

Computing Minimal Models Modulo Subset-Simulation for Modal Logics

Fabio Papacchini Renate A. Schmidt

School of Computer Science The University of Manchester

September 20, 2013

(Minimal) Model Generation

Useful for several tasks:

- · hardware and software verification
- · fault analysis
- commonsense reasoning
- ...

They have been investigated for many logics.

Minimality Criteria

Several minimality criteria has already been considered:

- domain minimality
- minimisation of a certain set of predicates
- minimal Herbrand models

Minimality Criteria

Several minimality criteria has already been considered:

- domain minimality
- minimisation of a certain set of predicates
- minimal Herbrand models

Aims

To propose a new minimality criterion for modal logics that

- · takes in consideration the semantics of models
- is generic enough to be applied to a variety of modal logics

To propose a tableau calculus for the generation of these minimal models

Modal Logics

Syntax

$$\phi = \top \mid \bot \mid p_i \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \langle R_i \rangle \phi \mid [R_i] \phi \mid \langle \mathcal{U} \rangle \phi \mid [\mathcal{U}] \phi$$

Semantics,
$$M = (W, \{R_1, \dots, R_n\}, V)$$

 $M, u \not\models \bot$ $M, u \models \top$
 $M, u \models p_i$ iff $p_i \in V(u)$
 $M, u \models \neg \phi$ iff $M, u \not\models \phi$
 $M, u \models \phi_1 \lor \phi_2$ iff $M, u \models \phi_1$ or $M, u \models \phi_2$
 $M, u \models \phi_1 \land \phi_2$ iff $M, u \models \phi_1$ and $M, u \models \phi_2$
 $M, u \models [R_i] \phi$ iff for every $v \in W$ if $(u, v) \in R_i$ then $M, v \models \phi$
 $M, u \models \langle R_i \rangle \phi$ iff there is a $v \in W$ such that $(u, v) \in R_i$ and $M, v \models \phi$
 $M, u \models \langle U \rangle \phi$ iff there is a $v \in W$ such that $M, v \models \phi$

Why a New Minimality Criterion?

Domain minimal models

Advantages:

- models with the smallest domain
- finite models for logics with the finite model property

- models can be counter-intuitive
- hard to achieve minimal model completeness

Why a New Minimality Criterion?

Domain minimal models

Advantages:

- · models with the smallest domain
- finite models for logics with the finite model property

- models can be counter-intuitive
- hard to achieve minimal model completeness

Why a New Minimality Criterion? (cont'd)

Minimal Herbrand models

Advantages:

- minimisation of relations and atoms
- comparison of atoms between the same world in different models

- the criterion is syntactic
- minimal models can be infinite

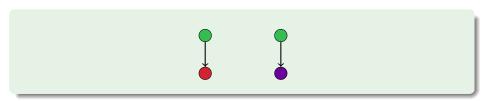
Why a New Minimality Criterion? (cont'd)

Minimal Herbrand models

Advantages:

- minimisation of relations and atoms
- comparison of atoms between the same world in different models

- the criterion is syntactic
- minimal models can be infinite



Why a New Minimality Criterion? (cont'd)

Minimal Herbrand models

Advantages:

- minimisation of relations and atoms
- comparison of atoms between the same world in different models

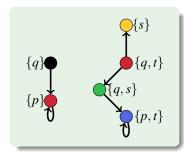
Disadvantages:

- the criterion is syntactic
- minimal models can be infinite

□◇⊤ in a transitive and reflexive frame

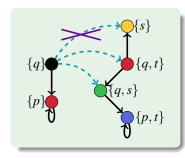
Relation between nodes of two models $M = (W, \{R_1, \dots, R_n\}, V)$ and $M' = (W', \{R_1, \dots, R_n\}, V')$ s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



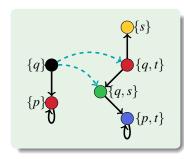
Relation between nodes of two models $M = (W, \{R_1, \dots, R_n\}, V)$ and $M' = (W', \{R_1, \dots, R_n\}, V')$ s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



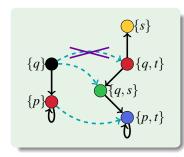
Relation between nodes of two models $M=(W,\{R_1,\ldots,R_n\},V)$ and $M'=(W',\{R_1,\ldots,R_n\},V')$ s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



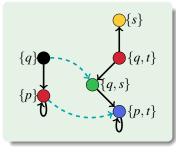
Relation between nodes of two models $M=(W,\{R_1,\ldots,R_n\},V)$ and $M'=(W',\{R_1,\ldots,R_n\},V')$ s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



Relation between nodes of two models $M = (W, \{R_1, \dots, R_n\}, V)$ and $M' = (W', \{R_1, \dots, R_n\}, V')$ s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2

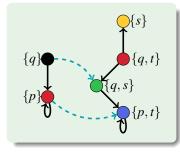


Full Subset-Simulation: for all $u \in W$ there exists some $u' \in W'$ s.t. $uS \subseteq u'$.

Maximal Subset-Simulation: $S\subseteq$ maximal if there is no $S'\subseteq$ s.t. $S\subseteq\subset S'\subseteq$.

Relation between nodes of two models $M = (W, \{R_1, \dots, R_n\}, V)$ and $M' = (W', \{R_1, \dots, R_n\}, V')$ s.t.

- 1 the subset relationship holds $(V(u) \subseteq V'(u'))$
- 2 successor in the first model⇒ successor in the second model
- 3 1 and 2 hold for the successors of point 2



Full Subset-Simulation: for all $u \in W$ there exists some $u' \in W'$ s.t. $uS \subset u'$.

Maximal Subset-Simulation: $S\subseteq$ maximal if there is no $S'\subseteq$ s.t. $S\subseteq\subset S'\subseteq$.

If there is a full and maximal subset-simulation from M to M', then M is subset-simulated by M', or M' subset-simulates M.

Subset-simulation is

- reflexive
- transitive

Subset-simulation is

reflexive

a preorder

transitive

Subset-simulation is

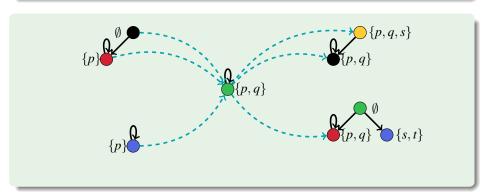
reflexive

 \Rightarrow

a preorder

transitive

Minimal models are the minimal elements of the preorder.



Subset-simulation is

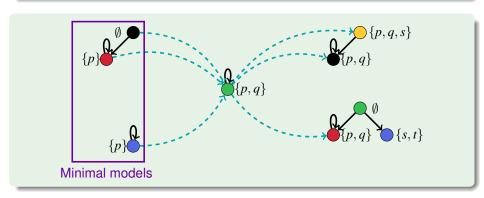
reflexive

 \Rightarrow

a preorder

transitive

Minimal models are the minimal elements of the preorder.



Too Many Minimal Models! - Symmetry Classes

As subset-simulation is not a partial order

- there exist symmetry classes of minimal models
- symmetric minimal models are not equivalent
- a symmetry class can have infinitely many minimal models

Too Many Minimal Models! – Symmetry Classes

As subset-simulation is not a partial order

- there exist symmetry classes of minimal models
- symmetric minimal models are not equivalent
- a symmetry class can have infinitely many minimal models

How can we make the minimality criterion stricter?

Refining Symmetric Models – Simulation

Simulation is as subset-simulation except for the condition V(u) = V'(u').

The use of simulation among symmetric minimal models allows to

- reduce the number of minimal models
- · recognise bisimilar models

Symmetric w.r.t. subset-simulation:

The right model is simulated by the left model, but not the other way around:

Properties of the Minimality Criterion

- applied to the graph representation of models (syntax independent)
- loop free models are preferred
- minimisation of the content of worlds
- · suitable for many non-classical logics

Tableau Calculus

Input: a modal formula in negation normal form.

Tableau Calculus

Input: a modal formula in negation normal form.

Selection-based resolution:

- closure rule
- removes negative information from disjunctions

$$(SBR) \xrightarrow{u:p_1 \ldots u:p_n} u:\neg p_1 \vee \ldots \vee \neg p_n \vee \Phi_{\alpha}^+$$
$$u:\Phi_{\alpha}^+$$

 Φ_{α}^{+} : a disjunction where no disjunct is of the form $\neg p_{i}$.

Tableau Calculus

Input: a modal formula in negation normal form.

Selection-based resolution:

- closure rule
- removes negative information from disjunctions

$$(SBR) \xrightarrow{u: p_1 \dots u: p_n} u: \neg p_1 \vee \dots \vee \neg p_n \vee \Phi_{\alpha}^+$$
$$u: \Phi_{\alpha}^+$$

Lazy clausification:

- avoids preprocessing steps
- · can result in less inferences

$$(\alpha) \frac{u : (\phi_1 \wedge \ldots \wedge \phi_n) \vee \Phi_{\alpha}^+}{u : \phi_1 \vee \Phi_{\alpha}^+}$$

$$\vdots$$

$$u : \phi_n \vee \Phi_{\alpha}^+$$

 Φ_{α}^{+} : a disjunction where no disjunct is of the form $\neg p_{i}$.

Tableau Calculus (cont'd)

Complement splitting:

- variation of the standard β rule
- · detects trivially non-minimal models

$$(\beta) \begin{array}{c|c} u : \mathcal{A} \vee \Phi^+ \\ \hline u : \mathcal{A} & u : \Phi^+ \\ u : neg(\Phi^+) \end{array}$$

$$\mathcal{A} ::= p \mid \langle R_i \rangle \phi \mid [R_i] \phi$$

$$neg(\Phi^+) = \neg p_1 \wedge \ldots \wedge \neg p_n$$

 Φ^+ : a disjunction where no disjunct is of the form $\neg p_i$ or is a conjunction.

Tableau Calculus (cont'd)

Complement splitting:

- variation of the standard β rule
- · detects trivially non-minimal models

$$(\beta) \begin{array}{c|c} u: \mathcal{A} \vee \Phi^+ \\ \hline u: \mathcal{A} & u: \Phi^+ \\ u: \mathit{neg}(\Phi^+) \end{array}$$

$$\mathcal{A} ::= p \mid \langle R_i \rangle \phi \mid [R_i] \phi$$

$$neg(\Phi^+) = \neg p_1 \wedge \ldots \wedge \neg p_n$$

Expansion of diamond formulae:

$$(\diamondsuit) \frac{u : \langle R_i \rangle \phi}{\begin{array}{c|c} (u, u_1) : R_i & \dots & (u, u_n) : R_i & (u, v) : R_i \\ u_1 : \phi & u_n : \phi & v : \phi \end{array}}$$

v is a fresh new world

 Φ^+ : a disjunction where no disjunct is of the form $\neg p_i$ or is a conjunction.

Tableau Calculus (cont'd)

Complement splitting:

- variation of the standard β rule
- · detects trivially non-minimal models

$$(\beta) \begin{array}{c|c} u: \mathcal{A} \vee \Phi^+ \\ \hline u: \mathcal{A} & u: \Phi^+ \\ u: \mathit{neg}(\Phi^+) \end{array}$$

$$\mathcal{A} ::= p \mid \langle R_i \rangle \phi \mid [R_i] \phi$$

$$neg(\Phi^+) = \neg p_1 \wedge \ldots \wedge \neg p_n$$

Expansion of diamond formulae:

$$(\diamondsuit) \xrightarrow{\begin{array}{c|c} u : \langle R_i \rangle \phi \\ \hline (u, u_1) : R_i & \dots & (u, u_n) : R_i & (u, v) : R_i \\ u_1 : \phi & u_n : \phi & v : \phi \end{array}}$$

v is a fresh new world

Expansion of box formulae: the standard \square rule

 Φ^+ : a disjunction where no disjunct is of the form $\neg p_i$ or is a conjunction.

Properties of the Tableau Calculus

The calculus is

- · refutationally sound and complete
- minimal model complete (generates all minimal models)

Properties of the Tableau Calculus

The calculus is

- · refutationally sound and complete
- minimal model complete (generates all minimal models)

But it is not minimal model sound (generates also non-minimal models)!

Minimal Model Soundness

Idea: incremental generation of models

Expansion strategy: the left most branch with the least number of worlds

Subset-simulation test:

- · early closure of "non-minimal" branches
- backward closure of branches minimal model refining

Minimal Model Soundness

Idea: incremental generation of models

Expansion strategy: the left most branch with the least number of worlds

Subset-simulation test:

- early closure of "non-minimal" branches
- backward closure of branches minimal model refining

The resulting calculus is minimal model sound and complete \Rightarrow all and only minimal models are generated.

Subset-Simulation Test

Early closure of "non-minimal" branches

A partial model M subset-simulates an extracted model M', but not the other way around.

- *M* is already not minimal
- no expansion of M can be minimal
 - \Rightarrow close the branch from which M is extracted

Backward closure of branches - minimal model refining

M = newly extracted model, S = current set of minimal models.

- M is not minimal
 - close the branch from which M was extracted
- for all $M' \in S$ s.t. M' subset-simulates M, but no the other way around
 - remove all M' from S
 - close the branches from which all M' were extracted
 - add M to S
- for all $M' \in S$ s.t. M' subset-simulates M, and M subset-simulates M'
 - check for simulation

Backward closure of branches - minimal model refining

M = newly extracted model, S = current set of minimal models.

- M is not minimal
 - close the branch from which M was extracted
- for all $M' \in S$ s.t. M' subset-simulates M, but no the other way around
 - remove all M' from S
 - close the branches from which all M' were extracted
 - add M to S
- for all $M' \in S$ s.t. M' subset-simulates M, and M subset-simulates M'
 - check for simulation

Backward closure of branches - minimal model refining

M = newly extracted model, S = current set of minimal models.

- M is not minimal
 - close the branch from which M was extracted
- for all $M' \in S$ s.t. M' subset-simulates M, but no the other way around
 - remove all M' from S
 - close the branches from which all M' were extracted
 - add M to S
- for all $M' \in S$ s.t. M' subset-simulates M, and M subset-simulates M'
 - check for simulation

Backward closure of branches - minimal model refining

M = newly extracted model, S = current set of minimal models.

- M is not minimal
 - close the branch from which M was extracted
- for all $M' \in S$ s.t. M' subset-simulates M, but no the other way around
 - remove all M' from S
 - close the branches from which all M' were extracted
 - add M to S
- for all $M' \in S$ s.t. M' subset-simulates M, and M subset-simulates M'
 - check for simulation

Extending the Calculus

Structural rules for frame properties (reflexivity, transitivity, ...)

(4)
$$\frac{(u,v):R_i}{(u,w):R_i} \frac{(v,w):R_i}{(u,w):R_i}$$

Rules for universal modalities ($\langle \mathcal{U} \rangle$ and $[\mathcal{U}]$)

$$(\langle \mathcal{U} \rangle) \frac{u : \langle \mathcal{U} \rangle \phi}{u_1 : \phi \mid \dots \mid u_n : \phi \mid v : \phi}$$

v is a fresh new world

Extending the Calculus

Structural rules for frame properties (reflexivity, transitivity, ...)

(4)
$$\frac{(u,v):R_i}{(u,w):R_i}$$

Rules for universal modalities ($\langle \mathcal{U} \rangle$ and $[\mathcal{U}]$)

$$(\langle \mathcal{U} \rangle) \xrightarrow{u : \langle \mathcal{U} \rangle \phi} \frac{u : \langle \mathcal{U} \rangle \phi}{u_1 : \phi \mid \dots \mid u_n : \phi \mid v : \phi}$$

v is a fresh new world

Those extensions preserve minimal model soundness and completeness. Termination depends on the extension (logic expressiveness).

Conclusion and Further Work

- minimality modulo subset-simualtion is
 - semantic (based on the graph representation)
 - suitable for many non-classical logics
- the tableau calculus
 - is minimal model sound and complete
 - can be generalised to cover more expressive logics
 - does not terminate for all the logics

Conclusion and Further Work

- minimality modulo subset-simualtion is
 - semantic (based on the graph representation)
 - suitable for many non-classical logics
- the tableau calculus
 - is minimal model sound and complete
 - can be generalised to cover more expressive logics
 - does not terminate for all the logics
- efficient implementation of the calculus
- study of reasonable restrictions for reducing the search space
 - how to simplify the (♦) rule?
 - how to achieve termination for logics with the finite model property?
- generalise the minimality criterion to fragments of first-order logic