
Time bounds imply space bounds

Given a languageL ∈ DTIME(t(n)), what is the “smallest” space

complexity class includingL?

Of courseL ∈ DSPACE(t(n)) (in t(n) steps a TMT acceptingL can

only writeO(t(n)) different tape cells).

But one can do much better ... a clever algorithm can simulateT using

justO(
√

t(n)) tape cells (on any input of lengthn)

even if some computation of the originalT may need much more than

O(
√

t(n)) space.

Assumptions.

• t(n) ≥ n
2, andt(n) must betime constructible.

• All TMs referred to in this lecture are “traditional” one-tape one-head TMs.
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Examples?

SupposeL is formed by strings of the formX#Y #Z, whereZ is a

longest common subsequence ofX andY .

Let T be a deterministic TM that acceptsL by running a deterministic

algorithm based on the dynamic programming algorithm we sawfew

weeks ago.

We argued that the time complexity of that algorithm was quadratic in the

size of its input (sot(n) ≥ n2) just because it had to fill a matrix with

|X | × |Y | entries.

We are claiming now that a clever TMT ′ exists that can simulateT using

O(
√

|X | × |Y |) space. In some wayT ′ will not need to store the matrix

lcs[i, j] !!
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Crossing sequences

The computation of a one-tape TM can be roughly described as a

sequence of movements of the tape head occasionally paired with the

updating of some of the symbols written on the tape.

Let T be a one-tape TM andx be an input. Let us focus our attention on

the boundary between theith and the(i + 1)th tape cell for somei ≥ 0

(cell “0” does not actually exist, so “the border between cell 0 and 1” will

have a special meaning).

The sequence of states in which the machine is as its tape headcrosses the

boundary between celli andi + 1 is called thecrossing sequence at

boundary i with input x. In symbolsSi(x).
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Example. The crossing sequence at boundaryi is
q3, q8, q2, q14, q3, q5, q1. Note thatq3 is the state the machine is in before
analysing the content of the celli + 1. Similarly q8 is the state the
machine is in before analysing the content of celli, and so on.
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Even more practical example. The computation of the TM we sawlast
time:

0 0 0 1 1 1 B

q0

X 0 0 1 1 1 B

q1

X 0 0 1 1 1 B

q1

X 0 0 1 1 1 B

q1

X 0 0 Y 1 1 B

q2

X 0 0 Y 1 1 B

q2

X 0 0 Y 1 1 B

q2

5

X 0 0 Y 1 1 B

q0

X X 0 Y 1 1 B

q1 1

X X 0 Y 1 1 B

q1

X X 0 Y 1 1 B

q1

X X 0 Y Y 1 B

q2

X X 0 Y Y 1 B

q2

X X 0 Y Y 1 B

q2

6

X X 0 Y Y 1 B

q0

X X X Y Y 1 B

q1

X X X Y Y 1 B

q1

X X X Y Y 1 B

q1

X X X Y Y Y B

q2

X X X Y Y Y B

q2

X X X Y Y Y B

q2

7

X X X Y Y Y B

q0

X X X Y Y Y B

q3

X X X Y Y Y B

q3

X X X Y Y Y B

q3

X X X Y Y Y B B

q4

S0(000111) = q0 always;S3(000111) = q1q2q1q2q1q2q0.
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Compatibility

Let S = q1, . . . , qr andS′ = q′1, . . . , q
′

s be two lists of states. We say that

S andS′ arecompatible with respect to a portion of tape y, if, startingT

at the leftmost tape cell ofy in stateq1, S andS′ are generated at the left

and right boundaries ofy whenever the following two rules are applied:

1. if T crosses the left boundary ofy moving left in stateqi with i even,

then its tape head is placed on the leftmost tape cell ofy and its state

is set toqi+1;

2. if T crosses the right boundary ofy moving right in stateq′i with i

odd, then its tape head is placed on the rightmost tape cell ofy and its

state is set toq′i+1.
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Example

The sequencesq0 andq1q2q1q2q1q2q0 are compatible w.r.t. the three

leftmost cells of the tape of the Turing machineT accepting strings0n1n.

Claim. Given S0(000111), S3(000111) and the initial content

of the first three cells in the tape we can simulateT on those cells

without any need of running the TM on any other cell.
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Remarks

1. In words, the odd subsequence ofS, q1, q3, . . ., denotes the sequence

of states ofT when enteringy from the left, while the even

subsequence denotes the sequence of states ofT when leavingy to

the left. States inS′ have a similar interpretation.

2. If T runs in timeO(t(n)) then, for any inputx, at mostc × t(|x|)

cells will ever be used in the computation ofT onx, wherec is a

constant. We can improve on this by splitting thesec × t(|x|) cells

into blocks of (almost) equal size and check compatibility among

crossing sequences at the boundaries of such blocks.
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Preliminaries

For any positive integersi andd let l = d(c · t(|x|) − i)/de. The first

c · t(|x|) cells are partitioned intol + 1 blocks. The first blocky0 contains

thei left-most cells; blockyj for 1 ≤ j ≤ l contains cells from

i + d(j − 1) to i + dj − 1.

Thei-th crossing sequence list of distance d and length l with input x is

the list of crossing sequences

S0(x), Si(x), Si+d(x), Si+2d(x), . . . , Si+ld(x).

A state sequence sample of length l is a list ofl + 2 sequences of states.

13

221 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Example. Assumec · t(|x|) = 20, hence the TM uses cells 1, up to 20.

Assume further thati = 3 andd = 4. Hence all blocks, except the first

one, will have length four. The total number of blocks is one plus

l = d(20 − 3)/4e = 5. y0 contains cells 1 to 3,y1 cells 4 to 7,y2 cells 8

to 11,y3 contains cells 12 to 15,y4 cells 16, to 19 andy5 contains only

cell 20.
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Technical result

Let i, d be given andl defined as above. Then a state sequence

sampleS0, . . . , Sl+1 of lengthl is theith crossing sequence list

of distanced and lengthl with inputx if and only ifSj , andSj+1

are compatible with respect toyj , for anyj with 0 ≤ j ≤ l.

This result which can be proved by induction guarantees thatthe

acceptance of an input can be checked by testing iterativelyfor the

compatibility of state sequences with respect to portions of the tape. This

will be exploited in the main algorithmic construction.
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Main result

We will used =
√

c · t(n) (hencel = O(
√

t(n)) too).

For any given machineT we define a new Turing machineT ′ which

systematically generates state sequence samples of lengthl using
√

c · t(n) tape cells. For each of these,T ′ tests adjacent crossing

sequences and the corresponding portion of the tape for compatibility

(according to the definition of compatibility, this test canbe performed

usingO(
√

t(n))) tape cells, and accept if all local tests have been

successful.

To complete the argument we need to convince ourselves that there exists

ani such that theith crossing sequence sample of distanced and lengthl

“fits” in about
√

c · t(n) tape cells.

16



Claim. There is ani ∈ {1, . . . ,
√

c · t(n)} such that the sum of

the lengths of the crossing sequences included in theith crossing

sequence sample of distanced and lengthl is, at most
√

c · t(n).

This claim must be true because the sum over alli of the lengths of all

crossing sequence samples of distanced and lengthl is the total length of

the computation ofT . This is at mostc · t(n). If all the samples had

length larger than
√

c · t(n) their total length would exceed this bound.
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Final remarks

1. The construction we have described is due to Hopcroft and Ullman
(1968).

2. Similar result can be proved for non-deterministic or off-line TMs.

3. The time taken byT ′ is exponential int(n) (T ′ has to find the right
sequence of states out of a large number of possibilities).

4. The assumptiont(n) ≥ n2 can be dropped but a weaker result holds.
The following relation was proved by Hopcroft, Paul and Valiant
(1977).

DTIME(t(n)) ⊆ DSPACE(t(n)/ log t(n))

5. Ibarra and Moran (1983) presented a polynomial time simulation
result:

DTIME(t(n)) ⊆ DTIMESPACE((t(n))2,
√

t(n)) if t(n) ≥ n2.
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