Space Complexity

So far most of our theoretical investigation on the perfaroes of the
various algorithms considered has focused on “time”.

Another important dynamic complexity measure that can be@ated
with the execution of a program is “space”.

This week we will look at a number of complexity theoreticuks
concerning this other measure.

Our treatment will be fairly general and rather abstract somil
abandon the world of “real life” algorithms and we will go lbao

counting steps and cell usage in Turing machines (thinkad iboking at

algorithms written in machine code).

Claim. All we need is:
1. the ability to use our senses and move our hands

2. an ordered sequence of boxes, each of which (at a given
time) contains either nothing or some object;

3. the ability to see, remove, or replace the object contkiim
any given box at a given time;

11

4. one sheet of paper containing a set of rules that alwalgs tel
us what to do with the content of the particular box we|are
looking at at a given time, and which box to look at next.

This is a very informal definition of what a Turing machine Mow we
can be more formal.

Back to basics

What is the minimum hardware needed to solve any computdtion
problem?

1. In COMP101, they taught us that we need a PC, with JAVA camid]

we need to write a program, debug it and run it!

2. In more theoretical courses (COMP108, COMP202) theyusld
about pseudo-code: all one really need is plenty of papdrsame
well-specified set of instructions in a semi-formal psegdde.

3. Pseudo-code algorithms worked on integers, arrayagstrperhaps

graphs.

4. If we really want to measure precisely the resource requeénts of
such algorithms in a way that is independent from the pdeideC

we may want to use to run the eventual program we need to $impl

our model even further.

Turing machines

A (deterministic)Turing machingTM) is defined by
T=(Q,%,T,6, q,B,F)

where

Q is afinite set obtates

I' is afinite set of allowedape symbols

B is a symbol of", theblanksymbol.

3} is a subset of not includingB of input symbols

0 is thetransition function a (partial) mapping frond) x I" to
Q x T x {L, R}.

qo is theinitial (or start) state.

F' is a set of states, tHfanal states

A TM can be pictured as a little box moving along a tape (or imgtror a
sequence of boxes to go back to the introductory examplejgihg
symbols on the tape according to the values of its transitiontion

1 2 3 4 5 6| 7 NRRRN

Finite
Control

Turing machine computations

A configurationof the TM T is a stringa; gqas Whereajas € T'* and
q € Q. Itis meant to represent the full state of the machine atargiime
instant.

A moveof T rearranges the symbols of a configuration according to the
functiond. So, for instance, if the configuration is

X1 ~--Xi—1qu--~Xh

andd(q, X;) = (p, Y, R) then the new configuration which describes thq
global state of” after the move has occurred is (assuming 7 + 1)

Xl ce Xi_1YpXZ'+1 Ce Xh
A computatiorof 7' is an ordered sequence of configurations such that

each of them can be obtained from its predecessor by way abéesi
move.

ThelanguageL(T') accepted by the TKI' is the set of all strings € *
for which there is a computation @f starting with the configuratiog,z
and ending with a configuration containing a final state.

Foranyzx € IN, let (z) € {0, 1}* be the binary representation of

A numerical functionf : IN — IN is computed by TM T' if for any
x € IN there exists a computation @fwhich starts with the configuration

q(z)B. ..
and ends with the configuration
() B{f(x))Bay - ..

(whereg; is a final state of").

Warming-up example
Define a TM accepting the language= {0"1" : n > 1}.

LetQ = {QO»CH’ Q2aQ3»Q4}= E = {07 1}1 F = E U {X7 YvB} and
F = {q4}. The transition function is defined as follows:

State 0 1 X Y B
q | (a1, X, R) (g3.Y,R)
a1 | (q1,0,R) (g2,Y,L) (q1,Y, R)
q2 (g2,0,L) (90, X, R) (q2,Y,L)
q3 (43, Y,R) (qa, B, R)
Ga

Explanation

Often such definitions are very dry. Use them always havingiird
some informal description of the meaning of each state. drp#rticular
example:

qo Start of a session state: mark with Anthe cell you are at if it contains a “0".
The behaviour of the machine when in this state is NOT spédffi@ny
other case, except when it find&a(we will go back to this in the example)

q1 Look for the first “1”, skipping any “0” ofY". Replace “1” byY” and move to
stategs.

q2 Move back looking for the rightmosX’, skippingY™’s and “0”. As soon as an
X is found the machine moves right and goes back in gtate

qs This state is entered if the machine has no more “0” left tochmaln such state
the machine will skip any” and look for the end of the input string (marked
by the leftmost ‘B”).

svlloviiesliveiivviievliveiioviiesBivelivviies iveiioviies BiveloviiesBive luviiovRiveluvilovive)

P B B B S X X S
P B X XS X X X XS XS oo of o
M A XS XXX X XS M8 coof coo§ of oo
NNKSXS M8 K<X~<R coo8 <R cooooR® ocoo
I I e B R e - T T T RN
I e R R L L NS
WE NN R R R R RR R R R R R R R R R R

q4 This is the final state so nothing happens in this state.

=)
=

10 11-1

Exercises

1. Modify the TM above so that any accepting computation avitts

the configuratio™ 1™ Bq,.

Example _ _ _
2. Simulate the same machine on the input 011.

Assume the input is the string 000111, the resulting contjauitds listed

on the next page. 3. Define a TM that computes the identity function (i.e. thection

that satisfies(z) = « for anyz € IN).

4. Define a TM that computes the successor of a binary numlger (e
100111 becomes 101000).

11 12

Solution to Exercise 3

The set® clearly contains only “0” and “1”. Lei be the initial state of
T. We will define@ andI" as we go along. Now we defirde

What do we want the machine to do? Following the definitioregifew
pages back, the machine should start with the configuration B . . .
and end with the configuratiofx) B(f(x))Bqy . .. (Where(z) is the
binary for the decimal number, andg; is a final state of").

The transition function can then be defined drafted as falow

The machine will move in “sessions” again. During each sesiiwill
mark the next available bit, skip everything on the tapel ding first
unused tape cell, copy the marked bit there and go back Igdkina
new bit to mark.

Explanation

After reading the next “0"/"1” symbol, the machine “mema@ss it in the
sense that it moves to a different stajg)(or ¢11) depending on the digit
that it just read.

In each of the states of the forg, the machine is just moving towards
the right hand side, skipping anything on its way.

Once the first unused cell has been reached it is changed digihéhat
is stored in machine state and the machine moves togtate

In g2 (andgs,) the machine is going back to the symbol that was last
marked. It replaces it with the original digits and startsrgthing all over
again.

13

15

A more precise definition is as follows:

State 0 1 Z U B

qo0 (g0, Z,R) (q11,U,R) (g3, B, R)
qio | (q10,0,R) (g0, 1, R) (q10s, B, R)
qios | (q10s,0,R) (qios, 1, R) (g2,0,L)
qi | (1,0,R) (q11,1,R) (qu1s, B, R)
quis | (q11s,0,R) (qu1s,1, R) (g2,1,L)
a2 (22,0,L) (q2,1,L) (25, B, L)
@s | (g25,0,L) (q2s,1,L) (g0,0,R) (qo,1,R)

a3 (g3,0,R) (gs,1,R) (g4, B, R)
@

More Exercises

1. Simulate the TM just defined on inp@it10, and1101.

2. Complete the definition of the TM defined above (wha@&what isl'? ...)
3. Define a TM that computes the constant functfgém) = 5.
4

. (Worth 25% of the CA mark) A TM may compute functions withoter
more variables. For instangéx, y) = x + y can be computed by a TM that
starts in configurationo (x)#(y) B . .. and ends with the configuration
(z)#(y)B(z +y)Bqs
Define the TMs computing the functioff§z, y) = z andg(z,y) = y.

5. (Worth 25% of the CA mark) Define a TM that compuis;, y) = = + y.

6. (Worth 25% of the CA mark) Define a TM that compufs:, y) =z - y
(Hint: it is easier to solve this problem if you look at the tiplication as a
repeated sung x 4 =3+ 3+ 3 + 3).

14

16

Generalisations

Two-way infinite tape

Multidimensional TM’s The tape is &-dimensional grid.

Multiple heads The machine hak heads (but a single tape).

Multiple tapes The machine hak tapes and: heads (one for each tape).
Offline TM's The machine has working tapelus a read-only input tape.

Nondeterministic TM’s (NTM) The machine’s transitions can be
non-deterministic. If the machine is in some sta#nd sees a symbél it
may (completely arbitrarily) make one move out of a rangeasfgibilities
(not just one).

Hence a computation may not be a linear sequence of configusatit
different time points the computation may branch off intffedent paths.
The TM accepts its input if it ends up in a final state in at less of its
computation paths.

Non-determinism ... it's just magic!

The non-deterministic TM would guess a string of lengtiind then
simply check that it is a sub-string of both andY . Additional
complications are just a consequence of the very simple otatipnal
model.

17

19

Deterministic vs. Non-deterministic TMs

Let's go back to a common subsequence problem. Suppose weditan
find a common subsequence of lengtbf two given stringsX andY’,
defined over the alphabéo, 1}.

A deterministic machine for this problem would start withanfiguration
of the form

QXY #k

The TM could then exhaustively (or through dynamic progranghlook
for all possible ways in which a subsequence of the apprpléagth can
be shared byX andY and eventually leave the tape in the configuration

X#Y #kBZBqy

if Zis a common subsequence of lengtbf X andY’.

State description
With slightly more details:

1. Inthe initial stateyy the machine will just replace the leftmost character
(either0 or 1) with Z or U respectively. Move right and into state “start1”.

2. In state “skp1” the machine would move right to the firstlgaving
everything unchanged (it is jumping over the first sequexigeOn reaching
'# the machine would move to state “skp2”.

3. In state “skp2” the machine would move right to the firstlgaving
everything unchanged (it is jumping over the sequériy.eOn reaching '#
the machine would move to state “skp3”.

4. In state “skp3” the machine would move right to the figsteaving
everything unchanged (it is jumping oviey. On reachingB the machine
would move right and into state “guess”.

5. In state “guess” the machine guess a digit (either 1), move left and into
state “bck”.

18

20

6. In state “bck” the machine moves back to the right enél ahd eventually in
state “dec”.

7. State “dec” is the initial state of part of the Turing mahthat decreases thg
current value o by one unit, ifk > 0. The machine then goes back to
guessing more symbols if the new valuekab positive. Otherwise in the
final part of the computation the guessed strihg checked against’ and
Y (details omitted).

Such description can now help building the transition fiorcé. All we need to
do is to make sure that, on each possible input, the variatisssbehave correctly
and on undesired inputs the machine either does nothingtersssome failure
state. The detailed description is hinted on the followiligdes

Exercises

(each worth the usual 25% of the module CA component)

e Complete the definition of the non-deterministic LCS Tunmgchine.

e Alist of natural numbers, ns, . . ., ny is an arithmetic sequence if there
exists a natural numbersuch thaty; — n,—1 = d foreachi € {2,...,h}
(in other wordsn; = ny + (i — 1)d).

Design a non-deterministic TM that given three numbersns andns,
accepts its input if they form an arithmetic sequence.

(Hint) design the algorithm using pseudo-code first, thekleathe problem
of building the TM transition function. To solve the problemou will need to
know how to add two numbers with a Turing machine (non-ttaad how
to delete portions of the tape (simpler).

22

21
State| 0 1 z U # B
q0 (skplZ, R) (skpll, R)
skpl| (skpl,0R) (skpl,1R) (skp2,#R)
skp2 | (skp2,0R) (skp2,1R) (skp3,#R)
skp3| (skp3,0R) (skp3,1R) (guessB, R)
guess (guess,OR) (guess,1R) (bck,0.L) | (bck,1,L)
bck | (bck,0L) (bck,1L) (decB, L)

dec

The initial segment of computation ad = 1101 andY” = 10 is sketched

below ('?" stands for a guessed bit).

b
B
=y
S
B
=4
ES
B
=4
3
2
%
3
R

=
°
R
PRrRrPRrRPRPRPRP

=
°
@
°
@®

PRRRPRRPRRRPRRPRRRO O
=

[eNeNeleleNeNeNeNeNeNo N]
B EE I EHD oo
PRRRER RO
0000000l Rk RE
#ERREAXXY 0000000
el
N
il
@
og¥WLooooooooo0©
TWEmhhhhwwwww

Qaocoow
@
o

CQ. CQCQQcCQCacCcacy
PR RRRRRRERRERRRERROR
o o
S
*
[
co
*
o o
e

W W

[(=]

3

@

21-1

Remarks

The multitape, offline and non-deterministic TM’s will be pirtant when
we come to talk about computational complexity.

All these models are equivalent to the initial one in the sahat if a
languagel is accepted (resp. a functighis computed) by a TM of
one of these types then there exists a Tbf another given type that
accepts. (computes the functioff).

23

Plan

In the next few lectures we will prove a number of results angpace complexity
of particular families of TMs. We will address two main quess:

Definitions of Resource bounded TM's 1. Do relations between time-complexity and space-coniplelasses exist?

] . Can we place bounds on the running time ofsén) space bounded TM?
If for every input of lengthn the given TMT runs for at most(n) steps

))] . i It is obvious that a TMI" running onz for ¢(|z|) steps cannot write more
thenT is said to be am(n) time-bounded Thr to havetime complexity

than this many cells, hence its space complexity is at mast) (but

t(n). obviously it may be better in particular cases!). We will segt we can do
If for every input of lengthn the given TMT scans at most(n) cells on better in general.

any of its working tapes ther is said to be ar(n) space-bounded TM 2. What is the role of non-determinism in space-complexigses?

or to havespace complexity(n). We have heard of the classes P and NP, and of the major opeemrob

Complexity Theory of determining whether P is actually equal to NP. Wha
can be said about PSPACE and NPSPACE?
“Solving this problem WOULD make you rich, even if the moneypiiebably not worth

the effort.
24 26

We can then define classes of languages recognised by TMis/aiying

complexity parameters.

DTIME(t(n)) is the class of all languages which are accepted by a

deterministic TM that ig(n) time-bounded. Proof systems

DSPACEs(n)) is the class of all languages which are accepted by a Finally we will introduce a different model of computatidmet can be

deterministic TM that is(n) space-bounded. used to give an alternative characterisation of polyndgnggdace
bounded computations and has interesting applicatioreiartea of

Similar definitions can be given of non-deterministic coexl classes. approximation algorithms.

Of particular importance are DTIME*) and DSPACER*), and the

“union” classes P %), DTIME(n*), NP =J, NTIME (n*), and

PSPACE = J,, DSPACEnR®).

25 27

Space bounds imply time bounds

Can we place a bound on the running time ofsém) space bounded TM?
Well, the machine may loop forever, but if we have a bound en th
number of tape cells that the machine uses then we can det¢elciop.

Let T be ak-tape TM and letr be an input such that the com
putation of " on x uses, at mosts cells on any of the: tapes.
Then eitherT” halts onz in at most|T'|**s*|Q| steps, where)
andT" denote the set of the states and the tape alphabé&t of
respectively, or it does not halt at all.

28

Logical Argument

The numbelT|**s*|Q| is an upper bound for the number of distinct
configurations ofl". Hence after these many stépsnust “repeat itself”!
(After these many steps the computatioriofmust contain a same
configuration twice). But if this is the case, since the cotapan of T’
only depends on the sequence of scanned symbols and sataacthine
goes through, thei” will go through the same configuration over an ove
again.

The result holds for non-deterministic machines as well, othing
better than this is known.

29

