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(Minimal) Model Generation

Useful for several tasks:

• hardware and software verification

• fault analysis

• commonsense reasoning

• . . .

They have been investigated for many logics.
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Minimality Criteria

Several minimality criteria has already been considered:

• domain minimality

• minimisation of a certain set of predicates

• minimal Herbrand models

Aims
To propose a new minimality criterion for modal logics that

• takes in consideration the semantics of models

• is generic enough to be applied to a variety of modal logics

To propose a tableau calculus for the generation of these minimal models
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Modal Logics

Syntax

φ = > | ⊥ | pi | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈Ri〉φ | [Ri]φ | 〈U〉φ | [U ]φ

Semantics, M = (W, {R1, . . . ,Rn},V)

M, u 6|= ⊥ M, u |= >
M, u |= pi iff pi ∈ V(u)

M, u |= ¬φ iff M, u 6|= φ

M, u |= φ1 ∨ φ2 iff M, u |= φ1 or M, u |= φ2

M, u |= φ1 ∧ φ2 iff M, u |= φ1 and M, u |= φ2

M, u |= [Ri]φ iff for every v ∈ W if (u, v) ∈ Ri then M, v |= φ

M, u |= 〈Ri〉φ iff there is a v ∈ W such that (u, v) ∈ Ri and M, v |= φ

M, u |= [U ]φ iff for every v ∈ W M, v |= φ

M, u |= 〈U〉φ iff there is a v ∈ W such that M, v |= φ
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Why a New Minimality Criterion?
Domain minimal models

Advantages:

• models with the smallest domain

• finite models for logics with the finite model property

Disadvantages:

• models can be counter-intuitive

• hard to achieve minimal model completeness

〈has father〉p

{p}

has father
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Why a New Minimality Criterion? (cont’d)

Minimal Herbrand models

Advantages:

• minimisation of relations and atoms

• comparison of atoms between the same world in different models

Disadvantages:

• the criterion is syntactic

• minimal models can be infinite

23> in a transitive and reflexive frame
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Subset-Simulation Relation S⊆

Relation between nodes of two models M = (W, {R1, . . . ,Rn},V)
and M′ = (W ′, {R1, . . . ,Rn},V ′) s.t.

1 the subset relationship holds (V(u) ⊆ V ′(u′))

2 successor in the first model
⇒ successor in the second model

3 1 and 2 hold for the successors of point 2

{q}

{p}

{q, t}

{q, s}

{p, t}

{s}

Full Subset-Simulation: for all u ∈ W there exists some u′ ∈ W ′ s.t. uS⊆u′.

Maximal Subset-Simulation: S⊆ maximal if there is no S′⊆ s.t. S⊆ ⊂ S′⊆.

If there is a full and maximal subset-simulation from M to M′, then M is
subset-simulated by M′, or M′ subset-simulates M.
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Models Minimal Modulo Subset-Simulation
Subset-simulation is

• reflexive

• transitive

⇒ a preorder

Minimal models are the minimal elements of the preorder.

∅

{p}

{p, q}

{p}

{p, q, s}

{p, q}

∅

{p, q} {s, t}

Minimal models

F. Papacchini, R. A. Schmidt FroCoS’13 September 20, 2013 8 / 19



Models Minimal Modulo Subset-Simulation
Subset-simulation is

• reflexive

• transitive
⇒ a preorder

Minimal models are the minimal elements of the preorder.

∅

{p}

{p, q}

{p}

{p, q, s}

{p, q}

∅

{p, q} {s, t}

Minimal models

F. Papacchini, R. A. Schmidt FroCoS’13 September 20, 2013 8 / 19



Models Minimal Modulo Subset-Simulation
Subset-simulation is

• reflexive

• transitive
⇒ a preorder

Minimal models are the minimal elements of the preorder.

∅

{p}

{p, q}

{p}

{p, q, s}

{p, q}

∅

{p, q} {s, t}

Minimal models

F. Papacchini, R. A. Schmidt FroCoS’13 September 20, 2013 8 / 19



Models Minimal Modulo Subset-Simulation
Subset-simulation is

• reflexive

• transitive
⇒ a preorder

Minimal models are the minimal elements of the preorder.

∅

{p}

{p, q}

{p}

{p, q, s}

{p, q}

∅

{p, q} {s, t}

Minimal models

F. Papacchini, R. A. Schmidt FroCoS’13 September 20, 2013 8 / 19



Too Many Minimal Models! – Symmetry Classes

As subset-simulation is not a partial order

• there exist symmetry classes of minimal models

• symmetric minimal models are not equivalent

• a symmetry class can have infinitely many minimal models

How can we make the minimality criterion stricter?
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Refining Symmetric Models – Simulation
Simulation is as subset-simulation except for the condition V(u) = V ′(u′).

The use of simulation among symmetric minimal models allows to

• reduce the number of minimal models

• recognise bisimilar models

∅

{p}

{p}

Symmetric w.r.t. subset-simulation:

The right model is simulated by the left model, but not the other way around:

∅

{p}

{p}
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Properties of the Minimality Criterion

• applied to the graph representation of models (syntax independent)

• loop free models are preferred

• minimisation of the content of worlds

• suitable for many non-classical logics
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Tableau Calculus

Input: a modal formula in negation normal form.

Selection-based resolution:

• closure rule

• removes negative information from disjunctions

(SBR)
u : p1 . . . u : pn u : ¬p1 ∨ . . . ∨ ¬pn ∨ Φ+

α

u : Φ+
α

Lazy clausification:

• avoids preprocessing steps

• can result in less inferences

(α)
u : (φ1 ∧ . . . ∧ φn) ∨ Φ+

α

u : φ1 ∨ Φ+
α

...
u : φn ∨ Φ+

α

Φ+
α : a disjunction where no disjunct is of the form ¬pi.
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Tableau Calculus (cont’d)

Complement splitting:

• variation of the standard β rule

• detects trivially non-minimal models

(β)
u : A ∨ Φ+

u : A u : Φ+

u : neg(Φ+)

A ::= p | 〈Ri〉φ | [Ri]φ
neg(Φ+) = ¬p1 ∧ . . . ∧ ¬pn

Expansion of diamond formulae:

(3)
u : 〈Ri〉φ

(u, u1) : Ri . . . (u, un) : Ri (u, v) : Ri

u1 : φ un : φ v : φ

v is a fresh new world

Expansion of box formulae: the standard 2 rule

Φ+: a disjunction where no disjunct is of the form ¬pi or is a conjunction.
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Properties of the Tableau Calculus

The calculus is

• refutationally sound and complete

• minimal model complete (generates all minimal models)

But it is not minimal model sound (generates also non-minimal models)!
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Minimal Model Soundness

Idea: incremental generation of models

Expansion strategy: the left most branch with the least number of worlds

Subset-simulation test:

• early closure of “non-minimal” branches

• backward closure of branches - minimal model refining

The resulting calculus is minimal model sound and complete
⇒ all and only minimal models are generated.
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Subset-Simulation Test

Early closure of “non-minimal” branches

A partial model M subset-simulates an extracted model M′, but not the other
way around.

• M is already not minimal

• no expansion of M can be minimal

⇒ close the branch from which M is extracted
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Subset-Simulation Test (cont’d)

Backward closure of branches - minimal model refining

M = newly extracted model, S = current set of minimal models.

Compare M with all M′ ∈ S, close branches accordingly and refine S.

• M is not minimal

– close the branch from which M was extracted

• for all M′ ∈ S s.t. M′ subset-simulates M, but no the other way around

– remove all M′ from S
– close the branches from which all M′ were extracted
– add M to S

• for all M′ ∈ S s.t. M′ subset-simulates M, and M subset-simulates M′

– check for simulation
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Extending the Calculus

Structural rules for frame properties (reflexivity, transitivity, . . . )

(4)
(u, v) : Ri (v,w) : Ri

(u,w) : Ri

Rules for universal modalities (〈U〉 and [U ])

(〈U〉) u : 〈U〉φ
u1 : φ . . . un : φ v : φ

v is a fresh new world

Those extensions preserve minimal model soundness and completeness.
Termination depends on the extension (logic expressiveness).
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Conclusion and Further Work

• minimality modulo subset-simualtion is

– semantic (based on the graph representation)
– suitable for many non-classical logics

• the tableau calculus

– is minimal model sound and complete
– can be generalised to cover more expressive logics
– does not terminate for all the logics

• efficient implementation of the calculus

• study of reasonable restrictions for reducing the search space

– how to simplify the (3) rule?
– how to achieve termination for logics with the finite model property?

• generalise the minimality criterion to fragments of first-order logic
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