
Deterministic vs. nondeterminism Turing Machines

Deterministic TM’s owe their name to the fact that each computation can

be viewed as a linear ordered sequence (finite or infinite) of

configurations. The first element contains the initial stateand each

configurationC′ follows directly configurationC in the sequence if the

TM can changeC into C′ as a consequence of a legal move of the

machine.

1

Nondeterministic machines are not restricted to such ordered

computations. At each moment in time a non-deterministic TMmay be

allowed to make several moves (or equivalently to choose among a

number of possibilities). Hence its computation may “branch” in many

possible ways. The resulting computation is best describedtherefore as a

rooted tree of configurations. Each deterministic computation

corresponding to a particular sequence of choices is calledacomputation

path.

2

Example: the existence of a valid shift problem

We are given two stringsT andP over{0, 1} and we want to test

whether there exists a valid shift (i.e.P can be matched inT).

On the next slides we define a deterministic and then a non-deterministic

TM that solve this problem. Let’s assume that the input is presented in the

form “§T#P B”.

3

Deterministic Turing Machine

0 1 Z U § # B

q0 (skp0,Z,R) (skp1,U,R) (q0,§,R) (fail,#,L)
skp0 (skp0,0,R) (skp0,1,R) (tst0,#,R)
tst0 (bck,Z,L) (erase,1,L) (tst0,Z,R) (tst0,U,R) (OK,B,L)
skp1 Similar to skp0, but the TM is storing a1 instead
tst1 ”
bck (bck,0,L) (bck,1,L) (bck,Z,L) (bck,U,L) (new,#,L)
new (new,0,L) (new,1,L) (q0,Z,R) (q0,U,R)
erase Erase anyZ andU fromT andP , start over looking for a matching at the next available

shift
fail Go back to “§”, restore the input, get into the failing configuration
OK Go back to “§”, restore the input, get into the final configuration

Description. This is a TM implementation of the brute-force matching algo-
rithm we saw few weeks ago.

3-1

Non-deterministic Turing Machine

0 1 Z U § # B

q0 (skp0,Z,R) (skp1,U,R) (guess,§,R)
guess (guess,0,R) | (skp0,Z,R) (guess,1,R) | (skp1,U,R) (fail,#,L)

skp0 (skp0,0,R) (skp0,1,R) (tst0,#,R)
tst0 (bck,Z,L) (fail,1,L) (tst0,Z,R) (tst0,U,R) (OK,B,L)
skp1 Similar to skp0, but the TM is storing a1 instead
tst1 ”
bck (bck,0,L) (bck,1,L) (bck,Z,L) (bck,U,L) (new,#,L)
new (new,0,L) (new,1,L) (q0,Z,R) (q0,U,R)
fail Go back to “§”, restore the input, get into the failing configuration
OK Go back to “§”, restore the input, get into the final configuration

Description. Guess a shift, by positioning the tape head under one of the
characters ofT , then check whetherP occurs inT with that particular shift
only.

Comments.There is no need for an “erase” state anymore!

3-2

Issue

What can be said about the power of nondeterminism in resource bounded

TM’s?

Are non-deterministic Turing machines, in a sense, more powerful than

deterministic ones?

4

Time bounded machines

Any non-deterministic TMN can be simulated by a determin-

istic TM T . Furthermore there exists a constantc such that, for

any inputx, if N acceptsa x in t steps thenT acceptsx in, at

most,ct steps.
aA (Turing) machineT acceptsx if T (eventually) halts and says “yes” (i.e.

enters an accepting state)! A machinedecidesx if T halts onx and says either

“yes” or “no”. A languageL over an alphabetΣ is accepted(resp.decided) by

a Turing machineT if for everyx ∈ Σ
∗, T halts and says “yes” if (and only if)

x ∈ L.

GivenN , we define a deterministic TMT which, for any inputx

systematically visits the computation tree associated with N onx. The

only care is in the fact that the computation tree may containinfinite

subtrees so we need to use a breadth first search heuristic to visit the tree.

5

More details

Without getting to the gory details ofT ’s transition function, let’s try to

understand how this would work by looking atT ’s tape (assume all TM’s

have just a single tape).

To simplify things, assume all non-deterministic moves ofN are binary:

in a particular stateq, looking at a tape symbols, N may changes to t1,

move to stateq1 and move to some cellc1 OR it may changes to t2,

move to stateq2 and to a cellc2.

6

Initializations

Initially, the tape ofT containsN ’s input only. (There is no need to store on the

tape the transition function ofN as that is hardwired in the transition function of

T .)

The TMT knows the time complexity ofN , so the first thing thatT does is to

write on its tape, next toN ’s input two # symbols followed bydlog t(n)e

consecutive zeroes another # and the same number of ones.T will use such space

to store a counter that will run from zero tot(n) − 1. When the first counter

becomes equal to the second oneT will know that the simulation can stop.

Also, T knowsN cannot use more thant(n) cells, so another mark is placedt(n)

cells to the right.

The tape will then look like this:

N

#N input #00..........0 11..........1

counter time bound working space

7

Deterministic moves

Then (suppose for a whileN does not take any non-deterministic move)

T simulatesN one step at the time, increasing the counter at each step.

Anything thatN needs to write on the tape is written to the right of the

counter and the time bound, within the allocated working space.

8

Non-deterministic moves

When the first non-deterministic move is to be simulated,T will know

thatN will make, say, a choice out of two possibilities. This triggersT to

duplicate the working space ofN and then make each of the possible

moves, one in each working space. After this the move counteris updated.

From then on, until the next non-deterministic move, the simulation will

proceed in turns in each copy ofN working space. A counter (and a

bound) of sizet(n) is also needed to remember which working space is

active at each time instant.

The tape will then look like this (the scale here is much smaller than in

the previous picture):

N

#N input process countertime counter

working spaceN

#

working space

9

Additional non-deterministic moves with increase the number of copies

of N ’s working tape that need to be handled.

The machineT will accept its input as soon as one computation ofN

ends in an accepting state.

Complexity analysis. In the worst-case,N may take a non-deterministic

move at every step. This will generate a computation tree that could look

like a complete binary tree of deptht(n). Such a tree has2t(n) distinct

branches, each corresponding to a valid computation ofN . To simulate

all thisT will need time proportional to

t(n) × 2t(n) = 2t(n)+log
2

t(n) ≤ ct(n)

for some sufficiently large constantc > 2.

10

End of the story

Nobody knows any significantly better way of simulating a

non-deterministic Turing machine!

11

Space bounded machines

It is quite interesting to discover that the situation changes dramatically if

we measure space instead of time.

(Savitch, 1970) Any one-tape non-deterministic TM which uses

at mosts(n) tape cells on any input of sizen can be simulated

by a deterministic TM which uses at mosts(n)2 tape cells.

Hence anything we can do in polynomial space with a non-deterministic

TM, can be done deterministically too, with a quadratic blow-up in the

amount of space required.

Assumptions.

• The functions must be space-constructible function, and it must be

s(n) ≥ n.

12

Argument

Let N be a nondeterministic Turing machine which works in spaceO(s(n)).

To simplify our description let’s assume the following:

1. N is a one-tape TM;

2. each configuration ofN can be encoded in exactlyc1s(n) symbols;

3. immediately before reaching the accepting stateN cleans its tape and moves

the tape head to cell 0 (so that there is only one initial and final

configuration);

For any inputx of lengthn, if N acceptsx, then a computation path requiring at

mostc1 · s(n) cells must exist.

We also know that the length of such a computation path is at most2c2s(n) (with

c2 only depending onN , not onn).

13

Simulation strategy

As usual we start by giving some details of the simulation strategy. More

details will be given next time.

We define a predicate Reach(C1, C2, i) which is true if and only if

configurationC2 is reachable from configurationC1 in at most2i steps

(i.e. the computation tree ofN onx contains a path fromC1 to C2 of

length at most2i). Then

x ∈ L if and only if Reach(C0, Cfinal, c2s(n)) holds.

The simulation will be completely described after we’ll have defined a

space efficient algorithm that implements the predicate Reach. Such an

algorithm will be the main component of the deterministic equivalent to

the given NTMN .

14

