skp2 # 1 0 B

U 1 0 1 # 1 0 # skp3 1 0 B

U 1 0 1 # 1 0 # 1 skp3 0 B

U 1 0 1 # 1 0 # 1 0 skp3 B

U 1 0 1 # 1 0 # 1 0 B guess B

U 1 0 1 # 1 0 # 1 0 bck B ?
U 1 0 1 # 1 0 # 1 dec 0 B ?
.

U 1 0 1 # 1 0 # 0 1 B guess ?
U 1 0 1 # 1 0 # 0 1 B ? guess B

21-1

Exercises

(each worth the usual 25% of the module CA component)

• Complete the definition of the non-deterministic LCS Turingmachine.

• A list of natural numbersn1, n2, . . . , nh is an arithmetic sequence if there

exists a natural numberd such thatni − ni−1 = d for eachi ∈ {2, . . . , h}

(in other wordsni = n1 + (i − 1)d).

Design a non-deterministic TM that given three numbersn1, n2 andn3,

accepts its input if they form an arithmetic sequence.

(Hint) design the algorithm using pseudo-code first, then tackle the problem

of building the TM transition function. To solve the problemyou will need to

know how to add two numbers with a Turing machine (non-trivial) and how

to delete portions of the tape (simpler).

22

Remarks

The multitape, offline and non-deterministic TM’s will be important when

we come to talk about computational complexity.

All these models are equivalent to the initial one in the sense that if a

languageL is accepted (resp. a functionf is computed) by a TMT of

one of these types then there exists a TMT ′ of another given type that

acceptsL (computes the functionf).

23

Definitions of Resource bounded TM’s

If for every input of lengthn the given TMT runs for at mostt(n) steps

thenT is said to be ant(n) time-bounded TMor to havetime complexity

t(n).

If for every input of lengthn the given TMT scans at mosts(n) cells on

any of its working tapes thenT is said to be ans(n) space-bounded TM

or to havespace complexitys(n).

24

We can then define classes of languages recognised by TM’s with varying

complexity parameters.

DTIME(t(n)) is the class of all languages which are accepted by a

deterministic TM that ist(n) time-bounded.

DSPACE(s(n)) is the class of all languages which are accepted by a

deterministic TM that iss(n) space-bounded.

Similar definitions can be given of non-deterministic complexity classes.

Of particular importance are DTIME(nk) and DSPACE(nk), and the

“union” classes P =
⋃

k DTIME(nk), NP =
⋃

k NTIME(nk), and

PSPACE =
⋃

k DSPACE(nk).

25

Plan
In the next few lectures we will prove a number of results on the space complexity

of particular families of TMs. We will address two main questions:

1. Do relations between time-complexity and space-complexity classes exist?

Can we place bounds on the running time of ans(n) space bounded TM?

It is obvious that a TMT running onx for t(|x|) steps cannot write more

than this many cells, hence its space complexity is at mostt(|x|) (but

obviously it may be better in particular cases!). We will seethat we can do

better in general.

2. What is the role of non-determinism in space-complexity classes?

We have heard of the classes P and NP, and of the major open problem in

Complexity Theorya of determining whether P is actually equal to NP. What

can be said about PSPACE and NPSPACE?
aSolving this problem WOULD make you rich, even if the money isprobably not worth

the effort.

26

Proof systems

Finally we will introduce a different model of computation that can be

used to give an alternative characterisation of polynomially space

bounded computations and has interesting applications in the area of

approximation algorithms.

27

Space bounds imply time bounds

Can we place a bound on the running time of ans(n) space bounded TM?

Well, the machine may loop forever, but if we have a bound on the

number of tape cells that the machine uses then we can detect the loop.

Let T be ak-tape TM and letx be an input such that the com-

putation ofT on x uses, at most,s cells on any of thek tapes.

Then eitherT halts onx in at most|Γ|sksk|Q| steps, whereQ

andΓ denote the set of the states and the tape alphabet ofT ,

respectively, or it does not halt at all.

28

Logical Argument

The number|Γ|sksk|Q| is an upper bound for the number of distinct

configurations ofT . Hence after these many stepsT must “repeat itself”!

(After these many steps the computation ofT must contain a same

configuration twice). But if this is the case, since the computation ofT

only depends on the sequence of scanned symbols and states the machine

goes through, thenT will go through the same configuration over an over

again.

The result holds for non-deterministic machines as well, and nothing

better than this is known.

29

