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Abstract8

We explore the notion of history-determinism in the context of timed automata (TA). History-9

deterministic automata are those in which nondeterminism can be resolved on the fly, based on the10

run constructed thus far. History-determinism is a robust property that admits different game-based11

characterisations, and history-deterministic specifications allow for game-based verification without12

an expensive determinization step.13

We show yet another characterisation of history-determinism in terms of fair simulation, at the14

general level of labelled transition systems: a system is history-deterministic precisely if and only if15

it fairly simulates all language smaller systems.16

For timed automata over infinite timed words it is known that universality is undecidable for17

Büchi TA. We show that for history-deterministic TA with arbitrary parity acceptance, timed18

universality, inclusion, and synthesis all remain decidable and are ExpTime-complete.19

For the subclass of TA with safety or reachability acceptance, we show that checking whether20

such an automaton is history-deterministic is decidable (in ExpTime), and history-deterministic TA21

with safety acceptance are effectively determinizable without introducing new states.22
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1 Introduction26

Automata offer paradigmatic formalisms both for specifying and for modelling discrete27

transition systems, i.e. for providing descriptive as well as executable definitions of formal28

languages. Given a finite or infinite word, an automaton specifies whether or not the word29

belongs to the defined language. Deterministic automata are executable, because the word30

can be processed left-to-right, with each transition of the automaton determined by the31

current input letter. Descriptive automata allow the powerful concept of nondeterminism,32

which yields more succinct or even more expressive specifications.33

The notion of history-determinism lies between determinism and nondeterminism. History-34

deterministic automata are still executable, provided the execution engine is permitted to35

keep a record of all past inputs. Formally, a strategy r (a.k.a. “resolver”) is a function from36

finite prefix runs to transitions that suggests for each input word w a specific run r∗(w) of37

the automaton over w, namely, the run that results from having the function r determine,38

after each input letter, the next transition based on the prefix of the word processed so far.39

An automaton is history-deterministic if there exists a resolver r so that for every input40

word w, the automaton has an accepting run over w iff the specific run r∗(w) is accepting.41

The concept of history-determinism was first identified in [21], where it was noted that42

for solving graph games, it is not necessary to determinize history-deterministic specifications43

of ω-regular winning conditions. For this reason, history-deterministic automata were called44

“good-for-games”. The term “history-determinism” was first used by [13]. The concept itself45

has since been referred to as both “history-determinism” and “good-for-gameness.” Since [10]46
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recently showed that, in a general context of quantitative automata, the two notions do not47

always coincide (specifically: for certain quantitative winning conditions, history-determinism48

implies the “good-for-games” property of an automaton, but not vice versa), we follow their49

more nuanced terminology and use the term “history-determinism” to denote the existence50

of a resolver and “good-for-games” for automata that preserve the winner of games under51

composition, as required for solving games without determinization.52

There is also a tight link between a variant of the Church synthesis problem, called53

good-enough synthesis [2], and deciding history-determinism. Church synthesis asks whether54

a system can guarantee that its interaction with an uncontrollable environment satisfies a55

specification language for all possible environment behaviours. This model assumes that the56

environment is hostile and will, if possible, sabotage the system’s efforts. This pessimistic57

view can be counter-productive. In the canonical example of a coffee machine, if the users58

(the environment) do not fill in the water container, the machine will fail to produce coffee.59

Church synthesis would declare the problem unrealisable: the machine may not produce coffee60

for all environment behaviours. In the good-enough synthesis problem, on the other hand,61

such failures are acceptable, and we can still return an implementation that produces coffee62

(satisfies the specification) whenever the environment behaves in a way that allows the desired63

behaviour (fills in the water container). Deciding the good-enough synthesis problem for a64

deterministic automaton is polynomially equivalent to deciding whether a nondeterministic65

automaton of the same type is history-deterministic [16, 10, 18]. The decidability and66

complexity of checking history-determinism is therefore particularly interesting.67

In this paper, we study, for the first time, history-determinism in the context of timed68

automata. In a timed word, letters alternate with time delays, which are nonnegative real69

numbers. The resolver gets to look not only at all past input letters, but also at all past70

time delays, to suggest the next transition. We consider timed automata over infinite timed71

words with standard ω-regular acceptance conditions [3]. For the results of this paper, it72

does not matter whether or not the sum of all time delays provided by an infinite input word73

is required to diverge.74

Our results can be classified into two parts. The first part of our results applies to75

all timed automata, and sometimes more generally, to all labelled transition systems. In76

this part we are concerned with solving the quintessential verification problem for timed77

systems, namely timed language inclusion, in the special case of history-deterministic (i.e.78

executable) specifications. Since universality is undecidable for general timed automata,79

so is the timed language-inclusion problem for nondeterministic specifications [3]. This80

is the reason why much previous work in timed verification has focused on identifying81

determinizable subclasses of timed automata, such as event-clock automata [4], and on82

studying deterministic extensions of the timed-automaton model, such as deterministic two-83

way timed automata [5]. Determinizable specifications can be complemented, thus supporting84

the complementation-based approach to language inclusion: in order to check if every word85

accepted by the implementation A is also accepted by the specification B, first determinize86

and complement B, and then check the intersection with A for emptiness. We show that the87

history-determinism of specifications suffices for deciding timed language inclusion, which88

demonstrates that determinizability is not required. More precisely, we prove that if A is a89

timed automaton and B is a history-deterministic timed automaton, it can be decided in90

ExpTime if every timed word accepted by A is also accepted by B (Corollary 18).91

In contrast to the traditional complementation-based approach to language inclusion, the92

history-deterministic approach is game-based. Like the complementation-based approach,93

the game-based approach is best formulated in the generic setting of labelled transition94
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systems with acceptance conditions, so-called fair LTS. The acceptance condition of a fair95

LTS declares a subset of the infinite runs of the LTS to be fair (a special case is safety96

acceptance, which declares all infinite runs to be fair). Given two fair LTS A and B, the97

language of A is included in the language of B if for every fair run of A there is a fair run of98

B over the same (infinite) word. A sufficient condition for the language inclusion between A99

and B is the existence of a fair simulation relation between the states of A and the states100

of B, or equivalently, the existence of a winning strategy for player pB in the following101

2-player fair simulation game: (i) every transition chosen by player pA on the state-transition102

graph A can be matched by a transition chosen by player pB on the state-transition graph103

B with the same label (letter or time delay), and (ii) if the infinite sequence of transitions104

chosen by pA produce a fair run of A, then the matching transitions chosen by pB produce a105

fair run of B [20]. Solving the fair simulation game is often simpler than checking language106

inclusion; it may be polynomial where language inclusion is not (e.g. in the case of finite107

safety or Büchi automata), or decidable where language inclusion is not (e.g. in the case of108

timed safety or Büchi automata [28]).109

We show that for all fair LTS A and all history-deterministic fair LTS B, the condition110

that the language of A is included in the language of B is equivalent to the condition111

that A is fairly simulated by B. This observation reduces the language inclusion problem112

for history-deterministic specifications to the problem of solving a fair simulation game113

between implementation and specification. The solution of fair simulation games depends114

on the complexity of the acceptance conditions of A and B, but is often simpler than115

the complementation of B, and fair simulation games can be solvable even in the case of116

specifications that cannot be complemented. In the concluding Section 7, we conjecture the117

existence of such a timed language. The game-based approach to checking language inclusion,118

which requires history-determinism, is therefore more general, and often more efficient,119

than the traditional complementation-based approach to checking language inclusion, which120

usually requires full determinization. Indeed, history-determinism is exactly the condition121

that allows the game-based approach to language inclusion: for a given fair LTS B, if it is122

the case that B can fairly simulate all fair LTS A whose language is included in the language123

of B, then B must be history-deterministic (Theorem 4).124

More generally, turn-based timed games for which the winning condition is defined by a125

history-deterministic timed automaton are no harder to solve than those with deterministic126

winning conditions: the winner of such a timed game can be determined on the product of127

the (timed) arena with the automaton specifying the winning condition. We conjecture that128

this is the case also for the concurrent timed games of [14] (cf. Section 7). Timed games129

have also been defined for the synthesis of timed systems from timed I/O specifications.130

Again, we show that the synthesis game of [15] can be solved not only for I/O specifications131

that are given by deterministic timed automata, but more generally, for those given by132

history-deterministic timed automata (Theorem 20).133

The second part of our results investigates the problem of deciding history-determinism for134

timed automata and the determinizability of history-deterministic timed automata. In this135

part, we have only partial results, namely results for timed safety and reachability automata.136

Timed safety automata, in particular, constitute an important class of specifications, as many137

interesting timed and untimed properties can be specified by timed safety automata if time138

is required to diverge [19]. We prove that for timed safety automata and timed reachability139

automata, it can be decided in ExpTime if a given timed automaton is history-deterministic140

(Theorem 16). Checking history-determinism remains open for more general classes of timed141

automata, such as timed Büchi and coBüchi automata. We also show that every history-142
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deterministic timed safety automaton can be determinized, without increase in the state-space,143

but with an exponential increase in the number of transitions or length of guards (Theorem 9).144

While the question of determinizability is undecidable for nondeterministic timed reachability145

automata [17], it is open for history-deterministic timed reachability automata and for146

history-deterministic timed automata with more general acceptance conditions. Finally,147

we show that if a timed safety or reachability automaton is good-for-games (in the sense148

explained earlier), then the automaton must be history-deterministic (Theorem 23). This149

implication is open for more general classes of timed automata.150

Related work. The notion of history-determinism was introduced independently, with151

slightly different definitions, by Henzinger and Piterman [21] for solving games without de-152

terminization, by Colcombet [13] for cost-functions, and by Kupferman, Safra, and Vardi [24]153

for recognising derived tree languages of word automata. Initially, history-determinism was154

mostly studied in the ω-regular setting, where these different definitions all coincide [9]. For155

some coBüchi-recognisable languages, history-deterministic automata can be exponentially156

more succinct than any equivalent deterministic automaton [23], and for Büchi and coBüchi157

automata, history-determinism is decidable in polynomial time [6, 23]. For transition-based158

history-deterministic automata, minimisation is PTime [1], while for state-based ones, it is159

NP-complete [27]. Recently, the notion has been extended to richer automata models, such160

as pushdown automata [25, 18] and quantitative automata [10, 11], where deterministic and161

nondeterministic models have different expressivity, and therefore, allowing a little bit of162

nondeterminism can, in addition to succinctness, also provide more expressivity.163

Paper Structure. After defining preliminary notions we proceed to introduce history-164

determinism, and show a new, fair-simulation-base characterisation in Section 3. In Section 4165

we demonstrate that history-deterministic TA with safety acceptance are determinizable166

and in Section 5 that one can decide whether a given safety or reachability TA is history-167

deterministic. Section 6 considers the language inclusion and synthesis problems and shows168

that history-determinism coincides with good-for-gameness for reachability and safety TA.169

2 Preliminaries170

Numbers, Words. Let N and R≥0 denote the nonnegative integers and reals, respectively.171

For c ∈ R≥0 we write ⌊c⌋ for its integer and fract(c) def= c − ⌊c⌋ for its fractional part.172

An alphabet Σ is a nonempty set of letters. Σε denotes Σ ∪ {ε}. Σ∗ and Σω denote the173

sets of finite and infinite words over Σ, respectively and Σ∞ = Σ∗ ∪ Σω denotes their union.174

The empty word is denoted by ε, the length of a finite word v is denoted by |v|, and the n-th175

letter of a finite or infinite word is denoted by w[n] (starting with n = 0).176

Labelled Transition Systems, Languages, Fair Simulation. A labelled transition177

system (LTS) is a graph S = (V, Σ, E) with set V of states and edges E ⊆ V × Σ × V ,178

labelled by alphabet Σ. It is deterministic if for all (s, a) ∈ V × Σ there is at most one s′
179

with s
a−→ s′, and complete if for all (s, a) ∈ V × Σ there is at least one s′ with s

a−→ s′. We180

henceforth consider only complete LTSs. Together with an acceptance condition Acc ⊆ Eω
181

this can be used to define languages over Σ as usual: a word w = l0l1 . . . ∈ Σω is accepted182

from s0 if there is a path (also run) ρ = s0
l1−→ s1

l2−→ s2 . . . that is accepting, i.e., in Acc.183

The language L(s0) ⊆ Σω of an initial state s0 ∈ V consists of all words for which there184

exists an accepting run from s0. We will write s ⊆L s′ to denote language inclusion, meaning185

L(s) ⊆ L(s′). The acceptance condition Acc can be given by a parity condition but does not186

have to be. We consider in this paper especially reachability (does the run visit a state in a187
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given target set T ⊆ V ?) and safety conditions (does the run always stay in a “safe” region188

F ⊆ V ?). An LTS together with an accepting condition is referred to as fair LTS [20].189

Fair simulations [20] are characterised by simulation games on (a pair of) fair LTSs in190

which Player 1 stepwise produces a path from s, and Player 2 stepwise produces an equally191

labelled path from s′. Player 2 wins if she produces an accepting run whenever Player 1192

does. That is, s is fairly simulated by s′ (write s ⪯ s′) iff Player 2 has a strategy in the193

simulation game so that, whenever the run produced by Player 1 is accepting then so is the194

run produced by Player 2 in response. Fair simulation s ⪯ s′ implies language inclusion195

L(s) ⊆ L(s′) but not vice versa.196

Timed Alphabets, Words, and LTSs. For any alphabet Σ let ΣT denote the timed alpha-197

bet {(a, t)|a ∈ Σ, t ∈ R≥0}. A timed word is a finite or infinite word w ∈ (ΣT )∞ consisting of198

letters in Σ paired with distinct non-negative non-decreasing real-valued timestamps. We will199

also write d0a0d1a1... to denote a timed word (ai, ti) ∈ Σ∞
T where t0 = d0 and ti+1 = ti +di+1.200

Conversely, the duration and the timed word of any sequence in (Σ ∪R)∞ is given inductively201

as follows. For any d ∈ R≥0, τ ∈ Σ, α ∈ (Σ ∪ R)∗, and β ∈ (Σ ∪ R)∞ let duration(τ) def= 0;202

duration(d) def= d; duration(αβ) = duration(α) + duration(β); tword(ε) = tword(d) def= ε;203

tword(αd) def= tword(α); and tword(ατ) def= tword(α)(τ, duration(α)). An infinite timed word204

of finite duration is called a zeno word. Our results hold whether time must diverge (i.e.,205

zeno words are not considered) or not; we note whenever time divergence affects proofs.206

A timed LTS is one with edge labels in Σ ⊎R≥0, so that edges labelled by R≥0 (modelling207

the passing of time) satisfy the following conditions for all α, β, γ ∈ V and d, d′ ∈ R≥0.208

1. (Zero-delay): α
0−→ α,209

2. (Determinism): If α
d−→ β ∧ α

d−→ γ then β = γ,210

3. (Additivity): α
d−→ β

d′

−→ γ then α
d+d′

−−−→ γ.211

The timed language L(s) ⊆ Σω
T of a state s consists of all the timed words read along212

accepting runs L(s) def= tword(L(s)). We write L(S) for the timed language of the initial213

state of the LTS S.214

Timed Automata. Timed automata are finite-state automata equipped with finitely many215

real-valued variables called clocks, whose transitions are guarded by constraints on clocks.216

Constraints on clocks C = {x, y, . . .} are (in)equalities x ◁ n where x ∈ C, n ∈ N and217

◁ ∈ {≤, <}. Let B(C) denote the set of Boolean combinations of clock constraints, called218

guards. A clock valuation ν ∈ RC assigns a value ν(x) to each clock x ∈ C. We write ν |= g219

if ν satisfies the guard g. A timed automaton (TA) T = (Q, ι, C, ∆, Σ, Acc) is given by220

Q a finite set of states including an initial state ι;221

Σ an input alphabet;222

C a finite set of clocks;223

∆ ⊆ Q × B(C) × Σ × 2C × Q a set of transitions; each transition is associated with a224

guard, a letter, and a set of clocks to reset. A transition that reads letter a ∈ Σ will be225

called an a-transition. We assume that for all (s, ν, a) ∈ Q × RC
≥0 × Σ there is at least226

one transition (s, g, a, r, s′) ∈ ∆ so that ν satisfies g.227

Acc ⊆ ∆ω an acceptance condition.228

Timed automata induce timed LTSs, and can thus be used to define timed languages, as229

follows. A configuration is a pair consisting of a control state and a clock valuation. These230

can evolve in two ways, as follows. For all configurations (s, ν) ∈ Q × RC
≥0,231

there is a delay step (s, ν) d−→ (s, ν + d) for every d ≥ 0, which increments all clocks by d.232

there is a discrete step (s, ν) τ−→ (s′, ν′) if τ = (s, g, a, r, s′) ∈ ∆ is a transition so that ν233

satisfies g and ν′ = ν[r → 0], that is, it maps r to 0 and agrees with ν on all other values.234



6 History-deterministic Timed Automata

Naturally, each delay d yields a unique successor configuration and ν
d−→ d′

−→ ν′ ⇐⇒ ν
d+d′

−→ ν′
235

for any two d, d′ ≥ 0 and valuations ν, ν′. So this indeed induces a timed LTS.236

Discrete steps, however, are a source of nondeterminism: a configuration may have several237

a-successors induced by different transitions whose guards are satisfied. T is deterministic if238

its induced LTS is deterministic, which is the case iff for every state s, all transitions from s239

have mutually exclusive guards.240

A path ρ = (s0, ν0) l1−→ (s1, ν1) l2−→ (s2, ν2) . . . is called reduced if it does not contain241

consecutive delay steps. It is a run on timed word w ∈ (ΣT )∞ if tword(l1l2 . . .) = w. The242

acceptance condition is lifted to the LTS as expected. Namely, a run is accepting if ρ ∈ Acc.243

This way, the language L(s, ν) ⊆ Σω
T of a configuration (s, ν) consists of all timed words for244

which there exists an accepting run from (s, ν). The language of T is L(T ) def= L((ι, 0)), the245

languages if the initial configuration with state ι and all clocks set to zero.246

3 History-determinism247

Informally, an automaton or LTS is history-deterministic if the non-determinism can be248

resolved on-the-fly, based only on the history of the word and run so far. We give two equivalent249

definitions, each being more convenient than the other for some technical developments.250

▶ Definition 1 (History-determinism). A fair LTS S = (V, Σ, E) is history-deterministic251

(from initial state s0 ∈ V ) if there is a resolver r : E∗ × Σ → E that maps every finite run252

and letter a ∈ Σ to an a-labelled transition such that, for all words w = a0a1 · · · ∈ L(s0) the253

run ρ defined inductively for i > 0 by ρi+1
def= ρir(ρi, ai+1), is an accepting run on w from s0.254

Equivalently (from [9] for ω-regular automata), a resolver corresponds exactly to a winning255

strategy for Player 2 in the following letter game.256

▶ Definition 2 (Letter game). The letter game on a fair LTS S = (V, Σ, E) with initial state257

s0 ∈ V is played between Players 1 and 2. At turn i:258

Player 1 chooses a letter ai ∈ Σ.259

Player 2 chooses an ai labelled edge τi ∈ E.260

A play is a pair (w, ρ) where w = a0a1 . . . is an infinite word and ρ = τ0τ1... is a run on w.261

A play is winning for Player 2 if either w /∈ L(s0) or ρ is an accepting run on w from s0.262

In these and other games we consider, strategies for both players are defined as usual,263

associating finite histories (runs) to valid player choices. Now winning strategies for Player 2264

in the letter game exactly correspond to resolvers for S and vice-versa.265

▶ Proposition 3. Player 2 wins the letter game on S if and only if S is history-deterministic.266

While history-determinism is known to relate to fair simulation, in the sense that history-267

deterministic automata simulate deterministic ones for the same language [21], their relation268

has so far not been studied in more details. Below we show that history-determinacy can269

equivalently be characterised in terms of fair simulation.270

▶ Theorem 4. For every fair LTS S and initial state q the following are equivalent:271

1. S is history-deterministic.272

2. For all complete fair LTS S′ with initial state q′, q′ ⊆L q if and only if q′ ⪯ q.273

Proof (1) =⇒ (2). Fair simulation q ⪯ q′ trivially implies q ⊆L q′ by definition.274

For the other implication, assume that q ⊆L q′. By assumption (1) there exists a resolver,275

i.e. a winning strategy in the letter game. Player 2 can win the fair simulation game276
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by ignoring her opponent’s configuration and moving according to this resolver. By the277

completeness assumption on S′, Player 1 can never propose a letter for which there is no278

successor in S′. So each player produces an infinite run on the same word w and the run279

produced by Player 2 is the same as that produced by the resolver in S′. If w ∈ L(q) then it280

is in L(q′) and Player 2’s run accepts. If w /∈ L(q) then Player 2 wins due to the fairness281

condition. In both cases she wins the fair simulation game and therefore q ⪯ q′.282

(2) =⇒ (1) If condition (2) holds for all complete fair LTSs then q can fairly simulate283

the one consisting of a single state with self-loops for all transitions of S whose acceptance284

condition contains exactly all accepting runs from q. Then the strategy for Player 2 in the285

fair simulation game can be used as a strategy in the letter game. ◀286

4 Expressivity287

In this section we show that history-deterministic timed automata with safety acceptance are288

determinizable. To do so, we show (in Lemma 8) that these automata have simple resolvers,289

which only depend on the equivalence class of the current clock configuration with respect to290

the region abstraction. That is to say, the resolver only needs to know the integer part of291

clock values (up to the maximal value that appears in clock constraints) and the ordering of292

their fractional parts. We can then use such a simple resolver to determinize the automaton293

by adding guards that restrict transitions so that the automaton can only take one transition294

per region, as dictated by the resolver.295

The following is the standard definition of regions (cf. [3], def. 4.3).296

▶ Definition 5 (Region abstraction). Let T = (Q, ι, C, ∆, Σ, Acc) be a timed automaton and297

for any clock x ∈ C let cx denote the largest constant in any clock constraint involving x.298

Two valuations ν, ν′ ∈ RC
≥0 are (region) equivalent (write ν ∼ ν′) if all of the following hold.299

1. For all x ∈ C either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or both ν(x) and ν′(x) are greater than cx.300

2. For all x, y ∈ C with ν(x) ≤ cx and ν(y) ≤ cy, fract(ν(x)) ≤ fract(ν(y)) iff fract(ν′(x)) ≤301

fract(ν′(y)).302

3. For all x ∈ C with ν(x) ≤ cx, fract(ν(x)) = 0 iff fract(ν′(x)) = 0.303

Two configurations (q, ν) and (q′, ν′) are (region) equivalent, write (q, ν) ∼ (q′, ν′), if q = q′
304

and ν ∼ ν′.305

▶ Definition 6 (Run-trees). A run-tree on a timed word u = (a0, t0)(a1, t1) . . . from TA306

configuration (s0, ν0) is a tree where nodes are labelled by configurations, and edges by307

transitions such that308

1. The labels along every branch form a run on u from (s0, ν0)309

2. It is complete wrt. discrete steps: suppose the path leading towards some node is labelled310

by a run ρ which reads tword(ρ) = (a0, t0) . . . (ai, ti), ends in a configuration (s, ν), and311

has duration(ρ) = ti+1. Then for every transition τ = (s, g, ai+1, r, s′) ∈ ∆ with ν |= g312

and so that (s, ν) τ−→ (s′, ν′), there is a τ -labelled edge to a new node labelled by (s′, ν′).313

A run-tree is reduced if all its branches are. That is, there are no consecutive delay steps.314

Notice that for every initial configuration and timed word, there is a unique reduced run-tree,315

all of whose branches are runs on the word (since we have no deadlocks), and vice versa, all316

reduced runs on the word appear as branches on the run-tree.317

We extend the region equivalence from configurations to run-trees in the natural fashion:318

two run-trees are equivalent if they are isomorphic and all corresponding configurations are319

equivalent. That is, they can differ only in fractional clock values and the duration of delays.320

The following is our key technical lemma.321
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▶ Lemma 7. Consider two region equivalent configurations (s, ν) ∼ (s′, ν′).322

For every timed word u there is a timed word u′ so that the reduced run-tree on u from323

(s, ν) is equivalent to the reduced run-tree on u′ from (s′, ν′).324

Proof sketch. It suffices to show that for some (not necessarily reduced) run-tree on u from325

(s, ν) there exists some equivalent run-tree from (s′, ν′) as this implies the claim by collapsing326

all consecutive delay steps and thus producing the reduced tree on both sides.327

We proceed by stepwise uncovering a suitable run-tree from (s, ν) for ever longer prefixes328

of u and constructing a corresponding equivalent run-tree from (s′, ν′). The intermediate329

finite trees we build have the property that all branches have the same duration. In each330

round we extend all current leafs, in both trees, either by331

1. all possible non-deterministic successors (for the letter prescribed by the word u), in case332

the duration of the branch is already equal to the next time-stamp in u, or333

2. one successor configuration due to a delay, which must be the same on all leafs.334

For the second case, the delays used to extend the two trees need not be the same because335

we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in336

(s, ν) need not follow the timestamps in u but can be shorter, meaning the run-tree may not337

be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two338

trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on339

the whole word u from (s, ν). Together this implies the existence of a corresponding word u′
340

and a run-tree from (s′, ν′).341

To this end we propose a stronger invariant, namely that the relative orderings of the342

fractional values in all leafs are the same on both sides. The delays will be chosen in such343

a way as to always increase the maximal fractional clock value among all leafs to the next344

higher integer. Due to space constraints full details are deferred to Appendix A. ◀345

We are now ready to show that history-deterministic TA with safety acceptance have346

simple resolvers based on the region abstraction.347

▶ Lemma 8. Every history-deterministic TA with safety acceptance has a resolver r that bases348

its decision only on the current letter and region. That is, for any letter a ∈ Σ and any two349

finite runs (ι, 0) ρ−→ (s, ν) and (ι, 0) ρ′

−→ (s′, ν′) consistent with r and so that (s, ν) ∼ (s′, ν′),350

it holds that r(ρ, a) = r(ρ′, a).351

Proof. Let r be a resolver for a history-deterministic safety TA T .352

We now build a resolver that only depends on the region of the current configuration. To353

do so, we choose a representative configuration within each region, which will determine the354

choice of the resolver for the whole region: For every region R ∈ [Q × RC
≥0]∼, consider the355

configurations that are reached by at least one r-consistent run, and mark one of them mR,356

if at least one exists, along with one r-consistent run ρR leading to the configuration mR.357

Let r′ be the aspiring resolver that, when reading a letter a, considers the region R of the358

current configuration, and follows what r does when reading a after the marked r-consistent359

run ρR. We set r′(ρ, a) def= r(ρR, a) where R is the final region of the prefix-run ρ. Note that360

r′ is well defined since it always follows transitions consistent with some r-consistent run361

and can therefore only visit marked regions.362

We claim that r′ is indeed a resolver. Towards a contradiction, assume that it is not a363

resolver, that is, there is some word w ∈ L(T ) for which r′ builds a rejecting run. As T is a364
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safety automaton, we can consider the last configuration (s, ν) along this run from which the365

remaining suffix au of w can be accepted 1.366

Suppose that ρ is the prefix of the run built by r′ on w, which ends in (s, ν) and let367

τ = r′(ρ, a) be the a-transition chosen by r′. We know that τ leads from (s, ν) to some368

configuration (s′, ν′) from where u is not accepted. By definition of r′, there must be a369

marked configuration mR ∼ (s, ν) reached by some run ρR from which r chooses the same370

a-transition τ . By Lemma 7 there must be a word au′ so that the run-tree on au from (s, ν)371

is equivalent to that on au′ from mR. This means that au′ ∈ L(mR) and, as r is a resolver,372

there must be an accepting run that begins with a step (mR) τ−→ (m′
R). We derive that373

u also has an accepting run from (q, ν) that begins with τ , contradicting the assumption374

that (q, ν) is the last position on the run r′ built on w so that its suffix can be accepted.375

Therefore, r′ is indeed a resolver. ◀376

We can now use the region-based solver to determinize history-deterministic safety TA.377

▶ Theorem 9. Every history-deterministic safety TA is equivalent to a deterministic TA.378

Proof. Consider a history-deterministic TA T = (Q, ι, C, ∆, Σ, Acc), with a region-based re-379

solver (as in Lemma 8) r, and let R be the region graph of T . Define T ′ = (Q, ι, C, ∆′, Σ, Acc)380

where (q, g ∧ z, a, X, q′) ∈ ∆′ for z a guard defining a region of R, that is, a guard that381

is satisfied exactly by valuations in R, if (q, g, a, X, q′) ∈ ∆ is the transition chosen by r382

in the region defined by the guard z. In other words, T ′ is T with duplicated transitions383

guarded so that a transition can only be taken from a region from which r chooses that384

transition. Observe that T ′ is deterministic: the guards describing regions are mutually385

exclusive, therefore the guards of any two transitions from the same state over the same386

letter have mutually exclusive guards.387

As runs of T ′ corresponds to a run of T with added guards, L(T ′) ⊆ L(T ). Conversely,388

if w ∈ L(T ), then its accepting run consistent with r is also an accepting run in T ′, since389

each transition along this run, being chosen by r, is taken at a configuration that satisfies390

the additional guards in T ′. We can therefore conclude that L(T ) = L(T ′). ◀391

While this determinization procedure preserves the state-space of the automaton, it392

multiplies the number of transitions (or the size of guards) by the size of the region abstraction.393

Then, while history-deterministic safety TA are no more expressive than deterministic ones,394

they could potentially be exponentially more succinct, when counting transitions and guards.395

5 Deciding History-determinism396

Recall the letter game characterisation of history-determinism: Player 1 plays timed letters397

and Player 2 responds with transitions. Player 2 wins if either the word is not in the language398

of the automaton, or her run is accepting. As TA are not closed under complement, it isn’t399

clear how to solve this game. Bagnol and Kuperberg [7] introduced token games, which400

are easier to solve, but which coincide with the letter game for some types of automata, in401

particular for Büchi [7], coBüchi [8] and some quantitative automata [11].402

1 The fact that a rejecting run produced by a non-resolver must ultimately reach a configuration that
cannot accept the remaining word also holds for TAs over finite words. However, this is not the case for
reachability acceptance, which is why we only state the claim for safety here. Still, we conjecture that
history-deterministic TA with reachability acceptance admit region-based resolvers.
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In the k-token game, in addition to providing letters, Player 1 also builds k runs, of403

which at least one should be accepting. The fewer runs Player 1 is allowed to use, the more404

information he gives Player 2 about the word he will play. We show that the 1 and 2-token405

games characterize history-determinism for fair LTSs with safety and reachability acceptance.406

▶ Definition 10 (k-token game [6]). Given a fair LTS S = (V, Σ, E) with initial state s0 ∈ V407

and an integer k > 0, the game Gk(S) proceeds in rounds. At each round i:408

Player 1 plays a letter ai ∈ Σ409

Player 2 plays a transition τi in E410

Player 1 plays transitions τ1,i, τ2,i . . . τk,i in S411

This way, Player 1 chooses an infinite word w = a0a1 . . . and exactly k runs ρi = τi,0τi,1τi,2 . . .412

for 1 ≤ i ≤ k, and Player 2 chooses a run ρ = τ0τ1 . . . . The play is winning for Player 1 if413

some ρj is an accepting run over t0a0... from s0 but ρ is not. Else it is winning for Player 2.414

We write Gk(T ) to mean the k-token game on the LTS induced by T .415

▶ Remark 11. Gk(S) and the letter game are determined for any k and fair LTS S for any416

Borel-definable acceptance condition [26]. In particular, the letter game is determined for417

both safety and reachability TA. Indeed, the winning condition for Player 2 is a disjunction of418

the complement of L(B) and of the acceptance condition of B. Then, as long as L(B) is Borel,419

by the closure of Borel sets under complementation and disjunction, the letter-game is Borel,420

and therefore determined, following Martin’s Theorem [26]. If time is not required to diverge,421

then reachability timed languages and safety timed languages are clearly Borel. Since words422

in which time diverges are also Borel (they can be seen as the countable intersection of words423

where time reaches each unit time), this remains the case when we require divergence.424

The next lemma was first stated for finite [6], then for quantitative automata [11]. The425

same proof works for all (generally infinite) fair LTSs, and is given again in Appendix B.426

▶ Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins Gk(S) for all k.427

G1(S) was shown to characterise history-determinism for a number of quantitative428

automata in [11]. In Appendix B we show, using similar proof techniques, that this is also429

the case for all safety LTSs. The key observation is that for Player 2 to win the letter game,430

it suffices that she avoids mistakes. We then show that a winning strategy for her in G1(S)431

can be used to build such a strategy.432

▶ Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(S)433

if and only if S is history-deterministic.434

This argument does not work for reachability TA: it is no longer enough for Player 2435

to avoid bad moves to win; she needs to also guarantee that she will actually reach a final436

state. Here, we characterise history-determinism with the 2-token game. However, our proof437

requires finite branching in Player 2’s choices, so we can not state it for LTSs in general.438

▶ Lemma 14. Given a finitely branching fair LTS S with a reachability acceptance condition,439

Player 2 wins G2(S) if and only if S is history-deterministic.440

Proof. If Player 2 wins in the letter game, she wins in G2(S) by ignoring Player 1’s tokens.441

Else, since the letter game is determined (Remark 11), Player 1 wins in the letter game442

on S with a strategy σ. All plays that agree with σ must eventually play a good prefix,443

that is, a prefix of a timed word of which either all continuations are in L(S) if time is not444

required to diverge, or all non-zeno continuations are in L(S) if time is required to diverge.445

At each turn Player 2 has only a finite number of enabled transitions to choose from, because446



T. A. Henzinger and K. Lehtinen and P. Totzke 11

S is finitely branching. Therefore the strategy-tree for σ is finitely branching and by König’s447

lemma, there is a bound k such that any play that agrees with σ has played a good prefix448

after k steps.449

We now argue that Player 1 wins in Gk′(S) for a large enough k′. Let k′ be larger than450

the number of distinct run prefixes of length k on any word of length k played by σ (that is,451

at most bk where b is the branching degree of S). Then, in G′
k(S), Player 1 wins by using the452

following strategy: he plays the letters according to σ and Player 2’s moves and moves his453

k′ tokens along all possible run prefixes for the first k moves, and then chooses transitions454

arbitrarily. Since after k steps σ guarantees that he has played a good prefix, at least one of455

his runs built in this manner is accepting.456

This strategy is winning: indeed, if Player 2 could beat it with some strategy σ′, then457

she could use σ′ in the letter game to beat σ, a contradiction. From Lemma 12, and the458

determinacy of Gk(S), Player 1 therefore wins G2(S) whenever he wins the letter game. ◀459

We now consider the problem of deciding whether a given safety or reachability TA is460

history-deterministic. We use the observation that the k-token games played on LTSs induced461

by TA can be expressed as a timed parity game from [12] played on the (k + 1)-fold product.462

▶ Lemma 15. For all k and timed safety or reachability automata T , the game Gk(T ) is463

solvable in ExpTime.464

Proof. Gk(T ) is a timed game on an arena consisting of the configuration space of the465

product of k + 1 copies of T . The winning condition consists of a boolean combination of466

safety or reachability conditions. Such games can be solved as timed parity games as defined467

in [12] in time exponential in the number of clocks c and in k [12, Theorem 3]. Note that [12]468

uses concurrent timed parity games, of which turn-based ones are a special case. ◀469

▶ Theorem 16. Given a safety or reachability TA, deciding whether it is history-deterministic470

is decidable in ExpTime.471

Proof. From Lemma 13 and Lemma 14, deciding the history-determinism of a safety or472

reachability TA T reduces to solving G1(T ) or G2(T ) respectively, both of which can be473

done in ExpTime, from Lemma 15. ◀474

As explained in the introduction, this also solves the good-enough synthesis problem of475

deterministic safety and reachability TA.476

6 Synthesis, Games and Composition477

In this section we consider several games played on (LTSs of) timed automata and how they478

can be used to decide classical verification problems. We focus on turn-based games, although479

our techniques can be generalised to concurrent ones. We first look at language inclusion,480

then synthesis, and finally we consider good-for-games timed automata, that is, automata481

that preserve the winner when composed with a game and show that good-for-gameness and482

history-determinism coincide for both reachability and safety timed automata.483

6.1 Language Inclusion and Fair Simulation games484

The connection between history-determinism and fair simulation, established in Theorem 4,485

allows to transfer decidability results to history-deterministic TA. Let’s first recall that486

simulation checking is decidable for timed automata using a region construction [28]. This487
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paper precedes the notion of fair simulation (restricting Player 1 to fair runs) and is thus only488

applicable for safety conditions. However, the result holds for more general parity acceptance489

(for which each state is assigned an integer priority and where a run is accepted if the highest490

priority it sees infinitely often is even).491

▶ Lemma 17. Fair simulation is decidable and ExpTime-complete for parity timed automata.492

Proof. It suffices to observe that the simulation game can be presented as a timed parity493

game, as studied in [12], played on the product of two copies of the automaton. These can be494

solved in ExpTime. A matching lower bound holds even for safety or reachability acceptance495

(see Lemma 24 in Appendix C for details).496

◀497

▶ Corollary 18. Timed language inclusion is decidable and ExpTime-complete for history-498

deterministic TA. More precisely, given a TA S with initial state q and a history-deterministic499

TA S′ with initial state q′, checking if q ⊆L q′ holds is ExpTime-complete.500

Proof. As B is history-deterministic and by Theorem 4, we have q ⊆L q′ if, and only if,501

q ⪯ q′. The result follows from Lemma 17. ◀502

6.2 Synthesis Games503

We show that as is the case in the regular [21], pushdown [25], cost function [13], and quant-504

itative [10] settings, synthesis games with winning conditions given by history-deterministic505

TA are no harder to solve than those with for winning condition given by deterministic TA.506

▶ Definition 19 (Timed synthesis game). Given a timed language L ⊆ (ΣI × ΣO)ω
T , the507

synthesis game for L proceeds as follows. At turn i:508

Player I plays a delay di and a letter ai ∈ ΣI509

Player II plays a letter bi ∈ ΣO.510

Player II wins if d0
(

a0
b0

)
d1

(
a1
b1

)
... ∈ L or if time does not progress. If Player II has a winning511

strategy in the synthesis game, we say that L is realisable.512

▶ Theorem 20. Given a history-deterministic timed parity automaton T , the synthesis game513

for L(T ) is decidable and ExpTime-complete.514

The proof (in Appendix C) follows a similar reduction to one in [25], in which the515

nondeterminism of the automaton is moved into Player 2’s output alphabet, forcing her to516

simultaneously build a word in the winning condition and an accepting run witnessing this.517

Since accepting runs are recognised by deterministic automata, this reduces the problem to518

the synthesis problem for deterministic timed automata. The lower bound follows from the519

ExpTime-completeness of synthesis for deterministic TA [15].520

The ExpTime decidability of universality for history-deterministic TA follows both from521

the decidability of language inclusion in the previous section and from the decidability of522

synthesis: the universality of T reduces to deciding the winner of the synthesis game over523

{
(

w
w

)
| w ∈ L(T )}, recognised by a history-deterministic TA if T is history-deterministic.524

6.3 Composition with games525

Implicitly, at the heart of these reductions is the notion of composition: the composition526

of the game to solve with a history-deterministic automaton for the winning condition527

yields an equivalent game with a simpler winning condition. We say that an automaton is528
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good-for-games if this composition operation preserves the winner of the game for all games.529

While history-determinism always implies good-for-gameness, the converse is not necessarily530

true. While the classes of history-deterministic and good-for-games automata coincide for531

ω-regular automata [9], this is not the case for quantitative automata [10], which can be532

good-for-games without being history-deterministic. We argue that for reachability and533

safety timed automata, good-for-gameness and history-determinism coincide.534

▶ Definition 21 (Timed Games). A timed game (roughly following [15]), consists of an arena535

G = (Q, ι, C, ∆, Σ, L) and is similar to a TA except that Q, which need not be finite, is536

partitioned into Q = Q1 ⊎ Q2, that is, positions Q1 belonging to Player 1 and positions Q2537

belonging to Player 2, and L is a timed language, not an acceptance condition. Furthermore,538

an a-transition produces the letter a, rather than reads it. Configurations are defined as for539

TA and we assume every configuration to have at least one successor-configuration.540

A timed game proceeds in the configuration space of G with Player 1 at each turn i541

advancing time with a delay di ∈ R. Then, from the resulting configuration ci, the owner of542

the state of ci chooses a transition in ∆ enabled in ci, leading to a transition ci+1 producing543

a letter ai. An infinite play is winning for Player 2 if the word d0a0d1a1 . . . produced is in L.544

▶ Definition 22 (Composition). Intuitively, the composition of a game G and an automaton545

T consists of a game in which the two players play on G while Player 2 must also build,546

letter by letter, a run of T on the outcome of the game in G. More formally, given a TA547

T and a game G with winning condition L(T ), the composition T ◦ G consists of a game548

played on the product of the configuration spaces of G and T , starting from the initial state549

of both, in which, at each turn i, from a configuration (ci, c′
i), Player 1 plays a time delay550

di ∈ R, the owner of the current G-state chooses a move in the configuration space of G to a551

successor-configuration ci+1, producing a letter ai, and then Player 2 chooses a transition552

over (di, ai) enabled at the current T -configuration c′
i, leading to a successor-configuration553

c′
i+1. The game then proceeds from (ci+1, c′

i+1).554

Player 2 wins infinite plays if the run built in T is accepting, and loses if it is rejecting555

or if she cannot move in the G-component.556

Observe that if Player 1 wins in G, then he also wins in T ◦ G with a strategy that produces557

a word not in L(T ) in G, as then Player 2 can not produce an accepting run in T .558

[10, Lemma 7] shows that for (quantitative) automata for which the letter-game is559

determined, (threshold) history-determinism coincides with good-for-gameness. The lemma560

is stated for quantitative automata, where thresholds are relevant; in the Boolean setting,561

it simply states that the determinacy of the letter game implies the equivalence of history-562

determinism and good-for-gameness. In our timed setting, a similar argument, combined563

with the determinacy of the letter game for safety and reachability TA, gives us the following.564

▶ Theorem 23. Let T be a safety or reachability TA. The following are equivalent:565

1. T is history-deterministic.566

2. For all timed games G with winning condition L(T ), whenever Player 2 wins G, she also567

wins T ◦ G.568

Proof. (1) =⇒ (2) If T is history-deterministic, the resolver can be used as a strategy in the569

T component of T ◦ G. When combined with a winning strategy in G that guarantees that570

the G-component produces a word in L(T ), the resolver guarantees that the T -component571

produces an accepting run, thus giving the victory to Player 2.572

(2) =⇒ (1) Towards a contradiction, assume T is not history-deterministic, that is, by573

determinacy of the letter game from Remark 11, that Player 1 has a winning strategy σ in574
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the letter game. Now consider the game Gσ, without clocks or guards, in which positions,575

all belonging to Player 1, consist of the prefixes of timed words played by σ, with moves576

w
(t,a)−−−→ w(t, a). As σ is winning for Player 1, all maximal paths in Gσ are labelled by a timed577

word in L(T ), so Gσ is winning for Player 2.578

We now argue that Player 1 wins T ◦ Gσ by interpreting Player 2’s moves in the T579

component as her moves in the letter game, and choosing moves in G mimicking the letter580

dictated by σ. Then, if Player 2 could win against this strategy in T ◦ Gσ, she could also581

win against σ in the letter game by interpreting Player 1’s choices of letters as moves in G,582

and responding with the same transition as she plays in the T component of T ◦ Gσ. Such a583

strategy is a valid strategy in the letter game on T , and while it might not be winning in584

general, it is winning against σ, contradicting that σ is a winning strategy for Player 1. ◀585

This proof fails for acceptance conditions beyond safety and reachability, as it isn’t586

clear whether timed Büchi and coBüchi automata define Borel sets. If this was the case587

then history-deterministic timed automata would be exactly those that preserve winners in588

composition with games, as is the case in the ω-regular setting.589

7 Conclusion590

We introduced history-determinism for timed automata and showed that it suffices for solving591

important problems that previously required full determinism, in particular, timed language592

inclusion, universality and synthesis. We showed that for the important classes of timed593

safety and timed reachability automata, history-determinism can be checked (and therefore594

good-enough synthesis of deterministic reachability and safety automata can be solved) and595

every history-deterministic timed safety automaton can be determinized.596

We conjecture that determinization does not hold for history-deterministic timed coBüchi597

automata. Consider the timed coBüchi language “there is a real time t such that for every598

nonnegative integer i, there is a letter a at time t + i.” This timed language is recognised by599

a history-deterministic coBüchi automaton in which a nondeterministic transition guesses a600

“witness time” t after which a occurs at every unit interval, and which allows for an unbounded601

number of failed guesses (using the coBüchi condition). To see that this automaton is history-602

deterministic, let the resolver repeatedly and deterministically pick the time with the most603

previous occurences of a at unit-interval distances. If a timed input word is in the language,604

then this resolver will eventually choose a correct witness time and produce an accepting run.605

We conjecture that the complement of this language cannot be defined by a (nondetermin-606

istic) timed automaton. Informally, a timed automaton would require an unbounded number607

of clocks to check that “for all occurrences of a there is a nonnegative integer distance i608

such that a is not followed by another a after i time units.” If so, this timed language would609

separate the classes of deterministic and history-deterministic timed languages.610

Let us conclude with another conjecture. We showed that history-deterministic timed611

automata are “good” for solving turn-based timed games, where in each turn of the game,612

one of the two players chooses a time delay or an action. A more general, concurrent setting613

for timed games is presented in [14]. In the concurrent version both players simultaneously614

choose permissible pairs of time delays and actions, and the player who has picked the shorter615

time delay gets to move. While concurrent games may not be determined, we conjecture616

that these concurrent timed games can again be solved by composing the (timed) arena with617

the (timed) winning condition, as long as the winning condition is history-deterministic.618
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A Expressivity711

▶ Lemma 7. Consider two region equivalent configurations (s, ν) ∼ (s′, ν′).712

For every timed word u there is a timed word u′ so that the reduced run-tree on u from713

(s, ν) is equivalent to the reduced run-tree on u′ from (s′, ν′).714

Proof. It suffices to show that for some (not necessarily reduced) run-tree on u from (s, ν)715

there exists some equivalent run-tree from (s′, ν′) as this implies the claim by collapsing all716

consecutive delay steps and thus producing the reduced tree on both sides.717

We proceed by stepwise uncovering the run-tree from (s, ν) for ever longer prefixes of u718

and constructing a corresponding equivalent run-tree from (s′, ν′). The intermediate finite719

trees we build have the property that all branches have the same duration. In each round we720

extend all current leafs, in both trees, either by721

1. all possible non-deterministic successors (for the letter prescribed by the word u), in case722

the duration of the branch is already equal to the next time-stamp in u, or723

2. one successor configuration due to a delay, which must be the same on all leafs.724

For the second case, the delays used to extend the two trees need not be the same because725

we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in726

(s, ν) need not follow the timestamps in u but can be shorter, meaning the run-tree may not727

be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two728

trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on729

the whole word u from (s, ν). Together this implies the existence of a corresponding word u′
730

and a run-tree from (s′, ν′).731

Invariant. To this end we propose a stronger invariant, namely that the relative orderings732

of the fractional values in all leafs are the same on both sides. To be precise, let’s reinterpret733

a clock valuation as a function ν : C × N → {⊥} ∪ [0, 1), that assigns to every clock and734

possible integral value either a fractional value between 0 and 1, or ⊥ (indicating that the735

given clock does not have the given integral value). This way for every clock x there is exactly736

one n ∈ N with ν(x, n) ̸= ⊥ and the image ν(C × N) has at most |C| + 1 different elements.737

For any ordered set F = {⊥ < f1 < f2 < · · · < fl} ⊇ ν(C × N) of fractional values, we can738

thus represent ν as a function ν̂ : C × N → {⊥, 1, . . . l} that, instead of exact fractional clock739

values only yields their index in F (and maps ⊥ 7→ ⊥).740

Consider some run-tree with leafs (q1, ν1)(q2, ν2) · · · (qlνl) with combined fractional values741

F =
⋃l

i=1 νi(C × N), and an equivalent run-tree with leafs (q′
1, ν′

1)(q′
2, ν′

2) · · · (q′
lν

′
l) with742

combined fractional values F ′ =
⋃l

i=1 ν′
i(C ×N). The two trees are aligned if for all 1 ≤ i ≤ l,743

ν̂i = ν̂′
i. Notice that this still allows the two trees to differ on their exact fractional values but744

now they must agree on the relative order of all contained clocks on leafs, and in particular745

which ones are maximal and therefore the closest to the next larger integer. We will always746

select a delay of 1 − max{F} and 1 − max{F ′}, respectively, in step 2 above.747

To show the claim we produce the required run-trees starting in (s, ν) ∼ (s′ν′). These748

are in particular two aligned run-trees on the empty word.749

Assume two aligned trees as above, where leafs have fractional values F = {⊥ < f1 <750

f2 < · · · < fm} and F ′ = {f ′
0 < f ′

1 < · · · < f ′
m}, respectively, and assume that the tree751

rooted in (s, ν) reads a strict prefix (a0, t0), . . . (ai, ti) of u.752

Case 1: the duration of all branches in the first tree equals ti+1, the timestamp of the753

next symbol in u. Then we extend each leaf in both trees by all possible ai+1-successors.754

This will produce two aligned trees because each leaf configuration in one must be region755

equivalent to the corresponding configuration in the other, and therefore satisfies the same756
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guards, enabling the same ai+1-transitions leading to equivalent successors. Note also that757

all branches in each tree still have the same duration, as no delay step was taken.758

Case 2: the duration of all branches in the first tree is strictly less than ti+1. Then759

we extend all leafs in the tree from (s, ν) by a delay of duration d = 1 − fm and all760

leafs in the other tree by a delay of duration d′ = 1 − f ′
m. Naturally, this produces761

exactly one successor for each former leaf. The sets of new fractional values on leafs are762 ⋃m
i=1(µ + d)(C × N) = {⊥ < 0 < f1 + d < · · · < fm−1 + d} and for any former leaf (q, µ)763

extended by a delay (q, µ) d−→ (q, µ + d), we have764

µ̂(x, n − 1) = m ⇐⇒ ̂(µ + d)(x, n) = 0 (1)765

and766

µ̂(x, n) = i < m ⇐⇒ ̂(µ + d)(x, n) = i + 1 ≤ m (2)767

Analogous equivalences hold for the corresponding step (q, µ′) d′

−→ (q, µ′ + d′) on the other768

tree. Notice that the two cases above are exhaustive as again, for all x ∈ C there is exactly769

one n ∈ N with µ(x, n) ̸= ⊥. We aim to show that ̂(µ + d) = ̂(µ′ + d′). Consider any x ∈ C770

and n ∈ N. We have that771

̂(µ + d)(x, n) = m
(1)⇐⇒ µ̂(x, n + 1) = 0772

(IH)⇐⇒ µ̂′(x, n + 1) = 0773

(1)⇐⇒ ̂(µ′ + d′)(x, n) = m774
775

and776

̂(µ + d)(x, n) = i < m
(2)⇐⇒ µ̂(x, n) = i + 1777

(IH)⇐⇒ µ̂′(x, n) = i + 1778

(2)⇐⇒ ̂(µ′ + d′)(x, n) = i < m779
780

It follows that ̂(µ + d) = ̂(µ′ + d′) which means that the two trees are again aligned, as781

required.782

To see why this procedure produces a run-tree on u (and an equivalent run-tree on some783

word u′), observe that there can be at most |F | + 1 many consecutive delay extensions784

according to step 2) before all integral clock values are strictly increased. ◀785

B Deciding History-determinism786

▶ Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins Gk(S) for all k.787

This is the generalisation of [6, Thm 14] (on ω-regular automata) to fair LTSs. The proof788

is similar to [6], without requiring positional strategies, and identical to that of [11, Theorem789

4] (on quantitative automata), without the quantitative aspects. If Player 2 wins G2(S) then790

she obviously wins G1(S), using her G2 strategy with respect to two copies of Player 1’s791

single token in G1. We therefore consider below k > 2.792

Let σ2 be a winning strategy for Player 2 in G2(S). We inductively show that Player 2793

has a winning strategy σi in Gi(S) for each finite i. To do so, we assume a winning strategy794

σi−1 in Gi−1(S). The strategy σi maintains some additional (not necessarily finite) memory795



T. A. Henzinger and K. Lehtinen and P. Totzke 19

that maintains the position of one virtual token in S, a position in the (not necessarily finite)796

memory structure of σi−1, and a position in the (not necessarily finite) memory structure of797

σ2. The virtual token is initially at the initial state of S. Then, the strategy σi then plays as798

follows: at each turn, after Player 1 has moved his i tokens and played a letter (or, at the799

first turn, just played a letter), it first updates the σi−1 memory structure, by ignoring the800

last of Player 1’s tokens, and, treating the position of the virtual token as Player 2’s token in801

Gi−1(S), it updates the position of the virtual token according to the strategy σi−1; it then802

updates the σ2 memory structure by treating Player 1’s last token and the virtual token as803

Player 1’s 2 tokens in G2(S), and finally outputs the transition to be played according to σ2.804

We now argue that this strategy is indeed winning in Gi(S). Since σi−1 is a winning805

strategy in Gi−1(S), the virtual token traces an accepting run if any of the runs built by the806

first i − 1 tokens of Player 1 is accepting. Since σ2 is also winning, the run built by Player 2’s807

token is accepting if either the run built by the virtual token or by Player 1’s last token808

is accepting. Hence, Player 2’s is accepting whenever one of Player 1’s runs is accepting,809

making this a winning strategy in Gi(S).810

▶ Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(S)811

if and only if S is history-deterministic.812

Proof. If S is history-deterministic then Player 2 wins G1(S) by using the resolver to choose813

her transitions. This guarantees that for all words in L(S) played by Player 1, her run is814

accepting, which makes her victorious regardless of Player 1’s run.815

For the converse, if Player 2 wins G1(S), consider the following family of copycat strategies816

for Player 1: at first, Player 1 plays σ and chooses the same transitions as Player 2; if,817

eventually, Player 2 chooses a transition τ from a configuration c that is not language-maximal,818

that is, moves to a configuration c′ that does no accept some word w that is accepted by819

some other configuration c′′ reachable by some other transition τ ′ from c, we call such a820

move non-cautious, and Player 1 stops copying Player 2 and instead chooses τ ′. From there,821

Player 1 wins by playing w and an accepting run on w from c′′. Since Player 2 wins G1(S),822

her winning strategy σ does not play any non-cautious moves against copycat strategies.823

Then, she can use σ in the letter-game, by playing as σ would play in G1(S) if Player 1824

copies her transitions. This guarantees that she never makes a non-cautious move, and, in825

particular, never moves out of the safe region of the automaton unless the prefix played by826

Player 1 has no continuations in L(S). This is a winning strategy in the letter-game, so S is827

history-deterministic. ◀828

C Synthesis, Games and Composition829

▶ Theorem 20. Given a history-deterministic timed parity automaton T , the synthesis game830

for L(T ) is decidable and ExpTime-complete.831

Proof. For the upper bound, we reduce the problem to solving synthesis games for determ-832

inistic timed parity automata, which is in ExpTime [15].833

Let T = (S, ι, C, ∆, Σ, Acc) be a timed automaton. Let T ′ be the deterministic timed834

automaton (S, ι, C, ∆′, Σ × ∆, Acc) where:835

∆′ = {(s, g, (σ, (s, g, σ, c, s′)), c, s′)|(s, g, σ, c, s′) ∈ ∆}

In other words, T ′ is a deterministic automaton with the state space of T , over the836

alphabet Σ × ∆, where the transition in the input letter dictates the transition in the837
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automaton. The language of T ′ is the set of words (w, ρ) such that there is an accepting run838

of T over w along the transitions of ρ.839

We now claim that given a history-deterministic automaton T with resolver r, Player840

II wins the synthesis game on T if and only if she wins it on T ′. First assume that Player841

II wins the synthesis game for T with a strategy s. Then, to win the synthesis game for842

T ′, at each turn i, after Player I plays di and ai, she needs to make two choices: she must843

choose both a response letter bi and a transition in T over (ai, bi). Given Player I’s move844

and the (first component of the) word built so far, she can use the strategy s to choose the845

response letter bi; this guarantees that the first component of the play is a word accepted846

by T . To choose the transition of T , she can use the resolver r: given the run ρ built from847

the delays (including di) and transitions played so far, she plays r(ρ, (ai, bi)). Since r is a848

resolver, this strategy guarantees that the resulting run is accepting, and hence that she wins849

the synthesis game on T ′.850

On the other hand, if Player I wins the synthesis game on T , he has a strategy s which851

guarantees a play w ∈ (Σi × ΣO)T that is not in the language of T . He can use the same852

strategy in the synthesis game of T ′ to guarantee a play (w, ρ) such that w is not in the853

language of T , and by extension (w, ρ) is not in the language of T ′, as there are no accepting854

runs over w in T .855

The lower bound follows from the ExpTime-completeness of synthesis for deterministic856

TA [15]. ◀857

Below we demonstrate that fair simulation checking for TA is ExpTime-hard even for858

very simple acceptance conditions.859

▶ Lemma 24. Checking fair simulation between TA is ExpTime-hard already for reachability860

or safety acceptance, or over finite words.861

Proof. This can be shown by reduction from countdown games [22], which are two-player862

games (Q, T, k) given by a finite set Q of control states, a finite set T ⊆ (Q × N>0 × Q) of863

transitions, labelled by positive integers, and a target number k ∈ N. All numbers are given864

in binary encoding. The game is played in rounds, each of which starts in a pair (p, n) where865

p ∈ Q and n ≤ k, as follows. First Player 1 picks a number l ≤ k − n, so that at least one866

(p, l, p′) ∈ T exists; Then Player 2 picks one such transition and the next round starts in867

(p′, n + l). Player 1 wins iff she can reach a configuration (q, k) for some state q.868

Determining the winner in a countdown game is ExpTime-complete [22] and can easily869

encoded as a simulation game between two TAs A and B as follows. Let A be the TA with870

no clocks and unrestricted (guards are True) self-loops for the two letters a and e; The idea871

is that Player 1 proposes l by waiting that long and then makes a discrete a-labelled move.872

Then Player 2, currently in some state p can update his configuration to mimic that of the873

countdown game, and punish (by going to a winning sink) if Player 1 cheated or the game874

should end. To implement this, B has two clocks: one to store n – the total time that passed875

– and one to store the current l, which is reset in each round.876

Suppose Player 1 waits for l units of time and then proposes a. Player 2, currently in877

some state p will have878

a and e-labelled transitions to a winning state with a guard that verifies that there is no879

transition (p, l, p′).880

a-labelled transitions to a state p′, with a guard that verifies that a some (p, l, p′) ∈ T881

exists, and which resets clock x2.882

a, and e-labelled transitions to a winning state guarded by x1 > k. This enables Player 2883

to win if the global time has exceeded the target k.884
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The only way that Player 1 can win is by following a winning strategy in the countdown885

game and by playing the letter e once B is in a configuration (q, k). Player 2 will not be able886

to respond. ◀887
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