
Coverability Trees
for Petri Nets with Unordered Data

Piotr Hofman1,i, S lawomir Lasota2,ii, Ranko Lazić3,iii, Jérôme Leroux4,
Sylvain Schmitz1,iv, and Patrick Totzke3,iii

1 LSV, ENS Cachan & CNRS, Université Paris-Saclay, France
2 University of Warsaw, Poland

3 DIMAP, Department of Computer Science, University of Warwick, UK
4 LaBRI, CNRS, France

Abstract. We study an extension of classical Petri nets where tokens
carry values from a countable data domain, that can be tested for equal-
ity upon firing transitions. These Unordered Data Petri Nets (UDPN)
are well-structured and therefore allow generic decision procedures for
several verification problems including coverability and boundedness.

We show how to construct a finite representation of the coverability set in
terms of its ideal decomposition. This not only provides an alternative
method to decide coverability and boundedness, but is also an impor-
tant step towards deciding the reachability problem. This also allows
to answer more precise questions about the reachability set, for instance
whether there is a bound on the number of tokens on a given place (place
boundedness), or if such a bound exists for the number of different data
values carried by tokens (place width boundedness).

We provide matching Hyper-Ackermann bounds on the size of cover-
ability trees and on the running time of the induced decision procedures.

1 Introduction

Unordered data Petri nets (UDPN [15]) extend Petri nets by decorating tokens
with data values taken from some countable data domain D. These values act as
pure names: they can only be compared for equality or non-equality upon firing
transitions. Such systems can model for instance distributed protocols where
process identities need to be taken into account [21]. UDPNs also coincide with
the natural generalisation of Petri nets in the framework of sets with atoms [3].
In spite of their high expressiveness, UDPNs fit in the large family of Petri net
extensions among the well-structured ones [1, 7]. As such, they still enjoy decision

i Partially funded by the Polish National Science Centre grant 2013/09/B/ST6/01575
and by Labex Digicosme, Université Paris-Saclay, project VERICONISS.

ii Partially funded by the Polish National Science Centre grant 2012/07/B/ST6/01497.
iii Partially supported by the EPSRC grant EP/M011801/1.
iv Partially supported by the ANR grant ANR-14-CE28-0005 prodaq and by the Lev-

erhulme Trust Visiting Professorship VP1-2014-041.

2 P. Hofman et al.

ordered data Petri nets [15]
Fωωω -complete [11]

decidable coverability
and termination

ordered data nets [15]
Fωωω -complete [11]

ν-Petri nets [21]
Fω ≤ ? ≤ Fωω

unordered data nets [15]
Fωω -complete [20]

affine nets [10]
Fω-complete [26, 6]

unordered data Petri nets [15]
F3 ≤ ? ≤ Fωω

Petri nets
ExpSpace-complete [17, 19]

+whole-place

+
o
rd

er

+
o
rd

er

+fresh +whole-place

+
d
a
ta

+
d
a
ta

+whole-placedecidable
place boundedness

Fig. 1. A short taxonomy of some well-structured extensions of Petri nets. Complexities
in violet refer to the coverability and termination problems, and can be taken as proxies
for expressiveness; the exact complexities of coverability and termination in ν-Petri nets
and UDPNs are unknown at the moment. Place boundedness is decidable below the
yellow line and undecidable above. As indicated by the dashed arrows, freshness can
be enforced using a dense linear order or whole-place operations.

procedures for several verification problems, prominently safety (through the
coverability problem) and termination.

Unordered data Petri nets have an interesting position in the taxonomy of
well-structured Petri net extensions (see Fig. 1). Indeed, all their extensions forgo
the decidability of the reachability problem (whether a target configuration is
reachable) and of the place boundedness problem (whether the number of tokens
in a given place can be bounded along all runs): this is the case of ν-Petri
nets [21] that allow to create fresh data values, of ordered data Petri nets [15]
that posit a dense linear ordering on D, and of unordered data nets [15] that allow
to perform ‘whole-place’ operations, which move and/or duplicate all the tokens
from a place to another. By contrast, it is currently open whether reachability is
decidable in UDPNs, and a consequence of our results in this paper is that place
boundedness is decidable—which is a significant first step if we wish to adapt to
UDPNs some of the known algorithms for reachability in Petri nets [18, 13].

Contributions. In this paper, we show how to construct finite coverability trees
for UDPNs, adapting the existing construction of Karp and Miller [12] for Petri
nets. Such trees are constructed forward from an initial configuration like reach-
ability trees, but approximate the latter by accelerating sequences of transitions
and explicitly manipulating limits of reachable configurations as downwards-
closed sets (see Sec. 4.1). We rely for all this on a general theory for represent-
ing downwards-closed sets as finite unions of ideals developed by Finkel and
Goubault-Larrecq [9] for this exact purpose (see Sec. 3).

Coverability Trees for Petri Nets with Unordered Data 3

Coverability trees contain a wealth of information about the system at hand,
and allow to answer various coverability and boundedness questions—allowing us
to derive a new result: the place boundedness problem is decidable for UDPNs,
and so are its variants, like place width- and place depth boundedness (see
Sec. 2). We also establish in Sec. 5 matching ‘hyper-Ackermannian’ lower and
upper bounds on the size of UDPNs coverability trees. This yields Fωω upper
bounds for the already mentioned decidable problems in UDPNs, in terms of
the fast-growing complexity classes (Fα)α from [23]. These complexity results
rely largely on the work of Rosa-Velardo [20] on the complexity of coverability
in unordered data nets. Due to space constraints, most proof details are omitted
but can be found online in the full version of the paper available from https:

//hal.inria.fr/hal-01252674.

Related Work. A coverability tree construction has already been undertaken by
Rosa-Velardo, Martos-Salgado, and de Frutos-Escrig [22] in the case of ν-Petri
nets, and inescapably there are many similarities between their work and ours.
Our construction does however not merely remove freshness constraints from
theirs: (1) we start anew and rely on a strong invariant on the form of ideals
in UDPN coverability trees, which leads to significant simplifications but would
be markedly difficult to extract from Rosa-Velardo et al.’s construction, and
(2) coverability trees are not necessarily finite for ν-Petri nets (place boundedness
is indeed undecidable [21]), which means that our termination argument and
complexity bounds are entirely new considerations.

Like Rosa-Velardo et al. [22] we rely on the work of Finkel and Goubault-
Larrecq [9] on forward analysis of well-structured systems. Finkel and Goubault-
Larrecq provide in particular an abstract generic procedure, but without guar-
antee of termination in general, and their framework needs to be instantiated
for each specific class of systems.

2 Model

Our presentation of unordered data Petri nets differs from the original one [15] on
two counts: we work with an equivalent formalism with more of a vector addition
system [12] flavour, and because we need to work with ideals we define the syntax
and the semantics on extended configurations, which allow for infinitely many
different data values and infinite counts.

Let Z and N denote the sets of integers and non-negative integers respectively,

and complete them as Zω
def
= Z]{ω} and Nω

def
= N]{ω} with a new top element

ω with ω > z and z + ω = ω + z = ω for all z in Z. Given a dimension k in N,
we denote the projection into the ith component of a vector v ∈ Zkω by v[i] and
define the product ordering and sum over Zkω componentwise: u ≤ v if u[i] ≤ v[i]

for all 1 ≤ i ≤ k, and (u + v)[i]
def
= u[i] + v[i] for all 1 ≤ i ≤ k. We write 0 for

the vector with 0 on all components.

Data Vectors. Fix some countable domain D of data values and a dimension k in
N. A data vector is a function f :D→ Zkω.Data vectors can be partially ordered

https://hal.inria.fr/hal-01252674
https://hal.inria.fr/hal-01252674

4 P. Hofman et al.

and summed pointwise: f ≤ g if f(d) ≤ g(d) for all d in D, and (f + g)(d)
def
=

f(d) + g(d) for all d in D. As usual we write f < g if f ≤ g and f(d) < g(d) for
some d in D. For a subset K ⊆ {1, . . . , k} we write f�K for the projection of f

into components in K: for all d in D, f�K(d)
def
= (f(d))�K . The support of a data

vector f is Supp0(f)
def
= {d ∈ D | f(d) 6= 0}; f is finitely supported if Supp0(f) is

finite. We say that a data vector f is non-negative if f(d) belongs to Nkω for all
d in D. It is finite if f(d) belongs to Zk for all d and it is finitely supported.

We call bijections σ : D→ D (data) permutations and write fσ for the com-
position of a permutation σ and a data vector f . If two data vectors f, g satisfy
f = gσ for some permutation σ, we say f and g are equal up to permutation
and write f ≡ g.

In the sequel we will consider sets of data vectors that are finite up to per-
mutation: a set X of data vectors is finite up to permutation if there is a finite
subset X ′ of X such that every f ∈ X is equal up to permutation to some
f ′ ∈ X ′. Note that if X is closed under permutations then X ′ can be used as its
finite presentation; any such finite set X ′ we call representative of X.

Definition 2.1 (UDPN). An unordered data Petri net (UDPN) is a finite set

T of finite data vectors. A transition is a data vector t
def
= fσ, where f ∈ T and σ

is a data permutation. There is a step f
t−→ g between non-negative data vectors

f, g if g = f+t for some transition t. Note that this enforces that f(d)+t(d) ≥ 0

for all d in D since g is non-negative. We simply write f −→ g if f
t−→ g for some

transition t and let
∗−→ denote the transitive and reflexive closure of −→.

A configuration is a finite non-negative data vector f , i.e. f(d) belongs to
Nk for all d in D, and f(d) = 0 for almost all d in D. We write Confs for
the set of configurations and note that Confs is closed under UDPN steps. The
reachability set from a given vector f is defined as

Reach(f)
def
= {g ∈ Confs | f ∗−→ g}. (1)

Observe that UDPNs over any domain with cardinality |D| = 1 are classical
vector addition systems [12]. Notice also that, the set of transitions in an UDPN
is finite up to permutations of D and that the step relation is closed under
permutations: For every non-negative data vector f , transition t and permutation
σ we have that

f
t−→ g implies fσ

tσ−→ gσ. (2)

Example 2.2. For the domain D def
= N and k

def
= 2, consider a 2-dimensional UDPN

T = {t1, t2}, with vectors t1, t2 defined as t1 : 0 7→ (1, 0) and t1 : n 7→ (0, 0) for
all n > 0, and t2 : 0 7→ (−1,−1), t2 : 1 7→ (1, 1) and t2 : n 7→ (0, 0) for all n > 1.

The configuration f0 with f0 : 0 7→ (1, 1) and f0 : n 7→ (0, 0) for n > 0,

has infinitely many t1-successors. Namely, gi
def
= f0 + t1σi for every permutation

Coverability Trees for Petri Nets with Unordered Data 5

p1 p2t1
x

t2x x

y y

Fig. 2. A place/transition representation of the UDPN of Ex. 2.2 in the style of [21, 11].
Different data values are depicted though differently coloured tokens in places (the
circles), and through differently named variables in transitions (the boxes and arrows).

σi that swaps 0 and i ∈ D. However, there are only two such successors up to
permutation because gi ≡ gj for all i, j > 0. The reachability set of f0 is

Reach(f0) =

g
∃d1, d2, . . . , dm ∈ D ∃n1, n2, . . . , nm ∈ N
g(d1) = (n1, 1) and ∀1 < i ≤ m, g(di) = (ni, 0),
∀d ∈ D \ {d1, d2, . . . , dm} g(d) = (0, 0)

 . (3)

In the sequel, we present UDPNs only up to permutation in matrix form

by juxtaposing the vectors from their finite supports: we write t1
def
=
[
1
0

]
, t2

def
=[−1 1

−1 1

]
and f0

def
=
[
1
1

]
. The t1-successors of f0 are g0 =

[
2
1

]
and gi =

[
1
1

]
+[

1
0

]
=
[
1 1
1 0

]
for i 6= 0. The latter is depicted in Fig. 2 in the style of coloured

place/transition nets. The reachability set of f0 can be written as Reach(f0) ={[
n0 n1 ··· nm
1 0 ··· 0

]
| m ≥ 0, n0, . . . , nm ≥ 1

}
.

Embeddings. We say that a data vector f embeds into a data vector g and write
f v g (resp. f @ g) if there exists an injection π:D → D such that f ≤ gπ
(resp. f < gπ). The injection π itself is called an embedding (of f into g) and
a permutation embedding in case it is bijective. Given a set of configurations C,
its downward-closure ↓C is {f ∈ Confs | ∃g ∈ C . f v g}, and as usual a set C
is downwards-closed if ↓C = C.

Finitely supported data vectors are isomorphic to finite multisets of vec-
tors in Zkω when working up to data permutation. Moreover, on permutation
classes of finitely supported data vectors, the embedding ordering coincides with
the usual embedding ordering over finite multisets of vectors; in consequence,
UDPN configurations are well-quasi-ordered by the embedding ordering. Thus
an UDPN defines a quasi-ordered transition system (Confs,−→,v), which satis-
fies a (strong) compatibility condition as shown in the following lemma. Together
with the fact that (Confs,v) is a wqo, this entails that it is a well-structured
transition system in the sense of [1, 7].

Lemma 2.3 (Strong Strict Compatibility). Let f, f ′, g be configurations.
If f v f ′ (resp. f @ f ′) and f −→ g, then there exists a configuration g′ with
f ′ −→ g′ and g v g′ (resp. g @ g′).

Proof. Consider a finite data vector t such that f
t−→ g, and a permutation

π of D such that f ≤ f ′π (recall that, when working with finitely supported
data vectors, embeddings can be assumed to be permutations). We claim that

6 P. Hofman et al.

g′
def
= f ′ + tπ−1 satisfies f ′

tπ−1

−−−→ g′ and g ≤ g′π. Indeed, for all d in D, noting

e
def
= π(d),

g(d) = f(d) + t(d) ≤ f ′(π(d)) + t(d) = f ′(e) + t(π−1(e)) = g′(e) = g′(π(d)) .

Furthermore, assuming f < f ′π, for at least one d in D the above inequality is
strict.

Decision Problems. For the purpose of verification, we are interested in standard
decision problems for UDPN, including reachability (does f

∗−→ g hold for given
configurations f and g?), coverability (given configurations f, g, does there exists

g′ w g s.t. f
∗−→ g′?), and boundedness (is Reach(f) finite up to permutation?).

While the decidability of reachability remains open, well-structuredness of
UDPN (and some basic effectiveness assumptions) implies that the coverability
and boundedness problems are decidable using the generic algorithms from [1,
7]. In fact, decidability holds more generally for ordered data Petri nets [15,
Thm. 4.1]. For the coverability problem, Rosa-Velardo [20, Thm. 1] proved an
HyperAckermann upper bound (Fωω in the hierarchy from [23]; see Sec. 5),
while Lazić et al. [15, Thm. 5.2] proved a Tower lower bound (F3 in the same
hierarchy). The complexity of the boundedness problem has not been studied
before. Furthermore, the following, more precise variant of boundedness called
place boundedness was not known to be decidable:

Input: An UDPN, a configuration f , and a set of coordinates K ⊆ {1, . . . , k}.
Question: Is {g�K | g ∈ Reach(f)} finite up to permutation?

In the presence of an infinite data domain D, place boundedness can be fur-
ther refined: even if infinitely many configurations are reachable, the system can
still be bounded in the sense that there exists a bound on the number of different
data values in reachable configurations; Rosa-Velardo and de Frutos-Escrig [21]
call this bounded width. Similarly, there may exist some bound on the multiplici-
ties with which any data value occurs, while the number of different data values
is unbounded; Rosa-Velardo and de Frutos-Escrig [21] call this bounded depth.

We formalise the resulting decision problems in our notation as follows. The
place width boundedness problem is given as:

Input: An UDPN, a configuration f , and a set of coordinates K ⊆ {1, . . . , k}.
Question: Is {|Supp0(g�K)| | g ∈ Reach(f)} finite?

The place depth boundedness problem is the following:

Input: An UDPN, a configuration f , and a set of coordinates K ⊆ {1, . . . , k}.
Question: Is {g�K(d) | g ∈ Reach(f), d ∈ D} finite?

If the answer to the depth (width) boundedness problem is positive we call those
components i ∈ K depth (width) bounded.

Coverability Trees for Petri Nets with Unordered Data 7

Example 2.4. From the initial configuration f0 =
[
1
1

]
, the UDPN from Ex. 2.2

can reach any configuration of the form
[
n
1

]
in n many t1-steps, all exercised on

the same data value. Similarly, any configuration of the form
[
1 1 ··· 1
1 0 ··· 0

]
with a

support of size n + 1 can be reached after a sequence of n transitions t1, each
exercised on a different data value. Consequently, the first component is neither
depth nor width bounded.

However, any reachable configuration g will satisfy
∑
d∈D g(d)[2] = 1. In Petri

net parlance, there is always exactly one token in the second place. The system

is thus place bounded for K
def
= {2}.

The main contribution of this paper is the effective computability of a suitable
abstraction of the classical coverability tree construction [12] for UDPNs. This
provides a way to decide all variants of the boundedness problem mentioned
above. We summarise the consequences of our construction below.

Theorem 2.5. In UDPNs, place depth boundedness implies place width bounded-
ness. In consequence, place depth boundedness coincides with place boundedness.

Theorem 2.6. The boundedness, place boundedness, and place width bounded-
ness problems for UDPNs are in Fωω , i.e. in HyperAckermann.

Let us emphasise the importance of decidability of place boundedness: first,
the problem is undecidable in all the extensions of UDPNs in Fig. 1. Moreover,
in the case of Petri nets, the decidability of place boundedness plays a crucial
role in the decidability proofs for reachability [18, 13, 14, 16], hence Thm. 2.6
provides one of the basic building blocks for future attempts at proving the
decidability of reachability for UDPNs.

3 Simple Ideals

A key observation about all decision problems mentioned in the previous section
is that they do not require computing the reachability set: they can all be solved
given some suitable representation of the cover [9], defined as

Cover(f)
def
= ↓Reach(f), (4)

for f the initial configuration. Indeed, coverability reduces to checking whether
g ∈ Cover(f), boundedness to checking whether Cover(f) is finite up to permu-
tation of D, and place boundedness to checking whether {g�K | g ∈ Cover(f)}
is finite up to permutation of D. The main property of the coverability tree we
construct in Sec. 4 is that we can extract a suitable representation of Cover(f).

Ideals and Clovers. We refer the reader to the work of Finkel and Goubault-
Larrecq [8, 9] for details; it suffices to say that downwards-closed sets of con-
figurations can be represented as finite unions of so-called configuration ideals.
Formally, a configuration ideal J is a non-empty, downwards-closed, and directed

8 P. Hofman et al.

set of configurations; this last condition means that, if f and f ′ are configurations
in J , then there exists h in J with f v h and f ′ v h. Crucially for algorith-
mic considerations, a configuration ideal J can in turn be represented as the
downward-closure

J = ↓g def
= {h ∈ Confs | h v g} (5)

of a non-negative data vector g having a finite range: g(D) is a finite subset
of Nkω. We can check that every such ↓g is a configuration ideal (see [8, 9] for
the converse): it is non-empty and downwards-closed by definition, and we can
check it is also directed. Indeed, if f , f ′ are configurations and π, π′ are injections
with f ≤ gπ and f ′ ≤ gπ′, then since f and f ′ are finitely supported we can
assume π and π′ to be permutations, and we can define a configuration h ≤ g
such that f ≤ hπ and f ′ ≤ hπ′: set h as the pointwise least upper bound

h(d)[i]
def
= max(f(π−1(d))[i], f ′(π′

−1
(d))[i]) ≤ g(d)[i] for all d and 1 ≤ i ≤ k.

Cover(f), being downwards-closed, is represented by a finite set of represen-
tations of configuration ideals, called Clover(f) by Finkel and Goubault-Larrecq:

Cover(f) =
⋃
{↓g | g ∈ Clover(f)} .

Clover(f) is determined uniquely up to permutation, and contains v-maximal
data vectors g satisfying ↓g ⊆ Cover(f); for further details see [8, 9]. In the
following we identify a configuration ideal J = ↓g with its representation g.

Remark 3.1 (Ideals for Petri nets). For readers familiar with Karp and Miller’s
coverability trees for Petri nets, observe that configuration ideal representations
generalise the notion of ‘extended markings’, which are vectors in Nkω. Also,
Clover(f) for a Petri net can be computed as the set of vertex labels in its
coverability tree—this will also be our case.

Simple Ideals. Crucially, it turns out that we do not need general configura-
tion ideals for our coverability trees for UDPNs. We only need to consider the
downward-closures ↓g of non-negative vectors g (cf. (5)), where the set of vectors
appearing infinitely often as g(d), when d ranges over D, is a singleton {I} for
some vector I in {0, ω}k (instead of a finite subset of Nkω for general configura-
tion ideals). Put differently, given such a vector I, we define the I-support of

a data vector f as SuppI(f)
def
= {d ∈ D | f(d) 6= I}, and define an I-simple

ideal (representation) as a non-negative data vector with finite I-support. In
particular, a finitely supported non-negative data vector is a 0-simple ideal. We
write M , N , . . . to denote simple ideals. A simple ideal M can be represented
concretely as a pair M = 〈m, I〉 where m is the finite multiset of vectors in Nkω
obtained from M by restriction to its I-support.

Example 3.2. We represent simple ideals similarly as configurations, using the
additional last column for the I part. Continuing with the UDPN of Ex. 2.2, its
cover is the downward-closure of a single I-simple ideal:

Clover(f0) =
[
ω
1

∣∣ ω
0

]
, Cover(f0) = ↓

[
ω
1

∣∣ ω
0

]
,

where I
def
= (ω, 0). The I-support of the ideal has one element, mapped to (ω, 1).

Coverability Trees for Petri Nets with Unordered Data 9

Note that UDPN steps map I-simple ideals to I-simple ideals. Lemma 3.3
formally states the relation between steps of ideals and steps of configurations
in the downward closures. The next lemma shows that I-simple ideals can only
have finitely many successors up to permutation. This property will later be used
to define coverability trees of finite branching degree.

Lemma 3.3. Let M,M ′ be I-simple ideals such that M −→M ′. Then for every
configuration c′ ∈ ↓M ′ there exist configurations c ∈ ↓M and c′′ ∈ ↓M ′ with
c −→ c′′ and c′ v c′′.

Proof. Suppose M
t−→ M ′ for a finite data vector t. The data vector f

def
= c′ − t

satisfies f ≤M but f(d) can possibly be negative for some data value d; therefore

we can not simply put c
def
= f . A way to fix this is to define c by

c(d)[i]
def
= max(0, x(d)[i]), for all d ∈ D and all coordinates i.

Thus defined, c satisfies c ≤ M , and setting c′′
def
= c + t satisfies c′ ≤ c′′ as

required.

Lemma 3.4. Let M be a simple ideal. The set {N | M −→ N} of successors of
M is finite up to permutation and has a representative with cardinality bounded
by (|SuppI(M)|+ maxt∈T |Supp0(t)|)! · |T |2.

Proof. Consider an UDPN defined by the finite set T of data vectors. Fix an I-
simple ideal M , and denote by S the I-support of M . We will be now considering
S-permutations, by which we mean those data permutations π that satisfy π(d) =
d for all d ∈ S. Equality and finiteness up to S-permutation can be defined
exactly as for plain permutations.

A crucial but simple observation is that the set of transitions of the UDPN
is finite up to S-permutation. Indeed, assume wlog. that S is disjoint from the
supports of all vectors in T . Consider the finite set T ′ that contains all data
vectors tσ, where t ∈ T and permutation σ swaps some subset of S with some
subset of the support of t. Then every transition of the UDPN is of the form
t′π, where t′ ∈ T ′ and π is an S-permutation. Regarding the size of this new
UDPN, there are at most

∑
t∈T (|S| + |Supp0(t)|)! such permutations σ, hence

|T ′| ≤
∑
t∈T (|S|+ |Supp0(t)|)! · |T |.

Now we use the extension, to simple ideals, of the closure of the step relation
under permutations, cf. Eq. (2), to derive a strengthening of our claim, namely
finiteness of the successors of M up to S-permutations. Consider an arbitrary

step M
t′π−−→ N of M ; by Eq. (2) we get

M = Mπ−1
t′−→ Nπ−1

(the equality holds as π is an S-permutation). Therefore N is equal up to S-
permutation to some T ′-successor of M . As T ′ is finite, the set of T ′-successors
of M is finite and bounded by |T ′|, which implies our claim.

10 P. Hofman et al.

A consequence of our construction of coverability trees in Sec. 4, and of the
complexity analysis conducted in Sec. 5, is the following core result:

Theorem 3.5. Given an UDPN and an initial configuration f , an ideal repre-
sentation Clover(f) of Cover(f) is computable in Fωω . Furthermore, Clover(f)
contains only simple ideals.

Theorem 3.5, together with the following proposition, easily imply Theo-

rems 2.5 and 2.6 (below Clover(f)�K
def
= {g�K | g ∈ Clover(f)}):

Proposition 3.6. Fix K ⊆ {1, . . . , k}. An UDPN is width-bounded iff Clover(f)�K
contains only finitely supported vectors. An UDPN is depth-bounded iff Clover(f)�K
contains only finite vectors.

Proof. The former equivalence, as well as the if direction of the latter one, follow
by finiteness of Clover(f)�K . It remains to argue that place depth-boundedness
forces Clover(f)�K to contain only finite vectors. Indeed, a non-finite simple ideal
has necessarily ω at some component, which implies depth-unboundedness.

The remaining part of the paper is devoted to the proof of Thm. 3.5. In
Sec. 4, we present an algorithmic construction of the coverability tree, and show
its termination and correctness. Then in Sec. 5 we provide upper and lower
bounds on the size of the coverability tree.

4 Representing a Cover

We will show that, analogously to the classical construction of Karp and Miller [12]
for vector addition systems, the cover set of any UDPN configuration can be ef-
fectively represented in the form of a finite coverability tree, where nodes are
labelled by simple ideals.

For a given initial ideal the construction of a coverability tree amounts to
iteratively computing successors (up to permutation), applying symbolic accel-
eration steps when a strictly dominating pair M @M ′ appears on a branch, and
terminating a branch if a label embeds into one of its ancestors.

4.1 Accelerations

The idea behind acceleration steps is that due to monotonicity (Lem. 2.3), any
finite sequence of steps

M0
t1−→M1

t2−→ . . .
tk−→Mk (6)

such that M0 @ Mk can be extended indefinitely. Such an unfolding may have
two distinct kinds of effect: Firstly, it may unboundedly increase components in
data values already contained in the initial I-support (we call this effect depth
acceleration). Secondly, it may increase an unbounded number of ‘fresh’ data
values, outside of the initial I-support (we call this effect width acceleration).
Our construction only accelerates increasing sequences as above when there is a
permutation (i.e. bijective) embedding of M0 into Mk.

Coverability Trees for Petri Nets with Unordered Data 11

As a building block we shall use the usual vector acceleration: for two non-
negative vectors v,v′ ∈ Nkω with v′ ≤ v, define a new vector acc(v′,v), for
1 ≤ i ≤ k by:

acc(v′,v)[i]
def
=

{
v[i], if v′[i] = v[i],

ω, if v′[i] < v[i].

Definition 4.1 (Depth and Width Acceleration). For I-simple ideals M ′,
M and a permutation π with M ′ < Mπ, or equivalently M ′π−1 < M , the depth
acceleration of M ′,M, π is the I-simple ideal defined by

Mdepth(d)
def
= acc(M ′(π−1(d)),M(d)), for all data values d ∈ D.

For d ∈ D such that M ′(π−1(d)) = I < M(d), put Id
def
= acc(M ′(π−1(d)),M(d));

the width acceleration of M ′,M, π, d is the Id-simple ideal defined by

Mwidth(d)
def
=

{
Id, if M(d) = I

M(d), otherwise,

By definition, M < Mdepth,Mwidth.

4.2 Coverability Trees

By Lem. 3.4 we can compute for any I-simple ideal M a successor representative,
namely a finite set such that every successor of M is equal up to permutation
to some element of this set.

For the sake of simplicity, we choose a conservative policy of application of
accelerations: first, a proper nesting is imposed, in the sense that two different
accelerated paths are either disjoint, or contained one in the other; second, a
depth-accelerated path can not contain another accelerated path, while a width-
accelerated path can. However, as width accelerations strictly increase the I
part, a width-accelerated path is never contained in another accelerated path.
Therefore the only allowed inclusion is when a depth-accelerated path is included
in a width-accelerated one.

Definition 4.2 (Coverability Tree). A coverability tree is a tree with nodes
labelled by simple ideals such that the following criteria are satisfied.

1. A node with label N is a leaf iff it has an ancestor with label N ′ w N .
2. Otherwise, suppose an interior node N has an ancestor N ′ such that both

N ′, N are I-simple and N ′ @ N . Let P denote the path from N ′ to N in
the tree, including N ′ and N .
(a) Suppose N ′(π−1(d)) = I < N(d) for some permutation π with N ′π < N

and d ∈ D; and for every node in P that is a depth acceleration of some
nodes M ′,M , both M ′ and M belong to P. Then N has exactly one child
labelled by the width acceleration of N ′, N, π, d.

(b) Otherwise, if P contains no acceleration then N has exactly one child
labelled by the depth acceleration of N ′, N, π, for some permutation π
with N ′π < N .

12 P. Hofman et al.

3. Otherwise, if a node N satisfies none of the above criteria then its set of
children is the successor representative of N .

Remark 4.3. Note that Def. 4.2 does not determine the coverability tree unam-
biguously: the choice of a permutation π in points 2(a) and 2(b) is not unique.

Remark 4.4. The condition in point 1 in Def. 4.2 implies that no branch of a
coverability tree contains two different nodes with the same label. We identify a
node with its label in the sequel.

Example 4.5. We pick some coverability tree for the UDPN from Ex. 2.2 rooted
in the configuration f0. There is a branch with labels (up to permutation)

f0 =
[
1
1

∣∣ 0
0

]
, f1 =

[
2
1

∣∣ 0
0

]
, f2 =

[
ω
1

∣∣ 0
0

]
, f3 =

[
ω 1
0 1

∣∣ 0
0

]
, f4 =

[
ω 1
0 1

∣∣ ω
0

]
, f5 =

[
ω 1 1
0 1 0

∣∣ ω
0

]
,

where f2 is a depth acceleration (of f0, f1), f4 is a width acceleration (of f0, f3),
and all other nodes are the result of successor steps from their parent. The node
f5 is a leaf because f5 v f4.

Correctness. A coverability tree is finite (termination), and represents the cover
of its root node (completeness and soundness). These required properties are
proven in detail in the full paper:

– Finiteness is proven by first exhibiting a wqo for the specific type of I-simple
ideals that appears on coverability trees. This wqo depends on the existence
of permutation embeddings, a property that on its own does not induce
a well-quasi-ordering over the set of all I-simple ideals. Our termination
argument is further refined to derive complexity bounds; see Sec. 5.2.

– The completeness proof relies on the monotonicity of steps over simple ideals,
and shows that all the elements in Cover(f) are covered by some simple ideal
in any coverability tree.

– Soundness is the most delicate property to establish. Its crux is that neither
width nor depth accelerations may take us outside the cover of the initial
configuration.

5 Complexity Bounds

In the section, we prove lower and upper bounds on the resources needed by the
construction of the coverability tree. We refer the reader to [25, 24] for gentle
introductions to the techniques employed to prove these results. The enormous
complexities involved in our construction require to use fast-growing complexity
classes [23], which we present succinctly in Sec. 5.1 and in more details in the
full paper, before showing hyper-Ackermannian upper and lower bounds in sec-
tions 5.2 and 5.3.

5.1 Fast-Growing Complexity

In order to express the non-elementary functions required for our complexity
statements, we shall employ a family of subrecursive functions (hα)α indexed by
ordinals α known as the Hardy hierarchy.

Coverability Trees for Petri Nets with Unordered Data 13

Ordinal Terms. We use ordinal terms α in Cantor Normal Form (CNF), which
can be written as terms α = ωα1 + · · ·+ωαn where α1 ≥ · · · ≥ αn are themselves
written in CNF. Using such notations, we can express any ordinal below ε0, the
minimal fixpoint of x = ωx. The ordinal 0 is obtained when n = 0; otherwise if
αn = 0 the ordinal α is a successor ordinal ωα1 + · · ·+ωαn−1 + 1, and if αn > 0
the ordinal α is a limit ordinal. We usually write λ to denote limit ordinals.

Fundamental Sequences. For all x in N and limit ordinals λ, we use a standard
assignment of fundamental sequences λ(0) < λ(1) < · · · < λ(x) < · · · < λ with
supremum λ. Fundamental sequences are defined by transfinite induction by:

(γ + ωβ+1)(x)
def
= γ + ωβ · (x+ 1) , (γ + ωλ

′
)(x)

def
= γ + ωλ

′(x) . (7)

For instance, ω(x) = x+ 1, ω2(x) = ω · (x+ 1), ωω(x) = ωx+1, etc.

The Hardy Hierarchy. Let h:N→ N be a strictly increasing function. The Hardy
functions (hα:N → N)α are defined by transfinite induction on their ordinal
indices by

h0(x)
def
= x , hα+1(x)

def
= hα(h(x)) , hλ(x)

def
= hλ(x)(x) . (8)

Observe that hk(x) for a finite k is simply the kth iterate of h. For limit ordinals

λ, hλ(x) performs a form of diagonalisation: for instance, setting H(x)
def
= x+ 1

the successor function, Hω(x) = Hx+1(x) = 2x + 1, Hω2

(x) = 2x+1(x + 1) − 1

is a function of exponential growth, while Hω3

is a non elementary function
akin to a tower of exponentials of height x, Hωω

is a non primitive-recursive

function with growth similar to the Ackermann function, and Hωωω

is a non
multiply-recursive function characteristic of hyper-Ackermannian complexity.

Complexity Classes. Following [23], we can define complexity classes for compu-
tations with time or space resources bounded by Hardy functions of the size of
the input. We concentrate in this paper on the HyperAckermann complexity
class. Let FMR denote the set of multiply-recursive functions and let h be any
multiply-recursive strictly increasing function, then [23, Thm. 4.2]:

HyperAckermann
def
= Fωω =

⋃
m∈FMR

DTime(hω
ωω

(m(n))) (9)

is the set of decision problems solvable with resources bounded by an hyper-
Ackermannian function applied to a multiply-recursive function m of the size of
the input. This class is closed under multiply-recursive reductions, and several
problems are known to be complete for it (see Sec. 6.2 of [23] for a survey),
including coverability in unordered data nets [20].

5.2 Upper Bounds

We focus on the worst-case norm of the constructed simple ideals, from which
bounds on the total size of the coverability tree and the complexity upper bound
in Thm. 3.5 can both be derived.

14 P. Hofman et al.

Norms of Simple Ideals. For a vector u in Zkω, its norm is its maximal fi-

nite absolute value: ‖v‖ def
= max{|v[i]| | 1 ≤ i ≤ k ∧ v[i] 6= ω}. Observe

that, if I is in {0, ω}k, then ‖I‖ = 0. For an I-simple ideal M , and thus
for finitely supported ones in particular, we define its norm as the maximum
between the cardinality of its support and the maximal norm of its vectors:

‖M‖ def
= max{|SuppI(M)|, ‖M(d)‖ | d ∈ D}. Note that the vectors for data

d outside the support have all norm 0. In the full paper, we exhibit a bound

B
def
= hω

ωk+3

(‖f0‖) on the norms of all the simple ideals constructed in a cov-
erability tree rooted by f0 as defined in Def. 4.2, where h also depends on the
UDPN:

Theorem 5.1. The norms of the simple ideals in a coverability tree rooted in

a configuration f0 for a k-dimensional UDPN T are bounded by hω
ωk+3

(‖f0‖),
where h(x) is an elementary function of x, k, and ‖T ‖.

The main technical ingredients for Thm. 5.1 are combinatorial statements on
the lengths of so-called controlled bad sequences proven by Rosa-Velardo [20,
App. A] for finite multisets of vectors of natural numbers. Our proofs require
however a substantial amount of work on top of that of Rosa-Velardo’s for two
reasons: we work with extended vectors in Nkω, and use permutation embeddings
rather than just plain embeddings.

Relating Norms with Sizes and Complexity. The norm ‖M‖ ≤ B of a simple
ideal M is directly related to the size of its concrete binary representation: the
latter needs at most ‖M‖ · k · (dlog‖M‖e + 1) bits for the I supported part of
the ideal and k bits for the I vector itself. We can also bound the length of
the branches in our coverability trees: there are indeed at most (B + 2)kB · 2k
different simple ideals with norm ≤ B, and no two interior nodes on a branch
are labelled by the same ideal due to condition 1 in Def. 4.2 (see Rem. 4.4).
Finally, by Lem. 3.4, the branching degree of the coverability tree is bounded by
an exponential function (B + ‖T ‖)! · |T |2 in B and the size of T . These three
observations combined allow to bound the size of the coverability tree:

Theorem 5.2 (Size of Coverability Trees). The size of a coverability tree
built from an initial configuration f0 for a k-dimensional UDPN T is bounded
by an elementary function of B, k, and the size of T .

Theorem 5.2 along with Eq. (9) and the completeness and soundness of cov-
erability trees yields the proof of Thm. 3.5, using the fact that Fωω is closed
under elementary reductions [23, Thm. 4.7].

5.3 Lower Bounds

The sheer complexity bounds we just obtained on the size of coverability trees
beg the question whether they are the best possible. We show in Thm. 5.3 that,
indeed, the size of coverability trees for a family of UDPNs is provably non
multiply-recursive, matching essentially the statement of Thm. 5.2:

Coverability Trees for Petri Nets with Unordered Data 15

Theorem 5.3 (Hyper-Ackermannian Coverability Trees). There exists
families of O(k)-sized UDPNs (Tk)k and O(k+log n)-sized initial configurations

(fk,n)k,n, whose coverability trees are of size at least Hωωk

(n).

Hardy Computations. As detailed in the full paper, we prove Thm. 5.3 by ‘imple-

menting’ the computation of Hardy functions Hωωk

in nets Tk. The main idea,
first developed in [11, 24], is to see the equations in (8) for 0 < α as rewriting
rules operating on pairs (α, n):

(α+ 1, n)→ (α, n+ 1) , (λ, n)→ (λ(n), n) . (10)

Note that a sequence (α0, n0) → (α1, n1) → · · · → (αi, ni) → · · · of rewriting
steps maintains Hαi(ni) = Hα0(n0) for all i, and must eventually terminate at
some rank ` with α` = 0 since αi > αi+1 for all i, and then n` = Hα0(n0).

Using a natural representation of ordinals α < ωω
k

as finite multisets of
vectors also employed by Rosa-Velardo [20], a pair (α, n) can be encoded as a
configuration of Tk, and the rewriting rules of (10) can be implemented on such
codes by steps of Tk. This is however not a perfect implementation: many in-

correct computations yielding results different from Hωωk

(n) = Hωωk−1·(n+1)

(n)
are possible. The crucial point is that there exists a perfect computation in Tk,

of length at least Hωωk

(n). Furthermore, this computation does not allow any
acceleration step, and has therefore to occur as such in any coverability tree.

6 Concluding Remarks

In this paper, we have presented a procedure to construct coverability trees for
UDPNs in the style of Karp and Miller [12]. This yields decision procedures for
coverability and several variants of the boundedness problem including place-
boundedness, depth- and width place-boundedness. Besides its interest for the
formal verification of UDPNs, this paves the way towards future attempts at
proving the decidability of reachability along the lines developed for Petri nets
in [18, 13, 14, 16].

We have derived hyper-Ackermannian upper bounds on the complexity of our
construction, and shown that such enormous complexities are actually attained
on some UDPNs. Note that this however does not provide a lower bound

– on the size of Clover(f), for which the best known bound is an Ackermannian
lower bound adapted from the case of Petri nets [4], nor

– on the complexity of the various boundedness problems on UDPNs, for which
the best lower bound is hardness for Tower = F3, adapted from the cover-
ability problem [15].

We actually suspect that much lower complexities that HyperAckermann
could be obtained for the coverability and boundedness problems. For instance,
in the case of Petri nets, coverability trees have a worst-case Ackermannian
size [4, 6], but coverability, boundedness, and place-boundedness are all Exp-
Space-complete [17, 19, 2, 5].

16 P. Hofman et al.

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inform. and Comput. 160(1–2), 109–127
(2000)

2. Blockelet, M., Schmitz, S.: Model-checking coverability graphs of vector addition
systems. MFCS 2011. LNCS, vol. 6907, pp. 108–119. Springer (2011)

3. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logic. Meth.
in Comput. Sci. 10(3:4), 1–44 (2014)

4. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups: Preliminary report. STOC’76. pp. 50–54.
ACM (1976)

5. Demri, S.: On selective unboundedness of VASS. J. Comput. Syst. Sci. 79(5), 689–
713 (2013)

6. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, Ph.: Ackermannian and
primitive-recursive bounds with Dickson’s Lemma. LICS 2011. pp. 269–278. IEEE
Press (2011)

7. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere!
Theor. Comput. Sci. 256(1–2), 63–92 (2001)

8. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions.
STACS 2009. LIPIcs, vol. 3, pp. 433–444. LZI (2009)

9. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: Complete
WSTS. Logic. Meth. in Comput. Sci. 8(3:28), 1–35 (2012)

10. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
Petri net extensions. Inform. and Comput. 195(1–2), 1–29 (2004)

11. Haddad, S., Schmitz, S., Schnoebelen, Ph.: The ordinal recursive complexity of
timed-arc Petri nets, data nets, and other enriched nets. LICS 2012. pp. 355–364.
IEEE Press (2012)

12. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

13. Kosaraju, S.R.: Decidability of reachability in vector addition systems. Proc.
STOC’82. pp. 267–281. ACM (1982)

14. Lambert, J.L.: A structure to decide reachability in Petri nets. Theor. Comput.
Sci. 99(1), 79–104 (1992)

15. Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A., Worrell, J.: Nets with tokens
which carry data. Fund. Inform. 88(3), 251–274 (2008)

16. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems.
LICS 2015. pp. 56–67. IEEE Press (2015)

17. Lipton, R.: The reachability problem requires exponential space. Tech. Rep. 62,
Yale University (1976)

18. Mayr, E.W.: An algorithm for the general Petri net reachability problem. Proc.
STOC’81. pp. 238–246. ACM (1981)

19. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

20. Rosa-Velardo, F.: Ordinal recursive complexity of unordered data nets. Tech.
Rep. TR-4-14, Departamento de Sistemas Informáticos y Computación, Univer-
sidad Complutense de Madrid (2014), http://antares.sip.ucm.es/frosa/docs/
complexityUDN.pdf

21. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

http://antares.sip.ucm.es/frosa/docs/complexityUDN.pdf
http://antares.sip.ucm.es/frosa/docs/complexityUDN.pdf

Coverability Trees for Petri Nets with Unordered Data 17

22. Rosa-Velardo, F., Martos-Salgado, M., de Frutos-Escrig, D.: Accelerations for the
coverability set of Petri nets with names. Fund. Inform. 113(3–4), 313–341 (2011)

23. Schmitz, S.: Complexity hierarchies beyond Elementary. ACM Trans. Comput.
Theory (2016), http://arxiv.org/abs/1312.5686, to appear

24. Schmitz, S., Schnoebelen, Ph.: Algorithmic aspects of WQO theory. Lecture notes
(2012), http://cel.archives-ouvertes.fr/cel-00727025

25. Schmitz, S., Schnoebelen, Ph.: The power of well-structured systems. Concur 2013.
LNCS, vol. 8052, pp. 5–24. Springer (2013)

26. Schnoebelen, Ph.: Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer (2010)

http://arxiv.org/abs/1312.5686
http://cel.archives-ouvertes.fr/cel-00727025

	Coverability Treesfor Petri Nets with Unordered Data

