Deter ministic vs. nondeter minism Turing M achines

Deterministic TM’s owe their name to the fact that each cotaon can
be viewed as a linear ordered sequence (finite or infinite) of
configurations. The first element contains the initial state each
configurationC” follows directly configuratior' in the sequence if the
TM can chang& into C’ as a consequence of a legal move of the
machine.

Example: the existence of a valid shift problem

We are given two string and P over{0, 1} and we want to test
whether there exists a valid shift (i.€. can be matched if).

On the next slides we define a deterministic and then a narrdatistic
TM that solve this problem. Let’'s assume that the input is@néed in the
form “§T#P B”.

Nondeterministic machines are not restricted to such ecter
computations. At each moment in time a non-deterministichiy be
allowed to make several moves (or equivalently to choosengrao
number of possibilities). Hence its computation may “btdrin many
possible ways. The resulting computation is best desctibe@fore as a
rooted tree of configurations. Each deterministic comparat
corresponding to a particular sequence of choices is calkbednputation
path

Deter ministic Turing Machine

0 1 z u § # B

qo | (skpOZ,R) (skplU,R) (@,8,R) (fail#L)
skpO | (skpOp,R) (skpO1,R) (tst0,#,R)

tstO (bckz,L) (erasel,l) (tstOZ,R) (tstOU,R) (OK,B\L)
skpl Similar to skpO, but the TM is storinglainstead

tstl "

bck (bckO,L) (bck,1,L) (bckz,L) (bckU,L) (new,#,L)

new | (newp,L) (newl,L) (90,Z,R) (90,U,R)
erase| Erase anyZ andU fromT and P, start over looking for a matching at the next available

shift
fall Go back to ‘§”, restore the input, get into the failing configuration
OK Go back to ‘§”, restore the input, get into the final configuration

Description. This is a TM implementation of the brute-force matching algo
rithm we saw few weeks ago.

3-1

Non-deter ministic Turing Machine

0 1 z U § # B

90 (skpOZ,R) (skp1U,R) (quess,R)
guess | (gues9.R) | (skpOZ,R) (guess,R) | (skplU,R) (fail #,L)

skpO (skpOp,R) (skpO1,R) (tst0,#,R)

tst0 (bckZ,L) (fail,1,L) (tst0Z,R) (tstOU,R) (OK,B\L)
skpl Similar to skp0, but the TM is storinglinstead

tstl "

bck (bckO,L) (bck,1,L) (bck,Zz,L) (bckU,L) (new,#,L)

new (newp,L) (newd,L) (g0.Z,R) (g0.U,R)

fail Go back to ‘§”, restore the input, get into the failing configuration

OK Go back to ‘§”, restore the input, get into the final configuration

Description. Guess a shift, by positioning the tape head under one of the
characters ofl", then check whetheP occurs inT" with that particular shift
only.

CommentsThere is no need for an “erase” state anymore!

3-2

I ssue

What can be said about the power of nondeterminism in resdagunded
TM's?

Are non-deterministic Turing machines, in a sense, moregpivthan
deterministic ones?

Time bounded machines

—
1

Any non-deterministic TMN can be simulated by a determi
istic TM T'. Furthermore there exists a constarstuch that, for
any inputz, if NV accept$ x in ¢ steps therf” acceptse in, at
most,ct steps.

@A (Turing) machin€l” acceptse if T' (eventually) halts and says “yes” (i..
enters an accepting state)! A machufecidese if 7' halts onz and says eithe
“yes” or “no”. A languageL over an alphabeX is acceptedresp.decided by
a Turing maching if for everyxz € ¥*, T halts and says “yes” if (and only if
x € L.

Given N, we define a deterministic TMI' which, for any inputz
systematically visits the computation tree associated Wionz. The
only care is in the fact that the computation tree may coritdinite
subtrees so we need to use a breadth first search heurisisitithe tree.

Moredetails

Without getting to the gory details @f’s transition function, let’s try to
understand how this would work by lookingAls tape (assume all TM’s
have just a single tape).

To simplify things, assume all non-deterministic moves\oére binary:
in a particular state, looking at a tape symbal, N may change to ¢,
move to state; and move to some ceth OR it may change to o,
move to state, and to a celks.

Initializations

Initially, the tape ofT" containsN'’s input only. (There is no need to store on the
tape the transition function @¥ as that is hardwired in the transition function of
T)

The TMT knows the time complexity alV, so the first thing thal” does is to
write on its tape, next t&V's input two # symbols followed bylog ¢(n)]
consecutive zeroes another # and the same number of'Brveidl.use such space
to store a counter that will run from zerot(n) — 1. When the first counter
becomes equal to the second @neiill know that the simulation can stop.

Also, T knows N cannot use more thaitn) cells, so another mark is placegh)
cells to the right.

The tape will then look like this:

N it [[#] 00 @] 11 i 7] 7]

counter time bound N working space

Non-deter ministic moves

When the first non-deterministic move is to be simulat&alill know
that NV will make, say, a choice out of two possibilities. This trgg1 to
duplicate the working space of and then make each of the possible
moves, one in each working space. After this the move coimtgrdated.

From then on, until the next non-deterministic move, theuartion will
proceed in turns in each copy 8f working space. A counter (and a
bound) of siz&(n) is also needed to remember which working space is
active at each time instant.

The tape will then look like this (the scale here is much semdahan in
the previous picture):

‘ N input ‘w‘#‘nmecnunter ‘:&M process counter ‘#M M ‘t“&“

N working space N working space

Deter ministic moves

Then (suppose for a whil& does not take any non-deterministic move)

T simulatesN one step at the time, increasing the counter at each steq.

Anything thatN needs to write on the tape is written to the right of the
counter and the time bound, within the allocated workingcepa

Additional non-deterministic moves with increase the nemtif copies
of N's working tape that need to be handled.

The machindg” will accept its input as soon as one computationvof
ends in an accepting state.

Complexity analysis. In the worst-caselV may take a non-deterministic
move at every step. This will generate a computation tretecinald look
like a complete binary tree of depttn). Such a tree ha®' (™) distinct
branches, each corresponding to a valid computatiak.ofo simulate

all thisT" will need time proportional to

t(n) x 2t(m) = t(n)+logs t(n) < (t(n)

for some sufficiently large constant> 2.

10

End of the story

Nobody knows any significantly better way of simulating a
non-deterministic Turing machine!

Argument
Let N be a nondeterministic Turing machine which works in sp@¢e(n)).
To simplify our description let’'s assume the following:

1. N is aone-tape TM;

2. each configuration aV can be encoded in exacitys(n) symbols;

3. immediately before reaching the accepting sfételeans its tape and moves
the tape head to cell 0 (so that there is only one initial arel fin
configuration);

For any inputz of lengthn, if N acceptse, then a computation path requiring at
mostc; - s(n) cells must exist.

We also know that the length of such a computation path is at #i&° (™) (with
c2 only depending oriV, not onn).

11

13

Space bounded machines

It is quite interesting to discover that the situation chesigramatically if
we measure space instead of time.

(Savitch, 1970) Any one-tape non-deterministic TM whicksls
at mosts(n) tape cells on any input of size can be simulate
by a deterministic TM which uses at most:)? tape cells.

o8

Hence anything we can do in polynomial space with a non-detéstic
TM, can be done deterministically too, with a quadratic bigwin the
amount of space required.

Assumptions.

e The functions must be space-constructible function, and it must be
s(n) > n.

Simulation strategy

As usual we start by giving some details of the simulatioateyy. More
details will be given next time.

We define a predicate Redch , Co, 7) which is true if and only if
configurationC is reachable from configuratiafi; in at most2! steps
(i.e. the computation tree df onz contains a path frond’; to C; of
length at mosg?). Then

z € Lifand only if ReacliCy, Cfnal, c2s(n)) holds.

The simulation will be completely described after we’ll badefined a
space efficient algorithm that implements the predicateeReauch an
algorithm will be the main component of the deterministicigglent to
the given NTMN.

12

14

