
Parity Games on Temporal Graphs

Pete Austin[0000−0003−0238−8662], Sougata Bose[0000−0003−3662−3915], and
Patrick Totzke[0000−0001−5274−8190]

University of Liverpool, UK

Abstract. Temporal graphs are a popular modelling mechanism for dy-
namic complex systems that extend ordinary graphs with discrete time.
Simply put, time progresses one unit per step and the availability of
edges can change with time.
We consider the complexity of solving ω-regular games played on tem-
poral graphs where the edge availability is ultimately periodic and fixed
a priori.
We show that solving parity games on temporal graphs is decidable in
PSPACE, only assuming the edge predicate itself is in PSPACE. A match-
ing lower bound already holds for what we call punctual reachability
games on static graphs, where one player wants to reach the target at a
given, binary encoded, point in time. We further study syntactic restric-
tions that imply more efficient procedures. In particular, if the edge pred-
icate is in P and is monotonically increasing for one player and decreasing
for the other, then the complexity of solving games is only polynomially
increased compared to static graphs.

Keywords: Temporal graphs · Reachability Games · Complexity · Timed
automata

1 Introduction

Temporal graphs are graphs where the edge relation changes over time. They
are often presented as a sequence G0, G1, . . . of graphs over the same set of
vertices. We find it convenient to define them as pairs G = (V,E) consisting
of a set V of vertices and associated edge availability predicate E : V 2 → 2N

that determines at which integral times a directed edge can be traversed. This
model has been used to analyse dynamic networks and distributed systems in dy-
namic topologies, such as gossiping and information dissemination [36,24]. There
is also a large body of work that considers temporal generalisations of various
graph-theoretic notions and properties [32,14,10]. Related algorithmic questions
include graph colouring [30], exploration [12], travelling salesman [33], maxi-
mum matching [29], and vertex-cover [2]. The edge relation is often deliberately
left unspecified and sometimes only assumed to satisfy some weak assumptions
about connectedness, frequency, or fairness to study the worst or average cases
in uncontrollable environments. Depending on the application, one distinguishes
between “online” questions, where the edge availability is revealed stepwise, as
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opposed to the “offline” variant where all is given in advance. We refer to [17,31]
for overviews of temporal graph theory and its applications.

Two player zero-sum verification games on directed graphs play a central role
in formal verification, specifically the reactive synthesis approach [34]. Here, a
controllable system and an antagonistic environment are modeled as a game in
which two opposing players jointly move a token through a graph. States are
either owned by Player 1 (the system) or Player 2 (the environment), and the
owner of the current state picks a valid successor. Such a play is won by Player 1
if, and only if, the constructed path satisfies a predetermined winning condition
that models the desired correctness specification. The winning condition is of-
ten given either in a temporal logic such as Linear Temporal Logic (LTL) [35],
or directly as ω-automaton whose language is the set of infinite paths consid-
ered winning for Player 1. The core algorithmic problem is solving games: to
determine which player has a strategy to force a win, and if so, how.

Determining the complexity of solving games on static graphs has a long
history and continues to be an active area of research. We refer to [1,13] for
introductions on the topic and recall here only that solving reachability games,
where Player 1 aims to eventually reach a designated target state, is complete
for polynomial time. The precise complexity of solving parity games is a long-
standing open question. It is known to be in UP∩coUP [22], and so in particular in
NP and coNP, and recent advances have led to quasi-polynomial time algorithms
[6,23,26,9,25].

Related Work. Periodic temporal graphs were first studied by Floccchini, Mans,
and Santoro in [14], where they show polynomial bounds on the length of ex-
plorations (paths covering all vertices). Recently, De Carufel, Flocchini, Santoro,
and Simard [10] study Cops & Robber games on periodic temporal graphs. They
provide an algorithm for solving one-cop games that is only quadratic in the
number of vertices and linear in the period.

Games on temporal graphs with maximal age, or period of some absolute
value K given in binary are games on exponentially succinctly presented arenas.
Unfolding them up to time K yields an ordinary game on the exponential sized
graph which allows to transfer upper bounds, that are not necessarily optimal.
In a similar vein, Avni, Ghorpade, and Guha [4] have recently introduced types
of games on exponentially succinct arenas called pawn games. Similar to our
results, their findings provide improved PSPACE upper bounds for reachability
games.

Parity games on temporal graphs are closely related to timed-parity games,
which are played on the configuration graphs of timed automata [3]. However, the
time in temporal graphs is discrete as opposed to the continuous time semantics
in timed automata. Solving timed parity games is complete for EXP[28,8] and
the lower bound already holds for reachability games on timed automata with
only two clocks [21]. Unfortunately, a direct translation of (games on) temporal
graphs to equivalent timed automata games requires at least two clocks: one to
hold the global time used to check the edge predicate and one to ensure that
time progresses one unit per step.
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Contributions. We study the complexity of solving parity games on temporal
graphs. As a central variant of independent interest are what we call punctual
reachability games, that are played on a static graph and player wants to reach a
target vertex at a given binary encoded time. We show that solving such games
is already hard for PSPACE, which provides a lower bound for all temporal graph
games we consider.

As our second, and main result, we show how to solve parity games on (ul-
timately) periodic temporal graphs. The difficulty to overcome here is that the
period may be exponential in the number of vertices and thus a naïvely solv-
ing the game on the unfolding only yields algorithms in exponential space. Our
approach relies on the existence of polynomially sized summaries that can be
verified in PSPACE using punctual reachability games.

We then provide a sufficient syntactic restriction that avoids an increased
complexity for game solving. In particular, if the edge predicate is in polynomial
time and is monotonically increasing for one player and decreasing for the other,
then the cost of solving reachability or parity games on temporal graphs increases
only polynomially in the number of vertices compared to the cost of solving these
games on static graphs.

None of our upper bounds rely on any particular representation of the edge
predicate. Instead, we only require that the representation ensures that checking
membership (if an edge is traversable at a given time) has suitably low com-
plexity. That is, our approach to solve parity games only requires that the edge
predicate is in PSPACE, and polynomial-time verifiable edge predicates suffice
to derive P-time upper bounds for monotone reachability games. These condi-
tions are met for example if the edge predicate is defined as semilinear set given
as an explicit union of linear sets (NP in general and in P for singleton sets of
periods), or by restricted Presburger formulae: the quantifier-free fragment is in
P, the existential fragment is in NP but remains in P if the number of variables
is bounded [37]. See for instance [15] and contained references.

The rest of the paper is structured as follows. We recall the necessary no-
tations in Section 2 and then discuss reachability games in Section 3. Section 4
presents the main construction for solving parity games and finally, in Section 5,
we discuss improved upper bounds for monotone temporal graphs.

2 Preliminaries

Definition 1 (Temporal Graphs). A temporal graph G = (V,E) is a directed
graph where V are vertices and E : V 2 → 2N is the edge availability relation that
maps each pair of vertices to the set of times at which the respective directed edge
can be traversed. If i ∈ E(s, t) we call t an i-successor of s and write s

i−→ t.
The horizon of a temporal graph is h(G) = sups,t∈V (E(s, t)), the largest

finite time at which any edge is available, or ∞ if no such finite time exists.
A temporal graph is finite if h(G) ∈ N i.e., every edge eventually disappears
forever. A temporal graph is periodic with period K ∈ N if for all nodes s, t ∈ V
it holds that E(s, t) = E(s, t) +K · N. We call G static if it has period 1.
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Naturally, one can unfold a temporal graph into its expansion up to some
time T ∈ N∪{∞}, which is the graph with nodes V ×{0, 1, . . . , T} and directed
edges (s, i) → (t, i+ 1) iff i ∈ E(s, t).

In order for algorithmic questions to be interesting, we assume that temporal
graphs are given in a format that is more succinct than the expansion up to their
horizon or period. We only require that the representation ensures that checking
if an edge is traversable at a given time can be done reasonably efficiently.

We will henceforth use formulae in the existential fragment of Presburger
arithmetic, the first-order theory over natural numbers with equality and addi-
tion. That is, the ∃PA formula Φs,t(x) with one free variable x represents the set
of times at which an edge from s to t is available as E(s, t) = {n | Φs,t(n) ≡ true}.
We use common syntactic sugar including inequality and multiplication with (bi-
nary encoded) constants. For instance, Φs,t(x)

def
= 5 ≤ x∧x ≤ 10 means the edge

is available at times {5, 6, 7, 8, 9, 10}; and Φs,t(x)
def
= ∃y.(x = y · 7) ∧ ¬(x ≤ 100)

means multiples of 7 greater than 100.

Definition 2 (Parity Games). A parity game is a zero-sum game played by
two opposing players on a directed graph. Formally, the game is given by a game
graph G = (V,E), a partitioning V = V1 ⊎ V2 of vertices into those owned by
Player 1 and Player 2 respectively, and a colouring col : V → C of vertices into
a finite set C ⊊ N of colours.

The game starts with a token on an initial vertex s0 ∈ V and proceeds in turns
where in round i, the owner of the vertex occupied by the token moves it to some
successor. This way both players jointly agree on an infinite path ρ = s0s1 . . .
called a play. A play is winning for Player 1 if max{c | ∀i∃j. col(sj) = c}, the
maximum colour seen infinitely often, is even.

A strategy for Player i is a recipe for how to move. Formally, it is a function
σi : V

∗Vi → V from finite paths ending in a vertex s in Vi to some successor. We
call σ positional if σ(πs) = σ(π′s) for any two prefixes π, π′ ∈ V ∗. A strategy
is winning from vertex s if Player i wins every play that starts in vertex s and
during which all decisions are made according to σ.

We call a vertex s winning for Player i if there exists a winning strategy from
s, and call the subset of all such vertices the winning region for that player.
Parity games enjoy the following property (See [13, Theorem 15] for details).

Proposition 1. Parity games are uniformly positionally determined: For every
game (V =V1⊎V2, E, col) there is a pair σ1, σ2 of positional strategies so that σi

is winning for Player i from every vertex in the winning region of Player i.

A temporal parity game is a parity game played on the infinite expansion of
a temporal graph G = (V,E), where the ownership and colouring of vertices are
given with respect to the underlying directed graph V =V1⊎V2 and col : V → C.
The ownership and colouring are lifted to the expansion so that vertices in Vi×N
are owned by Player i and vertex (s, n) has colour col(s).
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Fig. 1: An example of a temporal parity game. Player 1 controls the diamond
vertices V1 = {s, v} and Player 2 controls square vertices V2 = {r, t, u, w}. Edge
labels are Presburger formulae constraints denoting when an edge is available;
edges without constraints are always available. The grey label next to each node
denotes its colour. E.g., col(s) = 1 ∈ C = {1, 2, 3, 4}.

Example 1. Consider the temporal parity game shown in Fig. 1. We will draw
Player 1 states as diamond and those controlled by Player 2 as squares and
sometimes write modulo expressions to define the edge availability. For example,
the constraint on the edge from u to v can be written as the ∃PA-formula as
∃y.(x = 3y) ∨ (x = 3y + 1) and so this edge is available at times 0, 1, 3, 4, 6, . . . .
The temporal graph underlying this game has period 15.

Player 1 has a winning strategy starting from (s, i) in the expansion by
staying in state s until time i′ ≥ i with i′ ≡ 0 mod 5 and then following the
edge to (t, i′+1). If Player 2 ever chooses to move to r, he is trapped in an even-
coloured cycle; if he stays in t forever, then the resulting game sees only colour
2 and is losing for him. Otherwise, if the game continues at (s, i′ + 2), Player 1
repeats as above (and wins plays that see both states s and t. The example
shows that Player 1 s strategies depend on the time and are not positional in
the vertices alone, even if the winning set has period 1. Indeed, the only possible
vertex-positional strategy (cycle in s) is losing.

The vertices {s, t} shaded in blue represent the vertex from which Player 1
can win starting at any time, following the strategy described above. From the
vertices shaded in red, Player 2 can win starting at certain times. For exam-
ple, Player 2 has a winning strategy from (u, i) if, and only if, i ≡ 0 mod 3
or i ≡ 1 mod 3 by moving to (v, i + 1). Notice that this edge is not available,
and thus Player 2 is forced to move to t at times x ≡ 2 mod 3. In partic-
ular therefore, Player 1 wins from (v, 0). The winning region for Player 1 is
{(s, k), (t, k), (r, k), (u, 3k + 2), (v, 3k), (w, 3k + 1) | k ∈ N}.

The algorithmic question we consider is determining the set of vertices from
which Player 1 wins starting at time 0.
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3 Reachability Games

We discuss a variant of temporal games that turns out to be central both for
upper and lower bounds for solving games on temporal graphs.

We call these punctual reachability games, which are played on a static graph
and Player 1 aims to reach the target precisely at a target time.

Definition 3. A punctual reachability game G = (V,E, s0, F ) is a game played
on a static graph with vertices V = V1 ⊎ V2, edges E ⊆ V 2, an initial state s0
and set of target vertices F ⊆ V . An additional parameter is a target time T ∈ N
given in binary. Player 1 wins a play if and only if a vertex in F is reached at
time T .

Punctual reachability games are really just a reformulation of the membership
problem for alternating finite automata (AFA) [7] over a unary input alphabet.
Player 1 wins the punctual reachability game with target T if, and only if, the
word aT is accepted by the AFA described by the game graph. Checking if a
given unary word aT is accepted by an AFA is complete for polynomial time if
T is given in unary [20]. We first observe that it is PSPACE-hard if T is given in
binary. We write in the terminology of punctual reachability games but the main
argument is by reduction from the emptiness problem for unary AFA, which is
PSPACE-compete [18,19]. We rely on the fact that the shortest word accepted
by an AFA is at most exponential in the number of states.

Lemma 1. Let G = (V,E, s0, F ) be a reachability game on a static graph. If
there exist T ∈ N so that Player 1 wins the punctual reachability game at target
time T , then there exists some such T ≤ 2|V |.

Proof. Assume towards contradiction that T ≥ 2|V | is the smallest number such
that Player 1 wins the punctual reachability game and consider some winning
strategy σ. For any time k ≤ T we can consider the set Sk ⊆ V of vertices
occupied on any branch of length k on σ. By the pigeonhole principle, we observe
k < k′ ≤ T with Sk = Sk′ , which allows to create a strategy σ′ that follows σ
until time k, then continues (and wins) according to σ as if it had just seen
a length k′ history leading to the same vertex. This shows that there exists a
winning strategy for target time T − (k−k′), which contradicts the assumption.

⊓⊔

A lower bound for solving punctual reachability games is now immediate.

Lemma 2. Solving punctual reachability games with target time T encoded in
binary is PSPACE-hard.

Proof. We reduce the non-emptiness problem of AFA over unary alphabets. In
our terminology this is the decision problem if, for a given a reachability game
G = (V,E, s0, F ) there exists some T ∈ N so that Player 1 wins the punctual
reachability game at target time T . This problem is PSPACE-complete [18].
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By Lemma 1, positive instances can be witnessed by a small target T ≤ 2|V |

and so we know that it is PSPACE-hard to determine the existence of such a
small target time that allows Player 1 to win.

Consider now the punctual reachability game G′ that extends G by a new
initial vertex s′0 that is owned by Player 1 and which has a self-loop as well as an
edge to the original initial vertex s0 with target time T ′ def

= 2|V |. In G′, Player 1
selects some number T ≤ T ′ by waiting in the initial vertex for T ′−T steps and
then starts the game G with the target time T . Therefore, Player 1 wins in G′

for target T ′ if, and only if, she wins for some T ≤ 2|V | in G. ⊓⊔

Corollary 1. Solving reachability games on finite temporal graphs is PSPACE-
hard.

Proof. We reduce the punctual reachability game with target T to an ordinary
reachability game on a finite temporal graph. This can be done by introducing
a new vertex u as the only target vertex, so that it is only reachable via edges
from vertices in F at time exactly T . That is E(s, u)

def
= {T} and E(s, t) = [0, T ]

for all s, t ∈ V \{u}. Now Player 1 wins the reachability game for target u if, and
only if, she wins the punctual reachability game with target F at time T . ⊓⊔

A matching PSPACE upper bound for solving punctual reachability games, as
well as reachability games on finite temporal graphs can be achieved by comput-
ing the winning region backwards as follows.1 For any game graph with vertices
V =V1⊎V2, set S ⊆ V and i ∈ {1, 2}, let Prei(S) ⊆ V denote the set of vertices
from which Player i can force to reach S in one step.

Prei(S)
def
= {v ∈ Vi | ∃(v, v′) ∈ E.v′ ∈ S} ∪ {v ∈ V1−i | ∀(v, v′) ∈ E.v′ ∈ S}

A straightforward induction on the duration T shows that Player i wins the
punctual reachability game with target time T from vertex s if, and only if
s ∈ PreTi (F ), the T -fold iteration of Prei applied to the target set F .

Notice that knowledge of Prei(S) is sufficient to compute Prek+1
i (S). By

iteratively unfolding the definition of Preki , we can compute PreT1 (F ) from
Pre01(F ) = F in polynomial space2. Together with Lemma 2 we conclude the
following.

Theorem 1. Solving punctual reachability games with target time T encoded in
binary is PSPACE-complete.

1 For readers familiar with reachability games, the notion Pre1(S) above is very similar
to, but not the same as the k-step attractor of S: The former contains states from
which Player 1 can force to see the target in exactly k steps, whereas the latter
contains those where the target is reachable in k or fewer steps.

2 To be precise, naïvely unfolding the definition requires O(T+|V |2) time, exponential
in (the binary encoded input) T , and O(|V |+log(T )) space to memorise the current
set Prek ⊆ V as well as the time k ≤ T in binary.
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The same approach works for reachability games on finite temporal graphs if
applied to the expansion up to horizon h(G), leading to the same time and space
complexity upper bounds. The only difference is that computing Prek1(F ×{T})
requires to check edge availability at time T − k.

Theorem 2. Solving reachability games on finite temporal graphs is PSPACE-
complete.

Proof. Consider a temporal game with vertices V =V1⊎V2, edges E : V 2 → 2N

target vertices F ⊆ V and where T = h(G) is the latest time an edge is available.
We want to check if starting in an initial state s0 at time 0, Player 1 can force
to reach F at time T . In other words, for the game played on the expansion up
to time T we want to decide if (s0, 0) is contained in PreT1 (F × {T}).

By definition of the expansion, we have Pre1(S ×{n}) ⊆ V ×{n− 1} for all
S ⊆ V and n ≤ T . Since we can check the availability of an edge at time n in
polynomial space, we can iteratively compute Pren1 (F×{T}) backwards, starting
with Pre01(F×{T}) = F×{T}, and only memorising the current iteration n ≤ T
and a set Wn ⊆ V representing Pren1 (F × {T}) = Wn × {T − n}. ⊓⊔

4 Parity Games

We consider Parity games played on periodic temporal graphs. As input we take
a temporal graph G = (V,E) with period K, a partitioning V =V1⊎V2 of the
vertices, as well as a colouring col : V → C that associates a colour out of a
finite set C ⊂ N of colours to every state.

It will be convenient to write col(π)
def
= max{col(si) | 0 ≤ i ≤ k} for the max-

imal colour of any vertex visited along a finite path π = (s0, 0)(s1, 1) . . . (sk, k).
The following relations Rσ

s capture the guarantees provided by a strategy σ if
followed for one full period from vertex s.

Definition 4. For a strategy σ and vertex s ∈ V define Rσ
s ⊆ V × C be the

relation containing (t, c) ∈ Rσ
s if, and only if, there exists a finite play π =

(s, 0) . . . (t,K) consistent with σ, that starts in s at time 0, ends in t at time K,
and the maximum colour seen on the way is col(π) = c. We call Rσ

s the summary
of s with respect to strategy σ.

A relation B ⊆ V × C is s-realisable if there is a strategy σ with B = Rσ
s .

Example 2. Consider the game in Fig. 2 where vertex u ∈ V2 has colour 2 and
all other vertices have colour 1. The graph has period K = 2. The relations
{(t, 1)} and {(t, 2), (t′, 2)} are s-realisable, as witnessed by the strategies σ(s) = t
and σ(s) = u), respectively. However, {(t, 2)} is not s-realisable as no Player 1
strategy guarantees to visit s then u then t.

Lemma 3. Checking s-realisability is in PSPACE. That is, one can verify in
polynomial space for a given temporal Parity game, state s ∈ V and relation
B ⊆ V × C whether B is s-realisable.
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Fig. 2: The game from Example 2. Labels on vertices and edges denote colours
and available times, respectively. The graph has period 2. In two rounds, Player 1
can force to end in t having seen colour 1, or in either t or t′ but having seen a
better colour 2.

Proof. We reduce checking realisability to solving a reachability game on a
temporal graph that is only polynomially larger. More precisely, given a game
G = (V,E, col) consider the game G′ = (V ′, E′, col′) over vertices V ′ def

= V × C
that keep track of the maximum colour seen so far. That is, the ownership
of vertices and colours are lifted directly as (s, c) ∈ V ′

1 ⇐⇒ s ∈ V1 and
col′(s, c)

def
= col(s), and for any i ∈ N, s, t, s0 ∈ V , c, d ∈ C, we let (t, d)

be an i-successor of (s, c) if, and only if, both t is an i-successor of s and
d = max{c, col(t)}.

Consider some relation B ⊆ V ×C. We have that B is s-realisable if, and only
if, Player 1 wins the punctual reachability game on G′ from vertex (s, col(s)) at
time 0, towards target vertices B ⊆ V ′ at target time K. Indeed, any winning
Player 1 strategy in this game witnesses that B is s-realisable and vice versa. By
Theorem 2, the existence of such a winning strategy can be verified in polynomial
space by backwards-computing the winning region. ⊓⊔

The following defines a small, and PSPACE-verifiable certificate for Player 1
to win the parity game on a periodic temporal graph.

Definition 5 (Certificates). Given temporal parity game (V,E, col) with pe-
riod K, a certificate for Player 1 winning the game from initial vertex s0 ∈ V is
a multigraph where the vertex set V ′ ⊆ V contains s0, and edges E′ ⊆ V ′×C×V ′

are labelled by colours, such that

1. For every s ∈ V ′, the set Post(s)
def
= {(t, c) | (s, c, t) ∈ E′} is s-realisable.

2. The maximal colour on every cycle reachable from s0 is even.

Notice that condition 1 implies that no vertex in a certificate is a deadlock.
A certificate intuitively allows to derive Player 1 strategies based on those wit-
nessing the realisability condition.

Example 3. Consider the game from Example 1 played on the temporal graph
with period 15. A certificate for Player 1 winning from state v at time 0 is
depicted in Fig. 3. Indeed, the Player 1 strategy mentioned in Example 1 (aim
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Fig. 3: A certificate that Player 1 wins the game in Example 1 from state v at
time 0.

to alternate between s and t) witnesses that Post(v) = {(s, 3), (t, 3), (r, 4)} is
v-realisable because it allows Player 1 to enforce that after K = 15 steps from
v, the game ends up in one of those states via paths whose colour is dominated
by col(v) = 3 or col(r) = 4.

Lemma 4. Player 1 wins the parity game on G from vertex s0 if, and only if,
there exists a certificate.

Proof. For the backward implication we argue that a certificate C allows to
derive a winning strategy for Player 1 in the parity game G. By the realisability
assumption (1), for each vertex s ∈ V there must exist a Player 1 strategy σs

with Rσs
s = Post(s) that tells her how to play in G for K rounds if the starting

time is a multiple of K. Moreover, suppose she plays according to σs for K
rounds and let t and c be the vertex reached and maximal colour seen on the
way. Then by definition of the summaries, (t, c) ∈ Rσs

s = Post(s) and so in the
certificate C there must be some edge s

c−→ t.
Suppose Player 1 continues to play in G like this forever: From time i ·K to

(i+1) ·K she plays according to some strategy σsi determined by the vertex si
reached at time i·K. Any consistent infinite play ρ in G, chosen by her opponent,
describes an infinite walk ρ′ in C such that the colour seen in any step i ∈ N
of ρ′ is precisely the dominant colour on ρ between rounds iK and (i + 1)K.
Therefore the dominant colours seen infinitely often on ρ and ρ′ are the same
and, by certificate condition (2) on the colouring of cycles, even. We conclude
that the constructed strategy for Player 1 is winning.

For the forward implication, assume that Player 1 wins the game on G from
vertex s at time 0. Since the game G is played on a temporal graph with period
K, its expansion up to time K − 1 is an ordinary parity game on a static graph
with vertices V ×{0, 1, . . . ,K−1} where the second component indicates the time
modulo K. Therefore, by positional determinacy of parity games (Proposition 1),
we can assume that Player 1 wins in G using a strategy σ that is itself periodic.
That is, σ(hv) = σ(h′v) for any two histories h, h′ of lengths |h| ≡ |h′| mod K.
Moreover, we can safely assume that σ is uniform, meaning that it is winning
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from any vertex (s, 0) for which a winning strategy exists. Such a strategy induces
a multigraph C = (V,E′) where the edge relation is defined by (s, c, t) ∈ E′ ⇐⇒
(t, c) ∈ Rσ

s . It remains to show the second condition for C to be a certificate,
namely that any cycle in C, reachable from the initial vertex s0, has an even
maximal colour. Suppose otherwise, that C contains a reachable cycle whose
maximal colour is odd. Then there must be play in G that is consistent with σ
and which sees the same (odd) colour infinitely often. But this contradicts the
assumption that σ was winning in G in the first place. ⊓⊔

Our main theorem is now an easy consequence of the existence of small
certificates.

Theorem 3. Solving parity games on periodic temporal graphs is PSPACE-complete.

Proof. Hardness already holds for reachability games Lemma 2. For the up-
per bound we show membership in NPSPACE and use Savitch’s theorem. By
Lemma 4 it suffices to guess and verify a candidate certificate C. These are by
definition polynomial in the number of vertices and colours in the given temporal
parity game. Verifying the cycle condition (2) is trivial in polynomial time and
verifying the realisability condition (1) is in PSPACE by Lemma 3. ⊓⊔

Remark 1. The PSPACE upper bound in Theorem 3 can easily be extended to
games on temporal graphs that are ultimately periodic, meaning that there exist
T,K ∈ N so that for all n ≥ T , s

n−→ t implies s
n+K−→ t. Such games can be

solved by first considering the periodic suffix according to Theorem 3 thereby
computing the winning region for Player 1 at time exactly T , and then solving
the temporal reachability game with horizon T .

5 Monotonicity

In this section, we consider the effects of monotonicity assumptions on the edge
relation with respect to time on the complexity of solving reachability games. We
first show that reachability games remain PSPACE-hard even if the edge relation
is decreasing (or increasing) with time. We then give a fragment for which the
problem becomes solvable in polynomial time.

Increasing and Decreasing temporal graphs: Let the edge between vertices
u, v ∈ V of a temporal graph be referred to as decreasing if u

i+1−→ v implies
u

i−→ v for all i ∈ N, i.e. edges can only disappear over time. Similarly, call the
edge increasing if for all i ∈ N we have that u i−→ v implies u

i+1−→ v; i.e. an edge
available at current time continues to be available in the future. A temporal
graph is decreasing (increasing) if all its edges are. We assume that the times
at which edge availability changes are given in binary. More specifically, every
edge is given as inequality constraint of the form Φu,v(x)

def
= x ≤ n (respectively

x ≥ n) for some n ∈ N.
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v w

⊤

⊥
x ≤ T − 1

x ≤ T + 1

Fig. 4: Reduction from a punctual reachability game to a reachability game on a
temporal graph that is finite and decreasing, see Theorem 4. Components added
are shown in red.

Although both restrictions imply that the graph is ultimately static, we ob-
serve that solving reachability games on such monotonically increasing or de-
creasing temporal graphs remains PSPACE-complete.

Theorem 4. Solving reachability and Parity games on decreasing (respectively
increasing) temporal graphs is PSPACE-complete.

Proof. The upper bound holds for parity games as the description of the tempo-
ral graph explicitly includes a maximal time T from which the graph becomes
static. One can therefore solve the Parity game for the static suffix graph (in
NP) and then apply the PSPACE procedure (Theorem 2) to solve for temporal
reachability towards the winning region at time T . Alternatively, the same upper
bound also follows from Theorem 3 and Remark 1.

For the lower bound we reduce from punctual reachability games which are
PSPACE-hard by Lemma 2. Consider a (static) graph G and a target time T ∈ N
given in binary. Without loss of generality, assume that the target vertex v has no
outgoing edges. We convert G into a temporal graph G′ with V ′ = V ∪{w,⊤,⊥},
V ′
1 = (V1\{v})∪{w}, V ′

2 = V ′\V ′
1 and new target ⊤. The vertex ⊥ is a sink state

and the original target vertex v is now controlled by Player 2. Edge availabilities
are v

x−→⊥ if x ≤ T − 1, v x−→ w if x ≤ T + 1, w x−→⊤ if x ≤ T + 1, and all
other edges disappear after time T +1. The constructed temporal graph is finite
and decreasing. See Fig. 4. The construction ensures that the only way to reach
⊤ is to reach v at time T , w at time T + 1 and take the edge from w to ⊤ at
time T +1. Player 1 wins in G′ if and only if she wins the punctual reachability
game on G.

A similar reduction works in the case of increasing temporal graphs by switch-
ing the ownership of vertices v and w. The vertex v, now controlled by Player 1
has the edge v

x−→ w at times x ≥ T and the edge v−→⊥ at all times. The
vertex w now controlled by Player 2 has the edge w−→⊤ available at all times
but the edge w

x−→⊥ becomes available at time x ≥ T + 2. ⊓⊔
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Declining and improving temporal games: We now consider the restriction where
all edges controlled by one player are increasing and those of the over player are
decreasing. Taking the perspective of the system Player 1, we call a game on
a temporal graph declining if all edges u−→ v with u ∈ V1 are decreasing and
all edges u−→ v with u ∈ V2 are increasing. Note that declining is a property
of the game and not the graph as the definition requires a distinction based on
ownership of vertices, which is specified by the game and not the underlying
graph. From now on, we refer to such games as declining temporal reachability
(or parity) games. Notice that Player 1 has fewer, and Player 2 has more choices
to move at later times. Analogously, call the game improving if the conditions are
reversed, i.e., all edges u−→ v with u ∈ V1 are increasing and all edges u−→ v
with u ∈ V2 are decreasing.

We show that declining (and improving) temporal reachability games can be
solved in polynomial time.

Theorem 5. Solving declining (respectively improving) temporal reachability games
is in P.

Proof. We first give the proof for declining games. Consider the reachability
game on the expansion with vertices V × N such that the target set is F × N.
For k ∈ N let Wk ⊆ V be the set of those vertices u such that Player 1 has a
winning strategy from (u, k). We first show that

Wi+1 ⊆ Wi (1)

For sake of contradiction, suppose there exists u ∈ Wi+1 \Wi. Let σ1
i+1 be a

(positional) winning strategy from (u, i+1) for Player 1 in the expansion. Since
u ̸∈ Wi, by positional determinacy of reachability games (Proposition 1), Player 2
has a winning strategy σ2

i from (u, i). Consider a strategy σ1
i for Player 1, such

that for all v ∈ V1, σ1
i (v, k)

def
= σ1

i+1(v, k + 1), for all k ≥ i. Similarly, let σ2
i+1

be the strategy for Player 2, such that for all v ∈ V2, σ2
i+1(v, k + 1) = σ2

i (v, k),
for all k ≥ i, Note that this is well defined because by definition of declining
games, i.e, v k+1−→ u implies v k−→ u for all v ∈ V1, and v

k−→ u implies v k+1−→ u, for
all v ∈ V2. Starting from the vertex (u, i+ 1), the pair of strategies (σ1

i+1, σ
2
i+1)

defines a unique play πi+1, which is winning for Player 1. Similarly, the pair of
strategies (σ1

i , σ
2
i ) define a play πi which is winning for Player 2 starting from

(u, i). However, the two plays visit the same set of states, particularly, (v, k) is
visited in πi if and only if (v, k+1) is visited in πi+1. Therefore, either both are
winning for Player 1 or both are losing for Player 2, which is a contradiction.
Let N ⊆ N be the set of times at which the graph changes, i.e.

N = {c | ∃Φu,v(x) = x ◁ c, where ◁ ∈ {≤,≥}}}

Let m def
= max(N) be the latest time any edge availability changes. We show that

Wm = Wk for all k ≥ m. To see this, note that Wm is equal to the winning
region for Player 1 in the (static) reachability game played on Gm = (V,Em),
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Algorithm 1 Algorithm for declining games with set of change times N and
m = max(N)

W ← Solve(Gm) ▷ Computes Player 1 winning region in Gm

while N ̸= ∅ do
n← max(N)
if (Pre1(W × {n}) = W then

N ← N \ n ▷ Accelerate to next change time
else

W ← Pre1(W )
N ← N ∪ {n− 1} \ {n}

end if
end while

where Em = {(u, v) | u
m−→ v}. Consider a (positional) winning strategy σm

for Player 1 in Gm and define a positional strategy σ(v, k) = σm(v), for k ≥ m.
Since the graph is static after time m, this is well defined. Starting from a vertex
(u, k), a vertex (v, k+k′) is visited on a σ-consistent path if and only if there is a
σm-consistent path u−→

k′ v. Therefore, σ is a winning strategy from any vertex
(v, k) such that k ≥ m and v ∈ Wm. Moreover, the set Wm can be computed in
time O(|V |2) by solving the reachability game on Gm [13, Theorem 12].

To solve reachability on declining temporal games, we can first compute the
winning region Wm in the stabilised game Gm. This means Wm × [m,∞) is
winning for Player 1. To win the declining temporal reachability game, Player 1
can play the punctual reachability game with target set Wm at target time
m. The winning region for Player 1 at time 0 can therefore be computed as
Prem1 (Wm ×{m}) as outlined in the proof of Theorem 2. Note that naïvely this
only gives a PSPACE upper bound as in the worst case, we would compute Pre1
an exponential (m) times.

To overcome this, note that in the expansion graph Prei1(Wm × {m}) =
Wm−i × {m − i}. According to Eq. (1), Wm−i ⊆ Wm−i′ for i′ > i. Let i, i′ be
such that m−i and m−i′ are both consecutive change points, i.e, m−i,m−i′ ∈ N
and ∀ℓ ∈ N.ℓ < m− i′ ∨ ℓ > m− i. Since the edge availability of the graph does
not change between time m − i′ and m − i, we have Wm−i−1 = Wm−i implies
Wm−i′ = Wm−i. Therefore, we can accelerate the Pre1 computation and directly
move to the time step m− i′, i.e, the i′th iteration in the computation. This case
is illustrated at time n′ = m− i′ in Fig. 5.

With this change, our algorithm runs the Pre1 computation at most |V |+|N |,
as each Pre1 computation either corresponds to a step a time in N when the
graph changes, or a step in which the winning region grows such as at time n in
Fig. 5. Since each Pre1 computation can be done in polynomial time, we get a
PTIME algorithm in this case, shown in Algorithm 1.

The case for improving temporal reachability games can be solved similarly.
Instead of computing the winning region for Player 1 in Gm, we start with
computing the winning region W 2

m for Player 2 in Gm and switch the roles of
Player 1 and Player 2, i.e, Player 2 has the punctual reachability objective with
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Fig. 5: Illustration of Algorithm 1. The blue vertices at time i denote the winning
region Wi for Player 1. The times n, n′ ∈ N and Pre1 computation at change
point n increases the winning region but is stable at time n′.

target set W 2
m and target time m, which can be solved as above. This gives us

an algorithm to compute the winning region for Player 2 and by determinacy
of reachability games on infinite graphs, we can compute the winning region for
Player 1 at time 0 as well. ⊓⊔

Remark 2. Algorithm 1 also works for parity objectives by changing step 1,
where Solve(Gm) would amount to solving the parity game on the static graph
Gm. This can be done in quasi-polynomial time and therefore gives a quasi-
polynomial time algorithm to solve declining (improving) temporal parity games
and in particular, gives membership in the complexity class NP ∩ coNP.

Since the declining (improving) restriction on games on temporal graphs
allow for improved algorithms, a natural question is to try to lift this approach
to a larger class of games on temporal graphs. Note that the above restrictions
are a special case of eventually periodic temporal graphs with a prefix of time m
followed by a periodic graph with period 1. Now, we consider temporal graphs
of period K > 1 such that the game arena is declining (improving) within
each period. Formally, a game on a temporal graph G is periodically declining
(improving) if there exists a period K such that for all k ∈ N, k ∈ E(u, v) if and
only if k+K ∈ E(u, v); and the game on the finite temporal graph resulting from
G by making the graph constant from time K onwards, is declining (improving).
We prove that this case is PSPACE-hard, even with reachability objectives.

Theorem 6. Solving periodically declining (improving) temporal reachability games
is PSPACE-complete.

Proof. The upper bound follows from the general case of parity games on periodic
temporal graphs in Theorem 3. The lower bound is by reduction from punctual
reachability games. See Fig. 6. Given a (static) graph G with target state v and
target time T , we obtain a periodically declining game G′ with period K = T+1,
vertices V ∪{w,⊥,⊤}, new target ⊤, such that V ′

1 = V1∪{w,⊥,⊤} and V ′
2 = V2.
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v w

. . .

. . .

⊤

⊥

x < T

x <
1

x ≥ T

Fig. 6: Reduction from a punctual reachability game to a reachability game on a
temporal graphs that is periodic and declining, see Theorem 6. Parts added are
shown in red.

We assume without loss of generality that the original target v is a Player 1
vertex, i.e, v ∈ V1.

We describe the edge availability in G′ up to the period K = T + 1. For all
edges (s, t) of the original graph G, such that s ∈ V1, the edge s

x−→ t is available
if and only if x < T . Moreover for all s ∈ V1 \ {v}, there is a new edge s

x−→⊥
available at all times x ≤ T . For all s ∈ V2, there is an edge s

x−→ t is available at
all times (until end of period) and s

x−→⊥ is available after time x ≥ T . These
edges ensure that if a play in the original punctual reachability game ends in a
vertex of the game other than v at time T , then Player 2 can force the play to
reach the sink state ⊥ and win.

From the original target v, there is an edge to the new state w at all times.
From the state w, there are edges w−→⊥ at all times and w

x−→⊤ if x = 0. If
the state w is reached at time k such that 1 < k < T +1, then the play is forced
to go to ⊥. The only winning strategy for Player 1 is to reach v at time T , w
at time T + 1 at which the time is reset due to periodicity. The edge w

T+1−→⊤ is
now available for Player 1 and they can reach the new target ⊤.

The lower bound for the case of periodically increasing temporal reachability
games follows by the same construction and using the duality between improving
and declining games on temporal graphs. Given a punctual reachability game
G with vertices V = V1 ⊎ V2 with target set F , we obtain the dual punctual
reachability game Ĝ with same target time by first switch the ownership of
vertices, i.e, V̂i = V3−i, i ∈ {1, 2} and make the new target as V \ F . It is easy
to see that Player 1 wins G if and only if Player 2 wins Ĝ.

Applying the same construction as shown in Fig. 6 to Ĝ, we obtain a pe-
riodically declining temporal reachability game Ĝ′, preserving the winner. Now
switching the ownership of vertices in Ĝ′ yields a periodically improving tem-
poral reachability game G′ which is winning for Player 1 if and only if Player 1
wins G. ⊓⊔
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6 Conclusion

In this work we showed that parity games on ultimately periodic temporal graphs
are solvable in polynomial space. The lower bound already holds for the very
special case of punctual reachability games, and the PSPACE upper bound, which
improves on the naïve exponential-space algorithm on the unfolded graph, is
achieved by proving the existence of small, PSPACE-verifiable certificates.

We stress again that all constructions are effective no matter how the tempo-
ral graphs are defined, as long as checking edge availability for binary encoded
times is no obstacle. In the paper we use edge constraints given in the existential
fragment of Presburger arithmetic but alternate representations, for example us-
ing compressed binary strings of length h(G) given as Straight-Line Programs [5,
Section 3] would equally work. Checking existence of edge at time i would cor-
respond to querying whether the ith bit is 1 or not which is P-complete [27,
Theorem 1].

The games considered here are somewhat orthogonal to parity games played
on the configuration graphs of timed automata, where time is continuous, and
constraints are quantifier-free formulae involving possibly more than one variable
(clocks). Solving parity games on timed automata with two clocks is complete
for EXP but is in P if there is at most one one clock [38] [16, Contribution 3(d)].
Games on temporal graphs with quantifier-free constraints corresponds to a sub-
class of timed automata games with two-clocks, with intermediate complexity
of PSPACE. This is because translating a temporal graph game to a timed au-
tomata game requires two clocks: one to hold the global time used to check the
edge predicate and one to ensure that time progresses one unit per step.

An interesting continuation of the work presented here would be to consider
mean-payoff games [11] played on temporal graphs, possibly with dynamic step-
rewards depending on the time. If rewards are constant but the edge availability
is dynamic, then our arguments for improved algorithms on declining/improving
graphs would easily transfer. However, the PSPACE upper bound using sum-
maries seems trickier, particularly checking realisability of suitable certificates.
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