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Approximating Weak Bisimilarity of Basic Parallel Processes

Piotr Hofman Patrick Totzke

This paper explores the well known approximation approach to decide weak bisimilarity ofBasic
Parallel Processes. We look into how different refinement functions can be used to prove weak
bisimilarity decidable for certain subclasses. We also show their limitations for the general case.
In particular, we show a lower bound ofω ∗ω for the approximants which allow weak steps and a
lower bound ofω +ω for the approximants that allow sequences of actions. The former lower bound
negatively answers the open question of Jančar and Hirshfeld.

1 Introduction

Basic Parallel Processes(BPP) were introduced by Christensen [1] as derivations of commutative context-
free grammars and are equi-expressible with communication-free Petri nets or process algebra using ac-
tion prefixing, choice and full merge only. We are interestedin deciding the problem ofweak bisimilarity
for BPP, which remains unresolved even for normed systems.

Christensen, Hirshfeld and Moller first prove the decidability of strong bisimulation between BPP
[2], Srba and Jaňcar [16, 14] show the PSPACE completeness of the problem. Forthe subclass of
normed systems – where every process has a finite distance to termination – a polynomial time algorithm
for bisimulation exists [11]. On the negative side, Hirshfeld [9] proves trace equivalence undecidable
for BPP and Hüttel [12, 13] shows that indeed all equivalences that lie between strong bisimulation and
trace equivalence in the linear/branching time spectrum [7] are undecidable.

The main obstacle for deciding weak bisimulation is that oneabstracts from silent moves and there-
fore allows for infinite branching. Weak bisimilarity is known to be PSPACE-hard for the whole class
[16] and still NP-hard [19] for the subclass of totally normed systems, which forbids variables of zero and
infinite norm. Stirling [18] showed that it is decidable for anon-trivial subclass that still allows infinite
branching albeit in a restricted form. Branching bisimulation for normed BPP is shown to be decidable
in [3]. However, the technique used there cannot be easily transferred to work also for weak bisimu-
lation. The problem is that in weak bisimulation games Duplicator can go through many equivalence
classes when making a move. This makes it hard to find a connection between the sizes of Duplicators
configurations before and after move.

Milner originally defines (weak) bisimulation by refinementas the limit of a decreasing sequence
of approximants. This definition is known to coincide with the more customary co-inductive definition
due to Park but the sequence of approximants does not necessarily converge at a finite level for infinitely
branching systems.

We explore theapproximation approachwhich is outlined as follows. Weak bisimilarity is a con-
gruence over a commutative monoid and therefore semi-linear [4], which means we can enumerate all
candidate relations. The fact that the weak bisimulation condition is expressible in Presburger Arithmetic
means that we can determine for each such candidate if it is a weak bisimulation that contains a given
pair. Hence, a semi-decision procedure for inequivalence immediately implies decidability. The approx-
imation method discussed here yields such a semi-decision procedure under two assumptions: 1)≈ is
finitely approximable: The sequence of approximants stabilizes at levelω , the first limit ordinal. 2) Each
approximant≈o for o<ω is decidable. If both hold true, one can simply iterate through all approximants
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and for each one check if the given pair of processes is not contained. The first condition guarantees that
this procedure terminates after finitely many rounds for anypair of inequivalent processes.

Because finite approximation fails for most interesting subclasses we focus on more rigorous refine-
ment functions than the ones typically considered. We successfully apply the approximation method to
restricted classes of BPP: We derive a decision procedure for checking weak bisimulation for a class
defined by Stríbrná in [19] that allows only a single visible action and no variables of 0 norm. Moreover,
we provide a new proof for the decidability of weak bisimulation for the class defined by Stirling [18].

We show a lower bound ofω ∗ω for the convergence index of the approximants considered pre-
viously, falsifying a conjecture that is attributed to Hirshfeld and Jaňcar1 that approximants stabilise at
level ω +ω . Moreover we show that the most powerful notion of approximation under consideration,
for which the individual approximants do not even need to be decidable themselves are not guaranteed
to converge below levelω +ω .

2 Preliminaries

We writeV⊗ for the set of all multisets over the finite domainV, αβ for the multiset union ofα ,β ∈V⊗

andε for the empty multiset. We use⊑ for multiset (pointwise) inclusion andP :V∗ →V⊗ is theParikh
mapping that assigns a word over a finite alphabet the multiset that agrees on all multiplicities. Write
Ord for the class of ordinal numbers.

Definition 2.1 (Basic Parallel Processes)A process descriptionis given by a finite set V= {X1, . . . ,Xn}
of variables, a finite set Act of actions and a finite set T of transition rules of the form X

a
−→ α where

X ∈V, a∈ Act andα ∈V⊗.
A processis a multiset in V⊗ and may be understood as the parallel composition Xl1

1 . . .Xln
n of l1

copies of X1, . . . , and ln copies of Xn. The behavior of a process is determined by the following extension
rule:

if X
a

−→ α ∈ T then Xβ a
−→ αβ for anyβ ∈V⊗

.

We assume a dedicated symbolτ ∈ Act that is used to modelsilent steps
τ

−→ and defineweak stepsby
τ

=⇒=
τ

−→∗ and
a

=⇒=
τ

−→∗ a
−→

τ
−→∗ for a∈ Act\{τ}. Weak steps are extended to sequences of actions

inductively: for the empty word let=⇒=
τ

=⇒=
τ

−→∗, for non-empty sequences define
aw
=⇒=

a
=⇒

w
=⇒ for

a ∈ Act,w ∈ Act∗. A deadlockis a process that cannot make any non-silent steps. Thenorm |α | of a
processα is length of the shortest wordw∈ Act∗ such thatα w

=⇒ δ for a deadlockδ and∞ if no such
sequence exists. We call a systemnormedif all its variables have finite norm.

Definition 2.2 (Weak Bisimilarity) A symmetric binary relation B over processes is aweak bisimula-
tion iff every pairαBβ and a∈ Act∗ satisfies: ifα a

−→ α ′ thenβ a
=⇒ β ′ such thatα ′Bβ ′. Two processes

α andβ are weakly bisimilar, denotedα ≈ β , if there exists a weak bisimulation B such thatαBβ .

Following [15] we characterize weak bisimilarity inductively by refinement:

Definition 2.3 (Approximants) For a given monotone refinement functionΨ : 2V⊗×V⊗
→ 2V⊗×V⊗

we
define a decreasing sequence ofapproximants, subsets of V⊗×V⊗ by transfinite induction:

• ≈0=V⊗×V⊗

• ≈i+1= Ψ(≈i) for successor ordinals i+1 and

1To our knowledge this conjecture appears in print only in Stríbrná’s PhD thesis [19]
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• ≈λ=
⋂

i<λ ≈i for limit ordinals λ
Weak Bisimulation approximantsare those based on the refinement functionF that maps any R⊆
V⊗×V⊗ to the largest symmetric relation that satisfies for all a∈ Act andα ′ ∈V⊗:

(α ,β ) ∈ F (R) ⇐⇒ α a
−→ α ′ implies ∃β ′

.β a
=⇒ β ′∧ (α ′

,β ′) ∈ R.

Every post-fixpoint2 of F is a weak bisimulation and by a straightforward applicationof a fixpoint
theorem due to Knaster and Tarski we see that the sequence of approximants defined byF converges to
weak bisimilarity:≈=

⋂
o∈Ord ≈o. Thus, if we have a pair of inequivalent processesα ,β , then there is

a least ordinalc such thatα 6≈c β . See [15], sec 4.6 for a more detailed account. Let theconvergence
indexfor a class of processes be the least ordinalc such that≈=≈c for any system of that class.

Weak bisimilarity can be characterized in terms of interactive games between two players, sometimes
called Spoiler and Duplicator [17]. For a given pair of processesα andβ , the game consists of a series of
rounds. In each round Spoiler chooses left or right process and performs a step from it, next Duplicator
must match this with an equally labeled weak step in the otherprocess. If one of the players is not able
to perform his next move then his opponent wins, infinite plays are won by Duplicator.

Proposition 2.4 Two processes are weakly bisimilar iff Duplicator has a strategy to win the bisimulation
game regardless of his opponents choices.

In the same spirit we can defineapproximants gamesto characterize weak bisimulation approxi-
mants. A configuration of the game consist of a numbero∈ Ord and a pair of processesα andβ . In
each round Spoiler chooses a new numbero′ ∈ Ord such that 0≤ o′ < o and performs a step toα ′ from
one of the processes. Then Duplicator responds by an equallylabeled weak step from the other process
to some processβ ′. The game continues to the next round which starts from configuration o′,α ′,β ′.
If one of the players is not able to perform his next move then his opponent wins. This game cannot
continue indefinitely becauseOrd is well-founded.

Proposition 2.5 For any o∈ Ord α ≈o β iff Duplicator has a strategy to win the approximant game
from (o,α ,β ) regardless of his opponents choices.

The intuition is that whenever Spoiler makes his move too′,α ′ he asserts that he can win the bisimulation
game in fewer thano′ rounds from the next round onwards, for any possible response of his opponent.
Duplicator wins the approximants game at some limit ordinallevel only if for all smaller ordinalso′ he
has some response that allows him to win at levelo′. If in the following we write Spoiler candistinguish
processesα andβ in o rounds we mean that Spoiler wins the approximant game from(o,α ,β ).

Example 2.6 Consider the process description given below, where the left-hand side is a graphical

depiction of the rules listed to the right. The left shows a loop Y
aA
−→Y whenever there is a rule Y

a
−→YA

in the process definition on the right-hand side.

X

Z

Y

ε A

b b

τ

τ
τ

a

τA

τA

X
τ

−→Y,X
b

−→ Z,

Y
b

−→ε ,Y τ
−→YA,

Z
τ

−→ε ,Z τ
−→ ZA,

A
τ

−→ε ,A a
−→ ε

2an elementR⊆V⊗×V⊗ that satisfiesR⊆ F (R).
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The two processesX andY are inequivalent, Spoiler wins the bisimulation game by playing (X
b

−→ Z);
any proper response is toAn for somen. Now Spoiler continues to play(Z

τ
−→ AZ

a
−→ Z) n times and

wins in the next round. Still, Duplicator wins the approximant game from(ω ,X,Y) becauseZAi ≈ j A j

for any two naturalsi, j and any Spoiler attack to somej,ZAi in the fist round can be replied to by a weak

stepY
τ j

=⇒YAj b
−→ A j . Hence≈6=≈ω .

Example 1 shows that for the usual notion of approximants, the convergence index is aboveω , so
the approximation method fails. We will continue to investigate different refinement functions that yield
faster converging weak bisimulation approximants.

3 Approximants

Proposition 2.5 motivates the definition of alternative refinement functions and thus approximants by
changing the rules of the approximants game. That is, we define sequences of faster converging approx-
imants by describing the abilities of the two players to movein one round of the game.

Definition 3.1 We define different approximants by describing the way both players are allowed to move
during the approximants game. In all cases Spoiler chooses the next lower ordinal and moves to some
configuration, then Duplicator moves from the other process.

Define ordinaryshort-longapproximants≈i by the game in which Spoiler moves along a strong step
a

−→, then Duplicator responds using a weak step
a

=⇒.
For long-longapproximants≈L

i , Spoiler makes a weak step
a

=⇒, then Duplicator responds with a
weak step

a
=⇒.

For word approximants≈W
i , Spoiler moves according to asequence

w
=⇒ of weak steps where w∈

Act∗, then Duplicator responds by a move
w

=⇒ over the same word.
Parikhapproximants≈P

i are due the game where Spoiler makes a sequence of weak steps
w

=⇒,w∈

Act∗, then Duplicator responds by a sequence
w′

=⇒ in which the letters of w are arbitrarily shuffled:
P(w) = P(w′).

Note that the short-long approximants defined here are exactly the ones given in Definition 2.3 and all
others should converge faster as they give more power to Spoiler. We continue to show that all four
types of approximants are indeed correct notions of approximation for weak bisimilarity and do not
converge towards something even smaller in the limit. Afterwards, we look at how suitable they are for
the approximation method we have in mind.

Lemma 3.2 For any ordinal i,≈ ⊆ ≈W
i ⊆ ≈P

i ⊆ ≈L
i ⊆ ≈i.

proof For the first inclusion assume that(α ,β ) is in ≈, so there is a weak bisimulationB containing
this pair. This means for any moveα0

a1−→ α1
a2−→ . . .

ak−→ αk,a j ∈ Act there is a sequenceβ0
a1=⇒

β1
a2=⇒ . . .

ak=⇒ βk with α jBβ j for j ≤ k, soB prescribes a winning strategy for Duplicator in the word-
approximant game.

For the second inclusion observe that if Duplicator has a responseβ w
=⇒ β ′ for some attackα w

=⇒ α ′

clearly the same response is allowed in the game where he may arbitrarily shuffle the letters ofw.
For the third inclusion assume(α ,β ) 6∈ ≈L

i , then Spoiler can distinguish the two processes ini
rounds where he only uses weak steps

a
=⇒ labelled by single actions and his opponent may also respond

using equally labelled weak steps. But the same strategy will be winning for Spoiler if he is allowed to
make steps

w
=⇒ due to sequences of actions and his opponent may arbitrarilyshuffle the actions in his
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response: If an attack is due to a single action the response must be due to a single action. Thus Spoiler
can distinguish(α ,β ) in at mosti rounds of this Parikh-game:(α ,β ) 6∈ ≈P

i . The last inclusion follows
similarly: If Spoiler can distinguish two processes ini rounds if he is only allowed to make strong steps

a
−→ and his opponent can do weak steps as response, then must alsobe able to distinguish the processes
in at mosti rounds of a game in which he can also make weak attacks.

Theorem 3.3 ≈=
⋂

i∈Ord ≈W
i =

⋂
i∈Ord ≈

P
i =

⋂
i∈Ord ≈

L
i =

⋂
i∈Ord ≈i

proof The chain of inclusions⊆ holds by transfinite induction using Lemma 3.2. Milner [15] shows that
sequence of short-long approximants converges to weak bisimilarity: ≈=

⋂
i∈Ord ≈i.

Lemma 3.4 For any BPP description and ordinal i we have

1. ≈L
i ,≈

P
i ,≈

W
i are equivalences and

2. for∼ ∈ {≈i ,≈
L
i ,≈

P
i ,≈

W
i } it holds thatα ∼ β impliesαγ ∼ βγ .

proof 1. Let O ∈ {L,P,W}. We show transitivity by induction:≈O
0= V⊗×V⊗ is trivially transitive.

Assume≈O
i is transitive fori ∈ Ord and 1)α ≈O

i+1 β and 2)β ≈O
i+1 γ . We show that Duplicator wins the

O-approximants game that starts at(i +1,α ,γ). Without loss of generality one can assume that Spoiler
movesα u

=⇒ α ′. By 1) we know that in the gameα vs. β there is a valid responseβ v
=⇒ β ′ such that

α ′ ≈O
i β ′. Equally well if in the gameβ vs.γ , Spoiler movesβ v

=⇒ β ′ then by 2) there is a valid response
γ w
=⇒ γ ′ with β ′ ≈O

i γ ′. By induction hypotheses we haveα ≈O
i γ , so by definition of≈O

i+1 alsoα ≈O
i+1 γ .

For limit ordinalsl this goes analogously: for Spoilers attack fromα there is a response fromβ for
all smaller ordinalsi; for any such move there is a response fromγ to some process equivalent at leveli.
By assumptionα ≈O

i γ and henceα ≈O
l γ by definition. Symmetry and reflexivity follow trivially from

the definition.
The second claim is a result of Duplicator using a strategy that remembers which parts of the con-

figurationsαγ ,βγ come fromα ,β andγ . Every move of Spoiler fromαγ (or βγ) can be split into two
parts, one which originates fromα (or β ) and the one which was performed from variables that come
from γ . Duplicators response will be the combined responses for the first and the second part of Spoilers
attack in the gamesα vs. β andγ vs. γ . In the second part Duplicator simply copies Spoilers move and
can therefore even preserve equality on the parts of the processes that derive fromγ . This means Spoiler
cannot distinguishαγ andβγ in fewer rounds than he can distinguishα andβ .

The first claim of the lemma does not hold for the short-long approximants≈i because Spoiler and
Duplicator have different abilities to move. For a counter-example to their transitivity consider example
below.

Example 3.5 The following rules describe a system with X≈1 Y ≈1 Z 6≈1 X:

Y
τ

−→ X, Y
τ

−→ Z, Y
τ

−→Y′
, Y′ a

−→ ε , Y′ b
−→ ε , X

a
−→ X, Z

b
−→ Z.

We will continue to show that for finite ordinalsi <ω , the approximants≈i,≈
L
i and≈P

i are decidable.
For this we recallPresburger Arithmetic, the first order logic of natural numbers with addition and
equality. Syntactically, a Presburger Arithmetic formulais True,False, a statementt1 = t2 where the
termst1, t2 are sums of natural numbers or variables, any boolean combination of smaller formulae or a
universally or existentially quantified formula. We writeF(x1,x2 . . .xk) for the formulaF in which the
variablesx1 . . .xk occur freely, i.e. not in the scope of a quantifier and interpret formulae over natural
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numbers and equality. A setR⊆ N
k of k-tuples of natural numbers is said to bePresburger-definableif

there is a Presburger Arithmetic formulaΦR(x1x2 . . .xk) that satisfies

ΦR(x1x2 . . .xk)≡ True ⇐⇒ (x1x2 . . .xk) ∈ R

An important property of Presburger Arithmetic is that it isdecidable if a given a Presburger Arith-
metic formulaΦ without free variables is True. This implies that Presburger-definable sets are decidable.
Moreover, the class of Presburger-definable sets coincideswith the class ofsemi-linearsets [6] which
for our purposes means it is effectively closed under projection and intersection. We refer to [6] for the
details on Presburger Arithmetic.

Any relationR over BP processes withk variables is a subset ofN2k. We now show that for finiten,
the approximants≈n,≈

L
n and≈P

n are effectively Presburger-definable and therefore decidable relations.
We recall an important result from [5], Thm 3.3:

Lemma 3.6 For any BPP description, the set Reach⊆ V⊗×Act⊗×V⊗ of triples (α ,µ ,β ) such that
α a1−→ α1

a2−→ α2 . . .
an−→ β for some sequence a1a2 . . .an ∈ Act∗ with P(a1a2 . . .an) = µ is effectively

Presburger-definable.

From this we can conclude that the step and weak step relations
a

−→,
a

=⇒ are effectively Presburger-
definable: The setsS1 = {a}, andS2 = {a}{τ}⊗ (in other words the Parikh images ofaτ∗) are easily
seen to be Presburger-definable and

a
−→ and

a
=⇒ are expressible as the projections into the first and third

component ofReach∩ (V⊗×S1×V⊗) andReach∩ (V⊗×S2×V⊗) respectively.

Theorem 3.7 For a given BP process description B with k variables the n-thapproximants≈n,≈
L
n and

≈P
n over B are decidable for all finite n.

proof It suffices to to show that≈n,≈
L
n and≈P

n are effectively Presburger-definable. By Lemma 3.6
we can assume a Presburger Arithmetic formulaR⊆ N

V ×N
Act×N

V that expresses the setReachand
formulaeStepa,WStepa ⊆N

V ×N
Act×N

V expressing the strong and weaka-step relations for all actions
a∈ Act. Now we can easily encode the refinement functions used in theapproximants and for any finite
n construct the Presburger Arithmetic formulae that express≈n,≈

L
n and≈P

n by induction:
For n= 0 we have≈0=≈L

0=≈P
0= N

2k trivially definable asΨ0(α ,β ) = True.
For≈i+1 let Ψi+1(α ,β ) ⇐⇒

∧
a∈Act (

(∀α ′ ∈ N
V Stepa(α ,α ′) =⇒ ∃β ′ ∈ N

V WStepa(β ,β ′)∧Ψi(α ′
,β ′))

∧(∀β ′ ∈N
V Stepa(β ,β ′) =⇒ ∃α ′ ∈ N

V WStepa(α ,α ′)∧Ψi(α ′
,β ′)))

Similarly, for≈L
i+1 let Ψi+1(α ,β ) as above but replaceStepa by WStepa. For≈P

i+1 let Ψi+1(α ,β ) ⇐⇒
∀µ ∈ N

Act (

(∀α ′ ∈N
V R(α ,µ ,α ′) =⇒ ∃β ′ ∈ N

V R(β ,µ ,β ′)∧Ψi(α ′
,β ′))

∧(∀β ′ ∈ N
V R(β ,µ ,β ′) =⇒ ∃α ′ ∈ N

V R(α ,µ ,α ′)∧Ψi(α ′
,β ′)))

It is worth mentioning that word approximants≈W
n are not decidable at finite levels: for systems without

silent actions the very first approximant≈W
1 coincides withtrace equivalence, which has been shown to

be undecidable for BPP by Hirshfeld [9].
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4 Applications

We now use the approximation approach to show that two subclasses of BPP previously known in the
literature have decidable weak bisimilarity. In particular, we show this result in Section 4.1 for the class
introduced in [18] by proving weak bisimilarity finitely approximable for the long-long approximants
≈L and for the subclass introduced in [19] we show finite approximability for Parikh approximants≈P

in Section 4.2. In both cases we know by Theorem 3.7 that at finite levels the approximants are decidable
equivalences and hence showing their convergence at levelω suffices to get a decision procedure.

Proposition 4.1 The following states some useful facts that are easily verified.

1. α ≈ β implies|α |= |β |

2. If α =⇒ β =⇒ α ′ andα ≈ α ′ thenα ≈ β .

3. If α =⇒ αβ andβ has norm0 thenα ≈ αβ

Definition 4.2 Let O∈ {L,P,W} andα ,β ∈V⊗ such thatα ≈O
ω β . For a given Spoiler move fromα to

α ′ there is a sequence B= β ′
1,β ′

2,β ′
3 . . . of Duplicator responses such that for all i∈ N holdsα ′ ≈O

i β ′
i .

We call B afamily of responses.

Observe that the sequence is not unique, for example if you substituteβi by β j for any j > i then you
obtain another family of responses. By Dickson’s Lemma we can assume that a family of responses is
non-decreasing with respect to multiset inclusion:βi ⊑ βi+1 for everyi ∈N.

4.1 Normed Processes with Pure Generators

Write α −→0 β for silent and norm-preserving steps between processesα ,β ∈V⊗: α −→0 β iff α τ
−→ β

and |α | = |β |. Let =⇒0 be the transitive and reflexive closure of−→0. For variablesX,Y such that
X =⇒0 Y =⇒0 X we haveX ≈Y by Claim 2) Proposition 4.1. We sayX is redundantbecause ofY or
vice versa. One can easily detect redundant variables and therefore we can assume that they have already
been unified. That is, we can assume wlog. that our process description does not contain redundant
variables. This allows us to linearly order the setV of variables such that ifX =⇒0 Yα thenX >Y. Let’s
fix the notationX1 > X2 > .. . > Xk.

A generatoris a variableX that allows a sequenceX =⇒0 Xα for someα ∈V⊗, in which case we
sayX generatesα . Call a generatorX pure if X =⇒0 α implies thatα = α ′X: Pure generators cannot
vanish silently.

Stirling shows decidability of weak bisimilarity for normed processes with only pure generators using
a tableaux approach [18]. One motivation for this subclass is that it still allows for infinite branching and
that ordinary (≈i) approximants do not converge at levelω . In this section we show that long-long (≈L

i )
approximants in fact stabilize at levelω and thus provide the missing negative semidecision prodecure
to conclude decidability.

Lemma 4.3 Letα be a normed process of a BPP description without redundant variables in which every
generator is pure. Succ= {α ′|α =⇒0 α ′} can be partitioned into finitely many equivalence classes with
respect to weak bisimilarity.

proof The third claim of Proposition 4.1 allows us to restrict ourselves to the subsetSucc′ of Succof
configurations which are obtained without use of generatingmoves because it has the same number
equivalence classes as generators cannot vanish along=⇒0 moves. Our goal is to show thatSucc′ is
finite which immediately implies the claim of the lemma.
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Every derivation ofα is a sum of derivations from variables belonging toα . If we prove that in silent
norm preserving steps without generating moves, we can onlyderive finitely many configurations from
each variable, then we will also prove thatSucc′ is finite. We will show that this is indeed the case for
all variables by induction over the assumed order<. From the smallest variableXk using silent norm
preserving stepswithout generatingwe can derive only two configurations, namelyXk or ε .

Assumec> 0 bounds the number of possible silent norm preserving derivations from any variable in
Xi . . .Xk and consider the variableXi−1. In caseXi−1 is a deadlock variable, i.e.Xi−1

τ
−→ Xi−1 is the only

applicable rule, we can trivially bound the number of its derivations by 1≤ c. Otherwise, because we
forbid generating moves we must have that any ruleXi−1

τ
−→0 α produces a multisetα ∈ {Xi . . .Xk}

⊗.
The fact that there are only finitely many rules that rewrite variableXi−1 implies that we can bound the
number of its silent norm preserving derivations by

d · cl +1,

whered is the number of rules forXi−1 andl is the maximal size of any right hand side of a rule rewriting
Xi−1.

Theorem 4.4 ≈ = ≈L
ω for normed BPP where each generator is pure.

proof Assume towards a contradiction that we haveα ≈L
ω β 6≈L

ω+1 α . Wlog. assume an optimal3 initial

moveα a
=⇒ α ′ for Spoiler in the gameα vs.β and a familyB= β ′

0,β ′
1, . . . of responses which is strictly

increasing wrt. multiset inclusion.
By Lemma 4.3, the setSucc= {α ′′|α ′ =⇒0 α ′′} of configurations reachable fromα ′ in silent and

norm-preserving steps contains finitely many bisimilarityclasses. Let the setSucc′ be a finite set of rep-
resentants of those classes inSucc. This allows us to define a functionf : B→ Succ′ that mapsβ ′

i ∈ B to
an element inSucc′ that maximises their approximation index:β ′

i ≈
L
k f (β ′

i ) and∀γ ∈ Succ′ β ′
i ≈

L
l γ =⇒

k ≥ l . This function is well defined because setSucc′ is finite. Now consider an infinite subsequence
B(γ) of B that contains all elements whichf maps to the configurationγ ∈ Succ′. By the pigeon hole
principle such a subsequence exists.

Take two different elementsβ ′
i ❁ β ′

j of B(γ) for arbitrary largei, j. We have 1)β ′
i ≈

L
i γ ≈L

j β ′
j

becauseα ′ ∈ Succ′ and 2)β ′
i and β ′

j have the same norm. To see why the second obervation is true
note that|α | 6= |β | implies α 6≈L

min{|α |,|β |} β as Spoiler only needs to decrease the smaller process to a
deadlock which cannot be mimiked by Duplicator on the other process because the norms differ. We
know β ′

i ≈
L
i α ′ ≈L

j β ′
j , so|β ′

i |= |α ′|= |β ′
j | as otherwisei and j would be bounded by|α ′|.

Consider the game onα ′ vs. β ′
j and a silent, norm-preserving moveβ ′

j =⇒0 β ′
i made by Spoiler,

which must be possible due to observation 2) and the fact thatβ ′
i is a subset ofβ ′

j . Now by definition
of the subsequenceB(γ) we deduce thatα ′ =⇒0 γ is an optimal response for Duplicator. Therefore by
1), we know thatβ ′

i ≈
L
j−1 γ soβ ′

i ≈
L
j−1 β ′

j by transitivity and the fact thatβ ′
j ≈

L
j−1 γ . But now we have

β ′
i ≈

L
j−1 α ′ for arbitrarily high j and thereforeβ ′

i ≈
L
ω α ′ which contradicts the optimality of Spoiler’s

very first move.

4.2 Unnormed Processes over one visible Action

Consider the subclass of BPP processes that satisfy both

3a move prescribed by an optimal winning strategy: one that guarantees a win for Spoiler in the fewest number of rounds
and thus properly decreases the approximation index in eachround.
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1. There is only one visible action label,Act= {τ ,a} and

2. Every variable has positive or infinite norm.

This class has been introduced in [19], where it was shown that for processes of this kind, Hirshfelds
conjecture holds:≈ = ≈L

ω∗2. Note that this class is not a subclass of thetotally normedsystems [10]
as it allows for variables with infinite norm. We show that this class has decidable weak bisimilarity by
showing that Parikh-approximants converge at levelω .

Theorem 4.5 ≈ = ≈P
ω for the subclass of BPP processes with a single visible action and no variables

with norm0.

proof First observe that 1) implies that all configurations with infinite norm must be equivalent and due
to norm preservation cannot be equivalent to any configuration of finite norm. The second restriction
guarantees that there are only finitely many different configurations for any given finite norm. 2) When-
ever two processes have different but finite norms, they are certainly not related by≈P

2 as Spoiler may
rewrite the smaller process to a deadlock in one long step without allowing his opponent to do the same
on the other process.

Assume towards a contradiction thatα ≈P
ω β 6≈P

ω+1 α . So for an optimal initial moveα w
=⇒ α ′

for Spoiler there is a family of responses fromβ . This sequence cannot converge as otherwise our
assumptionβ 6≈P

ω+1 α would be false. By the pidgin hole principle, there must be atleast one variable
X that grows indefinitely along this sequence. Take two elements β ′

i ❁ β ′
j , 2< i < j from this sequence

such thatX occurs more often inβ ′
j . By observation 2) and the fact thatβ ′

i andβ ′
j have different norms

we know thatβ ′
i 6≈

P
2 β ′

j . Becauseβ ′
i ≈

P
i α ′ ≈P

j β ′
j and i < j holdsβ ′

i ≈
P
i α ′ ≈P

i β ′
j . From this and the

transitivity of≈P
i we conclude thatβ ′

i ≈
P
i β ′

j and because 2< i alsoβ ′
i ≈

P
2 β ′

j which is a contradiction.

5 Limitations of the Approximant Approach

One severe limitation of the approximation method is that itcannot provide complexity bounds even if
successfully applied. In this section we show that≈L is not guaranteed to stabilize at levelω ∗2 and that
word approximants≈W do not necessarily stabilize on levelω . From our counter-examples we derive
lower bounds ofω2 andω ∗2 for the convergence indices of≈L and≈W respectively.

Theorem 5.1 Long-Long approximants (≈L
i ) do not stabilize below levelω2 for BPP:≈ 6= ≈L

ω∗k for all
finite k.

proof For k< 2 the claim is trivial, e.g. by Example 2.6. We first show how toconstruct a system with
≈ 6= ≈L

ω+ω. For this we recycle Example 2.6 and add the ruleX
τ

−→ XA and analyze the game onX
vs.Y more carefully. The fact thatX can be silently rewritten toY forces Spoiler to start fromX. Any
optimal silent move for Spoiler must change the equivalenceclass, so we can assume his initial move to

beX
b

=⇒ ZAm. Duplicator must respond to someAn. To prevent a perfect match to an identical process in
the next round, Spoiler must again move fromZAm and may not end in a configurationA<n. So Spoiler
will either moveZ

a
=⇒ Z or Z

a
=⇒ Am with m≥ n and thereby force Duplicator to remove oneA on

the other side. Observe that any one move fromZ or Am can be replied to byA, so Spoiler has to keep
makinga-moves from his process until Duplicator has exhausted all variablesA. By removing only one
A in each such response, Duplicator can prevent the situationZ (or A>0) vs. ε for n rounds, wheren is
determined by his initial response. We concludeX ≈L

ω Y 6≈ X.
To construct a counter-example to convergence at levelω +ω we combine two copies of this system

as indicated in Figure 1 below.
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Figure 1: Combining two copies of the "Guessing Game" yieldsX1 ≈
L
ω∗2 Y1 6≈ X1.
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τ
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a
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τ
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W1

c
−→ X0, S1

c
−→Y0

X0
τ

−→Y0, X0
b

−→ Z0,

Y0
b

−→W0, X0
τ

−→ X0A,

Y0
τ

−→Y0A, Z0
τ

−→ Z0A,

Z0
τ

−→ ε

A
τ

−→ ε A
a

−→ ε ,

The bottom part of the construction is the gadget as discussed previously. Observe that variables
X0,Y0,Z0 are not able to produce variables from the top part of the diagram, those variables with an index
1. Thus we preserve thatX0 ≈

L
ω Y0. Our aim is to show that indeedX1 ≈

L
ω+ω Y1 6≈ X1. For this it suffices

to show that the only possibility for Spoiler to win is to force the game fromX1 vs. Y1 to end up in
X0 ≈

L
ω Y0.

The Game starts from a pairX1,Y1 and it goes through the upper square patternX1,Y1,Z1,W1. By our

previous discussion of this gadget, we know that Spoiler hasto start byX1
b

=⇒ Z1Am; Duplicator will
respond toW1An. Spoiler must continue to play from the left hand side in order to prevent a perfect match
to identical processes and cannot move to aW1Ai for i ≤ n. If he makes a moveZ1Am c

−→ X0Ai , while the
other process still contains aW1, Duplicator is able to match to the same process. So the only option left
for Spoiler is to force Duplicator to remove all variablesA one by one by performinga-steps. Eventually,
from a positionZ1 (orW1A>0) vs.W1, Spoiler makes one lasta-step and thus forces Duplicator to rewrite
W1 to S1. Afterwards, Spoiler can force the game to a positionX0An vs.Y0Am by playing ac-step from
either side. This part of the game takesn+1 rounds andn was chosen by Duplicator in his first response.
ThereforeX1 ≈ω+ω Y1 which completes the proof fork= 2.

The construction above can be extended to provide a counter-example for convergence at levelω ∗k
for any naturalk by stackingk copies of the square gadget on top of each other. This can alsobe modified
to a system which contains only variables of the norm zero.

Next we focus on Word approximants and falsify a conjecture of Stríbrná [19] about their conver-
gence above levelω .

Theorem 5.2 For BPP, weak bisimilarity is not finitely approximable withword approximants:≈ 6=≈W
ω .

proof Consider the process description in Figure 2. By Proposition 4.1 part 3, we know thatZLnQm≈ Z
andLn+1Qm ≈ Ln+1 for any two naturalsm,n. We claim thatX ≈W

ω Y 6≈ X and base our proof on the
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Figure 2: Counter-example for finite approximability of≈W
i
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following claims that are proven individually after the main argument. Fori, j,n∈ N, n> 0 we have

Z 6≈W
3 RLi 6≈W

3 L j
, (1)

Z ≈W
2n+1 Ln

, (2)

Z 6≈W
2n+2 Ln

. (3)

In the gameX vs.Y Spoiler must start with a moveX
a

=⇒ ZLlQq ≈ Z, as otherwise his opponent is able
to match to the same process and thereby win. Possible responses for Duplicator fromY are:

• To someRLnQm ≈ RLn, which allows Spoiler to win in 3 further rounds by Claim 1.

• To someYLnQm ≈YLn which allows Spoiler to silently replace theY by R and afterwards again
win in 3 rounds by Claim 1). Note that no silent response fromZLlQq to some configuration that
containsR is possible.

• To someQm which allows Spoiler to win in one round by playingZ
am+1

=⇒ Z.

• To someLnQm ≈ Ln,n > 0 which allows Spoiler to win but in not fewer than 2n+ 2 rounds by
Claims 2) and 3).

The choice ofn is made by Duplicator and thereforeX ≈W
ω Y 6≈ X. Note that this counter-example uses

only a single visible action and all variables have zero norm.

It remains to proof claims 1.-3. We first prove some auxiliaryclaims on which we base our arguments
for claims 1) and 2). For allm,n∈ N,

RLn 6≈W
1 Qm (4)

Ln 6≈W
2 R 6≈W

2 Z (5)

For (4), observe that Duplicator cannot respond to a moveR
am+1

=⇒ R. For (5), Spoiler moves fromLn (or
Z) silently toQ and Duplicator can respond toR or to ε . In the first case he loses in one round by claim
(4), in the latter he cannot respond to moveQ

a
=⇒ ε from ε .
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Claim (1): Z 6≈W
3 RLn 6≈W

3 Lm.

proof For both parts Spoiler moves fromRLn silently toR. Duplicator must respond either toQk which
is losing for him in one round by Claim (4), or toL jQk ≈ L j or ZL jQk ≈ Z, which is losing for him in
two rounds by Claim (5).

Claim (2): Z ≈W
2n+1 Ln for n> 0.

proof By induction onn≥ 1 together with the claim that for anym> n, Lm≈W
2n+1 Ln. Base caseL≈W

3 Lm.
Wlog. assume thatm minimizesk in L ≈W

k Lm and that Spoiler only makes optimal moves i.e. wins as
quickly as possible. This means in particular that he needs to change the equivalence class in every move.

Thus, he can move eitherLm a∗
=⇒ Lm′

Qq ≈ Lm′
or to Lm′

RQq for somel < m. In both cases Duplicator to
stays inL. In the first case, because we assume optimal moves, we must have L 6≈W

i Ll for somei < k,
which contradicts the optimality ofm. Alternatively, the game continues fromLl RQq vs. L. Spoiler
must again move fromLlRQq and change the class. If he makes ana-step toR or ends inQi Duplicator
can match to the same process, a move to someRLl ′ or Ll ′ , l ′ < l ≤ m is surely non-optimal. The only
remaining option is to move silently toR to which Duplicator will respond byL =⇒ L. Now observe that
L ≈W

1 R.
Base caseZ ≈W

3 L: As Z can silently go toLn, Spoiler needs to start fromZ. He has three options
to change the class from here: to someLl Qq ≈ Ll , to RLl Qq ≈ RLl or to something equivalent toZR. In
all cases Duplicator responds toL and in the first two cases, we can use provious claimsL ≈W

3 Lm and
L ≈W

2 RLm to conclude that this allows him to survive another 2 rounds.If the second round starts inL
vs. ZR (or equivalent), Spoiler can again not move fromL and has three options to change the class: to
something equivalent toZ which is non-optimal as it repeats the initial configuration. Alternatively he
can go toRLl Q1 ≈RLl or toRQq ≈R. In both cases we complete by the observation thatRLl ≈W

1 L≈W
1 R.

For the induction step, assumeLm≈W
2n+1 Ln andZ ≈W

2n+1 Ln. We show thatLm≈W
2(n+1)+1 L(n+1): Just

as in the base case, the only good move for Spoiler isLm a
=⇒ Lm′

RQq for somen< m′ < m. Duplicator
in his response goes toLnR. Next one more time Spoiler has the only one reasonable kind of move, to
a process equivalent toLm′′

, wherem′′ > n. However now Duplicator responds toLn and we use the
induction assumption to the pairLm′′

≈W
2n+1 Ln.

Observe that because≈W
2n+1 is a congruence this implies alsoLmR≈W

2n+1 LnR for m≥ n. To show

thatZ ≈W
2(n+1)+1 L(n+1) we assume wlog. that Spoiler initially movesZ

a
=⇒ ZR, Duplicator responds by

Ln+1 a
=⇒ LnR. Now to prevent a perfect match in the next round, Spoiler moves fromZR to eitherZ

or to LmR or Lm. In the first case, Duplicator will remove theR and end up inLn and we can use the
induction assumption, in the last two cases Duplicator stays inLnRor goes toLn. Either way, we can use
the previous claims thatLmR≈W

2n+1 LnRandLm ≈W
2n+1 Ln for m≥ n.

Claim (3): Z 6≈W
2n+2 Ln for n> 0.

proof By induction onn ≥ 1 together with the claim that for anym> n, Lm 6≈W
2n+2 Ln. Base case:

Z 6≈W
4 L 6≈W

4 Lm. Spoiler playsLm a
=⇒ LR (or Z

a
=⇒ LR). Possible responses fromL are

1. toLQq or Qq, from which Spoiler wins in 3 rounds by Claim 1.

2. to RQq in this case Spoiler performs a moveLR
τ

=⇒ Qq+1 and Duplicator responds to eitherRQi

or Qi with i ≤ q. In both cases Spoiler wins in one round by claim (4) or playing anaq+1-step from
Qq+1.
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For the induction step we assumeLm 6≈W
2n+2 Ln 6≈W

2n+2 Z and show that bothLm 6≈W
2(n+1)+2 L(n+1) and

Z 6≈W
2(n+1)+2 L(n+1) hold. Spoiler moves fromLm (or Z) in ana-step toLn+1R. Duplicator can respond

1. toLnQq or someQq, from which Spoiler wins in 3 rounds by Claim 1.

2. toLn′RQq,n′ < n. In this case Spoiler performs a moveLnR
τ

=⇒ Ln and Duplicator responds either
to Ln′′RQi or Ln′′Qi with n′′ ≤ n′ < n. In the first case, Spoiler wins in one round by claim (4). In
the last case the game continues fromLn vs.Ln′′<n and we can use the induction assumption.

Remark 5.3 To construct a counter-example to convergence of word approximants at levelω + k for
finite k, the previous construction can be complemented by a "finite ladder", where X and Y are renamed
to X0 and Y0: For 0< i ≤ k add variables Xi,Yi ,Zi,Z′

i ,Wi ,W′
i and rules as indicated below.

Xi Zi Z′
i Xi−1

Yi Wi W′
i Yi−1

a a a

a a a
τ τa

6 Discussion

In order to decide weak bisimulation for BPP or subclasses itsuffices to provide a semi-decision pro-
cedure for inequivalence. If we have some measure on which equivalent processes must agree, we can
define a new notion of approximants by additionally requiring that Duplicator must preserve equality on
this measure in every round of an approximation game. Conversely, one can think of properties as being
captured by some notion of approximation≈O: If two processes disagree on the property then they are
distinguished by≈O

i at some leveli ≤ ω .
As an example take the propertynorm preservationof Claim 1) Proposition 4.1: Equivalent processes

must have equal norms. This is captured by Parikh or Word approximants because if two processes
disagree on the norm, Spoiler can distinguish them in two rounds of the corresponding game by reducing
the smaller one to a deadlock – which cannot be done in any proper response from the other side – and
playing an action from the non-deadlocked process afterwards. Another known invariant are thedistance
to disablingfunctions (dd-functions) used in [14] for strong bisimulation. If the shortest path fromα to
α ′ which disables any actiona is shorter than a shortest path fromβ to a configuration which disablesa
thenα 6≈P

2 β . So this first level ofdd-functions is captured by Parikh approximants at level 2. Wecan
continue this argument and sayn-th orderdd-functions are capture by≈P

n+1 relation.
We have shown that all subclasses of BPP which are currently known to have decidable weak bisim-

ulation are indeed finitely approximable for some natural notion of approximation. The lower bound of
ω+ω for the convergence of Word (and thus Parikh) approximants given by the construction in Theorem
5.2 leads us to the conclusion that we are in fact looking for adistinguishing property that is orthogonal
to Word approximants: It should still allow for decidable approximants but at the same time it must be
stronger than (not captured by) Word approximants because otherwise it cannot be complete.

Our lower bound ofω ∗ω for the symmetric short approximants≈L does not quite match the upper
bound ofωω provided by [8] and we conjecture that indeed, the exact convergence ordinal isω ∗ω .

Finally, let us define the subclass ofdecreasingsystems in the following way.

Definition 6.1 A BPP description isdecreasingif there is a linear order on variables such that for every
rule X

a
−→ α we have thatα does not contain variables which are greater than X in chosenorder.
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It seems that this subclass provides much structure to work with. Nevertheless, all systems presented in
this paper are in fact decreasing. We believe that solving this class will be an important step towards a
solution of the problem.
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