
Recursive computation

It is possible to verify Reach recursively.

To check whether it is possible to reach

C2 from C1 in at most2i steps we may

check whether it is possible to reach some

intermediate configurationC from C1 in at

most2i−1 steps and then reachC2 from C

in at most2i−1 steps. This process can be

iterated until transforming the verification

of Reach on two steps in two verifications

of Reach of one step each. These can be

easily implemented using the definition of

N .

2

i −1
steps

at most 2
i −1

steps

C

C

C1

at most 2

2

REACH (C1, C2, i)

if i = 0

if C1 = C2 or C1 can be transformed intoC2 in one step

return TRUE

else return FALSE

else
for eachC

if REACH (C1, C, i− 1) and REACH (C, C2, i− 1)

return TRUE

To complete the proof of the theorem we need one more bit of code.

3

The Turing machineN uses at mostc1s(n) tape cells.

n← |x|

let C0 be the initial ID of N on inputx

if REACH (C0, Cf , c1s(n))

return TRUE

Therefore non-determinism does not add any additional power to, say,

polynomially space bounded computations.

4

Example
AssumeN is a NTM that accepts{0n1n : n ≥ 1}, and assumeN uses spacen.

Let q0 (resp.qf) beN ’s initial (unique final) state.

TakeN to be the deterministic TM accepting strings of the form0n1n (a

deterministic TM is a particular case of a non-deterministic one!). Then|Q| = 5,

|Γ| = 5 ands(n) = n.

Let x = 000111.

ThereforeC0 ≡ q0 0 0 0 1 1 1.

The simulating machine will start checking whetherCf ≡ qf B is reachable from

C0 in at most2y steps where

y = dlog(|Γ|s(n)s(n)|Q|)e = dlog(56 × 6 × 5)e = 19

After some preprocessing the tape content of the simulatingmachine will be

O1 s (n) c1 s (n)

#q xBBB...0 fq BBB... y ## #

s (n))(c

5

The mainfor loop inside REACH will cycle through all possible strings of

lengthc1s(n) of the formα1qα2 with αi ∈ Γ∗ andq ∈ Q \ {q0} and call

itself recursively in each case. At some stage it will reach the right

intermediate configurationC and then it will “behave correctly”.

For instance ifCf is not immediately reachable fromC0 then the

simulating machine tape content changes to:

#

1 s (n) c1 s (n)

q xBBB...0 fq BBB... q xBBB...0# y ## #

s (n))(O

C # y − 1

c

and a recursive call to REACH can start on the right-most three items on

the tape. If that fails, the nextC can be generated and a new trial starts.

6

Complexity analysis

How much space does the simulating machine use?

1. At each level of the recursion the simulating machine willneed to

rememberC and a counter (running up to|Γ|s(n)s(n)|Q|). If the

counter is binary, it will uselog(|Γ|s(n)s(n)|Q|) = O(s(n)) space.

2. The stack of recursive calls will store few ID’s and a counter (again

this takesO(s(n)) space) and there are at mostO(s(n)) nested calls,

since the third parameter in REACH(C1, C2, i) is decreasing by one

at each step.

7

Interactive proofs

Digression. What is a proof procedure? Perhaps the most natural definition is that

of a sequence of statements written in a book that can then be read to convince the

“verifier” of the validity of the argument.

A more general way of communicating a proof is based on the concept of

interaction, and consists of explaining the proof to some recipients.

Take the teacher-student environment. The prover (that is,the teacher) can take

full advantage of the possibility of interacting with the verifiers (the students).

The latter may ask questions at crucial points of the explanation and receive

answers. This make the prover’s life much easier!

In a sense, writing down a proof that can be understood and checked by every

verifier without interaction is a much harder task because, in some sense, the

prover has to answer all possible questions in advance.

8

We will consider proving procedures, called interactive proof systems, in

which a prover wants to convince a verifier of the correctnessof a proof.

In typical complexity-theoretic fashion we shall view an interactive proof

system as a new method for recognising languages.

We will define the model, introduce some relevant complexityclasses and

then state an interesting result relating the complexity ofproblems defined

with respect to this model to standard TM complexity classes.

We will use interactive proof systems in the context of approximation

algorithms in the last weeks of this course.

9

Interactive proof systems

work tape

P V

work tape

input

P−to−V messages V−to−P messages

10

An interactive proof system consists of two TM’s,P andV . The two TM’s can

exchange messages. The exchange of messages takes place in the two

communication tapes labelledP → V messages andV → P messages. The first

tape is write-only forP and read-only forV . The second one is write-only forV

and read-only forP . Both TM’s have their own private working and input tapes.

Additional assumptions include:

1. V is DTM working in polynomial time.

2. P is DTM with no limitation in time or space.

3. P andV take turns in being active andV starts the computation. When a

machine is active, it can perform internal computation, read and write on the

correct tapes and send a message to the other machine by writing on the

appropriate communication tape.

4. Both the length and the number of messages exchanged betweenP andV

are bounded by suitable polynomials in the input length.

5. V can, during its turn, terminate the interactive computation by entering

either the accepting or the rejecting state.

11

Acceptance

The acceptance criterion is straightforward.(P, V) accepts (rejects) input

x if V halts in an accepting (rejecting) state. A languageL admits a

deterministic interactive proof if a verifierV exists such that

1. A proverP ∗ can be built such that(P ∗, V) accepts allx ∈ L.

2. For all proversP , (P, V) rejects allx ∈ L.

Denote by DIP the class of languages which admit a deterministic

interactive proof.

12

Interactive proof systems

P V

work tape

input

P−to−V messages V−to−P messages

work tape

Random bit

Generator

The notion of deterministic prover can be extended by allowingV to toss coinsa.

In this case we will require that for eachx ∈ L the prover can convince the

verifier with high probability, and, for allx 6∈ L, no prover can convince the

verifier thatx ∈ L with better than negligible probability.

Denote by IP the class of languages which admit an interactive proof.

aIn the simplest possible case this means thatV can make moves at random.

13

Main results

• DIP = NP (relatively simple)

• IP = PSPACE (very deep result, we will not prove it)

(NP⊆ DIP) (Sketch) We first need to “believe” thatL ∈ NP if and only if there is

a languageLc ∈ P and a polynomialp such that

L ≡ {x : ∃y(x, y) ∈ Lc ∧ |y| ≤ p(|x|)}

GivenL the prover will send toV the righty and the verifier will in polynomial

time check that(x, y) ∈ Lc ∧ |y| ≤ p(|x|).

(DIP⊆ NP) (Sketch) We need a non-deterministic simulation of the computation

of a given deterministic interactive proof system.

Let L ∈ DIP and let(P, V) be the proof system forL. Given an inputx, the

number of messages exchanged betweenP andV is polynomial. Thus an NTM

exists which alternatively simulatesV and guesses all possible messages ofP .

14

Appendix: One more Turing machine example

Definition of a Turing machine that takes as input a binary string

x1, . . . , xn and changesxn to its complement.

State 0 1 B

q0 (move right state) (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (flip state) (q1, 1, R) (q2, 0, R)

q2 (final state)

Exercise. Modify the previous table so that the algorithm correctly

computes the successor of the given binary numberx1, . . . , xn.

15

More Exercises

1. Complete the definition of the TMs for the string matching problem

that were sketched last time.

2. Write a pseudo-code description of the algorithms implemented by

the TMs mentioned in the previous exercise.

3. Simulate the deterministic machine for the existence of avalid shift

problem onT = 1101 andP = 00.

16

