Recur sive computation

It is possible to verify Reach recursively.

To check whether it is possible to reach

C, from C; in at most2? steps we may c
check whether it is possible to reach some A
intermediate configuratiofi from C; inat ~ 3Most 2" steps
most2:~! steps and then reactt, from C

in at most2i~! steps. This process can be

iterated until transforming the verificationat most 2’ ' steps
of Reach on two steps in two verifications

of Reach of one step each. These can be

easily implemented using the definition of

N.

—_

T
N
e
T
1
G

The Turing machineV uses at most; s(n) tape cells.

n «— |z|
let Cy be the initial ID of N on inputz
if REACH (Cy, Cy, c15(n))

return TRUE

Therefore non-determinism does not add any additional ptaysay,
polynomially space bounded computations.

REACH (C4, Cs, 1)
ifi=0
if C1 = Cs or C; can be transformed int0, in one step
return TRUE
esereturn FALSE
ese
for eachC
if REACH (C1, C, i — 1) and REACH (C, Cs,7 — 1)
return TRUE

To complete the proof of the theorem we need one more bit af.cod

Example

AssumeN is a NTM that accept§0™1™ : n > 1}, and assumé/ uses space.
Let go (resp.qr) be N’s initial (unique final) state.

Take N to be the deterministic TM accepting strings of the farti™ (a
deterministic TM is a particular case of a non-deterministie!). Then@| = 5,
IT'| = 5ands(n) = n.

Letz = 000111.
ThereforeCo = ¢ 00011 1.

The simulating machine will start checking whetligr = ¢; B is reachable from
Co in at most2Y steps where

y = Mog(|T|*™s(n)|Q)] = Mog(5° x 6 x 5)] =19

After some preprocessing the tape content of the simulatiaghine will be

[guxBBB... #¢; BBB... # vy # |

c1 s(n) c1 s(n) O

The mainfor loop inside REAcH will cycle through all possible strings of
lengthcy s(n) of the forma; gae with a; € T* andg € Q \ {qo} and call
itself recursively in each case. At some stage it will redehright
intermediate configuratio@®’ and then it will “behave correctly”.

For instance ilC; is not immediately reachable fro}, then the
simulating machine tape content changes to:

[q,¥BBB... #¢,BBB... # ## q,xBBB..# C # y-1__ #]
g g e —

c, sm) c, s O(s(n)

and a recursive call to BaCH can start on the right-most three items on
the tape. If that fails, the nexi can be generated and a new trial starts.

I nter active proofs

Digression. What is a proof procedure? Perhaps the most natural defingithat
of a sequence of statements written in a book that can thesaakto convince the
“verifier” of the validity of the argument.

A more general way of communicating a proof is based on theeagutrof
interaction, and consists of explaining the proof to sonegpients.

Take the teacher-student environment. The prover (thdteseacher) can take
full advantage of the possibility of interacting with therifiers (the students).
The latter may ask questions at crucial points of the expilamand receive
answers. This make the prover’s life much easier!

In a sense, writing down a proof that can be understood antkeleéby every
verifier without interaction is a much harder task becausepme sense, the
prover has to answer all possible questions in advance.

Complexity analysis
How much space does the simulating machine use?

1. At each level of the recursion the simulating machine mékd to
remembeC' and a counter (running up t6]5™ s(n)|Q|). If the
counter is binary, it will uséog(|T'|*(™)s(n)|Q|) = O(s(n)) space.

2. The stack of recursive calls will store few ID’s and a caurfagain
this takesO(s(n)) space) and there are at méxts(n)) nested calls,
since the third parameter inRCH(C1, C5, i) is decreasing by one
at each step.

We will consider proving procedures, called interactivegirsystems, in
which a prover wants to convince a verifier of the correctrméssproof.

In typical complexity-theoretic fashion we shall view ateractive proof
system as a new method for recognising languages.

We will define the model, introduce some relevant complesliagses and
then state an interesting result relating the complexityroblems defined
with respect to this model to standard TM complexity classes

We will use interactive proof systems in the context of agpration
algorithms in the last weeks of this course.

I nter active proof systems

input

work tape work tape
P \%
P-to—V messages V—to—P messages
10

Acceptance

The acceptance criterion is straightforwafé, V') accepts (rejects) input

x if V halts in an accepting (rejecting) state. A languagadmits a
deterministic interactive proof if a verifier V' exists such that

1. A proverP* can be built such thatP*, V') accepts alk € L.
2. For all proversP, (P, V) rejects allz € L.

Denote by DIP the class of languages which admit a detertitinis
interactive proof.

An interactive proof system consists of two TMB,andV'. The two TM’s can
exchange messages. The exchange of messages takes plactnia t
communication tapes labelledP — V' messages and — P messages. The first
tape is write-only forP and read-only fol’. The second one is write-only f&f

and read-only forP. Both TM’s have their own private working and input tapes.

Additional assumptions include:

1.
2.
3.

V' is DTM working in polynomial time.
P is DTM with no limitation in time or space.

P andV take turns in being active arid starts the computation. When a
machine is active, it can perform internal computationgdraiad write on the
correct tapes and send a message to the other machine bygvaritithe
appropriate communication tape.

Both the length and the number of messages exchangeddrefnendl
are bounded by suitable polynomials in the input length.

V' can, during its turn, terminate the interactive computabiy entering
either the accepting or the rejecting state.

12

11

I nter active proof systems

P-to-V messages V-to-P messages

The notion of deterministic prover can be extended by athg#i to toss coins.
In this case we will require that for eaahe L the prover can convince the
verifier with high probability, and, for alt ¢ L, no prover can convince the
verifier thatr € L with better than negligible probability.

Denote by IP the class of languages which admit an inteeaptivof.

%In the simplest possible case this means haian make moves at random.

13

Main results
e DIP = NP (relatively simple)

e |P = PSPACE (very deep result, we will not prove it)

(NP C DIP) (Sketch) We first need to “believe” thate NP if and only if there is
alanguagd.. € P and a polynomigb such that

L={x:3y(z,y) € Le Ayl <p(lz])}
Given L the prover will send td” the righty and the verifier will in polynomial

time check thafx, y) € Lc A |y| < p(|z]).

(DIP C NP) (Sketch) We need a non-deterministic simulation of thegutation
of a given deterministic interactive proof system.

Let L € DIP and let(P, V) be the proof system fak. Given an input:, the
number of messages exchanged betwemdV is polynomial. Thus an NTM
exists which alternatively simulatés and guesses all possible messageB.of

14

More Exercises

1. Complete the definition of the TMs for the string matchimglkpem
that were sketched last time.

2. Write a pseudo-code description of the algorithms imgleted by
the TMs mentioned in the previous exercise.

3. Simulate the deterministic machine for the existencealia shift
problem ol = 1101 and P = 00.

Appendix: One more Turing machine example

Definition of a Turing machine that takes as input a binarngtr
x1,...,x, and changes,, to its complement.
State 0 1 B
qo (move right state)| (qo,0,R) (qo,1,R) (q1,B,L)
q1 (flip state) (q1,1,R) (g2,0,R)
q2 (final state)

Exercise. Modify the previous table so that the algorithm correctly
computes the successor of the given binary number. ., z,,.

15

16

