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Abstract. We study concurrent stochastic reachability games played on
finite graphs. Two players, Max and Min, seek respectively to maximize
and minimize the probability of reaching a set of target states. We prove
that Max has a memoryless strategy that is optimal from all states that
have an optimal strategy. Our construction provides an alternative proof
of this result by Bordais, Bouyer and Le Roux [4], and strengthens it, as
we allow Max’s action sets to be countably infinite.
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1 Introduction

Background. We study 2-player zero-sum stochastic games. First introduced
by Shapley in his seminal 1953 work [22], they model dynamic interactions in
which the environment responds randomly to players’ actions. Shapley’s games
were generalized in [11] and [16] to allow infinite state and action sets and non-
termination.

In concurrent games, the two players (Max and Min) jointly create an infinite
path through a directed graph. In each round of the play, both independently
choose an action. The next state is then determined according to a pre-defined
distribution that depends on the current state and the chosen pair of actions.
Turn-based games (also called switching-control games) are a subclass where
each state is owned by some player and only this player gets to choose an action.
These have received much attention by computer scientists, e.g., [12,6,5,14,2].
An even more special case of stochastic games are Markov Decision Processes
(MDPs) where all states are owned by Max (i.e., Min is passive). MDPs are also
called games against nature.

We consider reachability objectives which are defined w.r.t. a given subset of
target states. A play is defined as winning for Max iff it visits a target state at
least once. Thus Max aims to maximize the probability that the target set is
reached. Dually, Min aims to minimize the probability of reaching the target. So
Min pursues the dual safety objective of avoiding the target.
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Reachability is arguably the simplest objective in games on graphs. It can
trivially be encoded into reward-based objectives; i.e., every play that reaches
the target gets reward 1 and all other plays get reward 0.

In turn-based reachability games over finite state spaces, there always exist
optimal Max strategies that are memoryless (choices only depend on the current
state and not the history of the play; this is also called positional) and deter-
ministic (always chose on action as opposed to randomising among several) [7],
[17, Proposition 5.6.c, Proposition 5.7.c].

This does not carry over to finite concurrent reachability games. E.g., in the
snowball game (aka Hide-or-Run game) [9, Example 1][16,1] (also see Example 4
later in this paper), Max does not have an optimal strategy. However, by [21,
Corollary 3.9], Max always has ε-optimal randomized memoryless strategies, and
this holds even in countably infinite reachability games with finite action sets.
(Deterministic strategies are generally useless in concurrent games, even in very
simple games such as Rock-Paper-Scissors.)

Even though optimal Max strategies do not always exist, it is still interesting
how much memory they need in those instances where they do exist. For finite
concurrent reachability games with finite action sets, it was recently shown by
Bordais, Bouyer and Le Roux [4] that optimal Max strategies, if they exist, can
be chosen as randomized memoryless. The proof is constructive and iteratively
builds the strategy on the finite state space. To show the correctness, one needs
to argue about the performance of the constructed strategy. The proof in [4]
heavily relies on the properties of induced finite MDPs, obtained by fixing one
strategy in the game. In particular, it uses the existence of end components in
these finite MDPs and their particular properties.

Our contribution. We give an alternative proof of this result by Bordais, Bouyer
and Le Roux [4]. While our proof is also constructive, it is simpler and works di-
rectly from first principles on games, without using properties of induced MDPs.
Moreover, it uses a construction that we call “leaky games”, by which we reduce
the reachability objective to its dual safety objective. Finally, our result is slightly
stronger, because it holds even if Max is allowed countably infinite action sets
(while Min still has finite action sets). 5

This result requires the state space to be finite. However, for other results
in this paper we allow the state space and action sets to be countably infinite,
unless explicitly stated otherwise.

2 Preliminaries

A probability distribution over a countable set S is a function α : S → [0, 1]
with

∑
s∈S α(s) = 1. The support of α is the set {s ∈ S | α(s) > 0}. We write

D(S) for the set of all probability distributions over S. For α ∈ D(S) and a
5 It may be possible to generalize the proof in [4] to countably infinite Max actions

sets, but this would require (at least) a generalization of the fixpoint theorem [4,
Theorem 12] to this setting.
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function v : S → R we write ⟨α, v⟩ def
=

∑
s∈S α(s)v(s) for the expectation of v

with respect to α.

Stochastic Games

We study perfect information stochastic games between two players, Max(imizer)
and Min(imizer). A (concurrent) game G is played on a countable set of states S.
For each state s ∈ S there are nonempty countable action sets A(s) and B(s)
for Max and Min, respectively. A mixed action for Max (resp. Min) in state s is
a distribution over A(s) (resp. B(s)).

Let Z
def
= {(s, a, b) | s ∈ S, a ∈ A(s), b ∈ B(s)}. For every triple (s, a, b) ∈ Z

there is a distribution p(s, a, b) ∈ D(S) over successor states. We call a state s ∈ S
a sink state if p(s, a, b) = s for all a ∈ A(s) and b ∈ B(s). We extend the
transition function p to mixed actions α ∈ D(A(s)) and β ∈ D(B(s)) by letting

p(s, α, β)
def
=

∑
a∈A(s)

∑
b∈B(s)

α(a)β(b)p(s, a, b),

which is a distribution over S. A play from an initial state s0 is an infinite
sequence in Zω where the first triple contains s0. Starting from s0, the game is
played in stages N = {0, 1, 2, . . . }. At every stage n ∈ N, the play is in some
state sn. Max chooses a mixed action αn ∈ D(A(sn)) and Min chooses a mixed
action βn ∈ D(B(sn)). The next state sn+1 is then chosen according to the
distribution p(sn, an, bn).

Strategies and Probability Measures

The set of histories at stage n, with n ∈ N, is denoted by Hn. That is, H0
def
= S

and Hn
def
= Zn×S for all n > 0. Let H def

=
⋃

n∈N Hn be the set of all histories; note
that H is countable. For each history h = (s0, a0, b0) · · · (sn−1, an−1, bn−1)sn ∈
Hn, let sh

def
= sn denote the final state in h.

A strategy for Max is a function σ that to each history h ∈ H assigns a mixed
action σ(h) ∈ D(A(sh)). Denote by Σ the set of strategies for Max. Analogously,
a strategy for Min is a function π that to each history h assigns a mixed action
π(h) ∈ D(B(sh)), and Π denotes the set of strategies for Min. A Max strategy is
called memoryless if σ(h) depends only on sh; i.e., for all h, h′ ∈ H with sh = sh′

we have σ(h) = σ(h′). A memoryless strategy σ is fully determined by (σ(s))s∈S .
A memory-based strategy bases its decisions not only on the current state, but
also on the current mode of its memory, and it can update its memory at every
step, depending on the observed events in this step. Memory is called public
if the content is also observable by the opposing player and private otherwise.
Finite-memory strategies use a memory with only finitely many different possible
modes. A step counter is a special case of infinite memory in the form of a discrete
clock that gets incremented at every step, independently of the actions of the
players. Strategies that use just a step counter are also called Markov strategies.
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An initial state s0 and a pair of strategies σ, π for Max and Min induce a
probability measure on sets of plays. We write PG,s0,σ,π(E) for the probability
of a measurable set of plays E starting from s0. It is initially defined for the
cylinder sets generated by the histories and then extended to the sigma-algebra
by Carathéodory’s unique extension theorem [3]. Given a random variable V :
Zω → R, we will write EG,s0,σ,π(V ) for the expectation of V w.r.t. PG,s0,σ,π. We
may drop G from the subscript when it is understood.

Objectives

We consider reachability and safety objectives. Given a set T ⊆ S of states, the
reachability objective Reach(T ) is the set of plays that visit T at least once, i.e.,
sh ∈ T holds for some history h that is a prefix of the play. The dual safety
objective Avoid(T )

def
= Zω \ Reach(T ) consists of the plays that never visit T .

We can and will assume that T = {⊤} holds for a sink state ⊤ ∈ S and write
Reach(⊤) for Reach({⊤}). Similarly, we assume that there is another sink state
⊥ ∈ S, with ⊥ ̸= ⊤, and write Avoid(⊥) for Avoid({⊥}). Max attempts to
maximize the probability of achieving the given objective (usually Reach(⊤) or
Avoid(⊤)), whereas Min attempts to minimize it.

Value and Optimality

For a game G, objective E and initial state s0, the lower value and upper value
of s0 are respectively defined as

val
↓
G,E(s0)

def
= sup

σ∈Σ
inf
π∈Π

PG,s0,σ,π(E) and val
↑
G,E(s0)

def
= inf

π∈Π
sup
σ∈Σ

PG,s0,σ,π(E) .

The inequality val
↓
G,E(s0) ≤ val

↑
G,E(s0) holds by definition. If val

↓
G,E(s0) =

val
↑
G,E(s0), then this quantity is called the value, denoted by valG,E(s0). For

reachability objectives, like all Borel objectives, the value exists if all action
sets are finite [18], and even if for all states s we have that A(s) is finite or
B(s) is finite [10, Theorem 11]. We always assume the latter, so that valG,E(s0)
exists. For ε ≥ 0, a Max strategy σ is called ε-optimal from s0 if for all Min
strategies π we have PG,s0,σ,π(E) ≥ valG,E(s0)− ε. A 0-optimal strategy is also
called optimal. For E = Reach(⊤) or E = Avoid(⊥) we have

valG,E(s0) = sup
α∈D(A(s0))

inf
β∈D(B(s0))

⟨p(s0, α, β), valG,E⟩ . (1)

We note in passing that the equality in (1) also holds in the states ⊤,⊥, as these
are sink states.

3 Martingales for Safety

For the remainder of the paper we fix a game G over a countable state space S.
Whenever we make finiteness assumptions on S and the action sets, we state
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them explicitly. Several times we use the following lemma, a consequence of the
optional-stopping theorem for submartingales.

Lemma 1. Let σ and π be Max and Min strategies, respectively. Suppose v :
S → [0, 1] is a function with v(⊥) = 0 such that ⟨p(sh, σ(h), π(h)), v⟩ ≥ v(sh)
holds for all histories h. Then Ps0,σ,π(Avoid(⊥)) ≥ v(s0) holds for all s0 ∈ S.

Proof. Let s0 ∈ S. Define a sequence of random variables V (0), V (1), . . . with
V (i) : Zω → [0, 1] by

V (i)((s0, a0, b0)(s1, a1, b1) · · · ) def
= v(si) .

Similarly, denote by H(i) : Zω → Hi the function that maps each random
play to its unique prefix in Hi. Recall that we can create random variables via
composition of functions. Consider the function s : H → S that maps each
finite history h to its final state sh; this function composed with H(i) is the
random variable sH(i) : Z

ω → S. Moreover, the function v composed with sH(i)

is the random variable v(sH(i)). Note that V (i) = v(sH(i)). For i ≥ 0, let Fi be
the sigma-algebra generated by the cylinder sets corresponding to the histories
h ∈ Hi. Then V (i) and H(i) are Fi-measurable. By the assumption on v we
have

Es0,σ,π(V (i+ 1) | Fi) = Es0,σ,π(v(sH(i+1)) | Fi)

=
∑
s∈S

p(sH(i), σ(H(i)), π(H(i)))v(s)

= ⟨p(sH(i), σ(H(i)), π(H(i))), v⟩
≥ v(sH(i)) = V (i) .

It follows that V (0), V (1), . . . is a submartingale with respect to the filtra-
tions F0,F1, . . .. Moreover |V (i)| ≤ 1 holds for all i. This boundedness con-
dition together with the optional-stopping theorem imply that, almost surely,
V (0), V (1), . . . converges to a random variable V (∞) with

Es0,σ,π(V (∞)) ≥ Es0,σ,π(V (0)) = v(s0) .

On the other hand, since ⊥ is a sink,

Es0,σ,π(V (∞)) = Ps0,σ,π(Avoid(⊥)) · Es0,σ,π(V (∞) | Avoid(⊥))

+ Ps0,σ,π(Reach(⊥)) · Es0,σ,π(V (∞) | Reach(⊥))

≤ Ps0,σ,π(Avoid(⊥)) · 1 + Ps0,σ,π(Reach(⊥)) · 0
= Ps0,σ,π(Avoid(⊥)) . ⊓⊔

4 Optimal Safety

We will construct memoryless strategies for reachability from strategies for safety.
The following proposition will be useful for this purpose and is of independent
interest.
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transition
s ⊥function p

p(s, ai, b) 1− 2−i 2−i s ⊥
ai b : 2−i

ai b : 1− 2−i

Fig. 1. A finite-state MDP where Max has no ε-optimal memoryless strategy for safety
objective Avoid(⊥). The state ⊥ is a sink state. The set {ai | i ∈ N} of Max’s actions
at s is countable, while Min only has a single action b.

Proposition 2. Suppose Max’s action sets are finite. Then Max has a memo-
ryless strategy σ that is optimal for Avoid(⊥) from every state. That is, for all
s ∈ S and all Min strategies π

Ps,σ,π(Avoid(⊥)) ≥ valAvoid(⊥)(s) .

Proof. Since Max has only finite action sets, the supremum in (1) is taken over
a compact set of mixed actions. Therefore, it is a maximum; i.e, for every s ∈ S
there is a mixed action, say σ(s) ∈ D(A(s)), such that for all mixed Min actions
β ∈ D(B(s))

valAvoid(⊥)(s) ≤ ⟨p(s, σ(s), β), valAvoid(⊥)⟩ . (2)

Extend σ to a memoryless Max strategy in the natural way, and let π be an
arbitrary Min strategy. Then the function valAvoid(⊥) satisfies the conditions of
Lemma 1. Thus, Ps,σ,π(Avoid(⊥)) ≥ valAvoid(⊥)(s) holds for all s. ⊓⊔

Example 3. The assumption that Max has finite action sets cannot be dropped
from Proposition 2. This assumption is required even for finite-state MDPs, i.e.,
when S is finite and Min has only one action per state. In fact, memoryless
ε-optimal strategies do not always exist for safety objectives. As an example,
consider the game depicted in Figure 1, which was first discussed in [15]. The
strategy that plays ai+k at stage i is 1

2k
-optimal for Max; indeed, the probability

of reaching ⊥ at stage i will be at most 2−(i+k+1). Hence, the probability of
Avoid(⊥) is at least 1−∑

i∈N 2−(i+k+1) = 1− 1
2k

, as required. This implies that
valAvoid(⊥)(s) = 1.

Let σ be some arbitrary memoryless strategy for Max. The probability that
state ⊥ is not reached at stage i is (1−p(s, σ(s), b)(⊥))i. Clearly, the probability
of the event Avoid(⊥) is 0. ⊓⊔

5 ε-Optimal Reachability

Max does not always have optimal strategies for reachability, even when S and
all action sets are finite.
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transition
s ⊤ ⊥function p

p(s, h, w) 1 0 0
p(s, h, t) 0 1 0
p(s, r, w) 0 1 0
p(s, r, t) 0 0 1

s ⊤

⊥

r

t

r w

h t

h w

Fig. 2. The snowball game where Max has no optimal strategy for Reach(⊤). The
states ⊤ and ⊥ are sink states. Max’s action set at s is {hide, run}, shown as h and r
in the figure, while Min’s action set is {wait, throw}, shown as w and t.

Example 4. Consider the game depicted in Figure 2, introduced in [16], also
known as snowball or hide-or-run [8]. Following the intuition given in [8], Max
initially hides behind a bush (state s) and his goal is to reach home (state ⊤)
without being hit by a snowball; Min is armed with a single snowball.

Below, in order to show that valReach(⊤)(s) = 1, for all ε, such that 0 < ε < 1,
we exhibit an ε-optimal strategy for Max. Given ε, consider the memoryless
Max’s strategy σ defined by σ(s)(hide) = 1− ε and σ(s)(run) = ε. After fixing
σ in the game, by Proposition 2, Min has optimal memoryless strategies π for
Avoid(⊤) in the new game. Let π be a memoryless strategy for Min, defined as

π(s)(throw) = x and π(s)(wait) = 1− x.

for some 0 ≤ x ≤ 1. Then

Ps,σ,π(Reach(⊤)) = ε(1− x) + (1− ε)x+ (1− ε)(1− x)Ps,σ,π(Reach(⊤)).

Solving this for Ps,σ,π(Reach(⊤)) yields

Ps,σ,π(Reach(⊤)) = 1− xε

ε+ x(1− ε)
≥ 1− xε

xε+ x(1− ε)
= 1− ε ,

implying that σ is an ε-optimal strategy for Max.
A straightforward argument shows that there is no optimal strategy for Max

in this game. If Max always plays hide, Min can wait forever. If not, assume that
at some stage Max plays run with probability ε > 0; then Min would throw to
reach ⊥ with a positive probability. ⊓⊔

In this section we prove the following proposition.

Proposition 5. Suppose that Min’s action sets are finite. Then for every ε > 0
and every finite subset of states S0 ⊆ S Max has a memoryless strategy σ that is
ε-optimal for Reach(⊤) from all s0 ∈ S0 and for each s ∈ S the support of σ(s)
is finite.

Remark 6. The assumption that Min’s action sets are finite can be replaced by
the assumption that S is finite. The proof requires an extension of Lemma 1.



8 S. Kiefer et al.

Proposition 5 does not carry over to countably infinite reachability games
with infinite action sets for Min; see Section 7.

For the rest of the section we assume that Min’s action sets are finite. Towards
a proof of Proposition 5 we consider, for n ≥ 0, the horizon-restricted reachability
objective Reachn(⊤) ⊆ Reach(⊤) consisting of the plays that reach ⊤ within at
most n steps. For s ∈ S write valn(s) for valReachn(⊤)(s). We have val0(⊤) = 1
and val0(s) = 0 for all s ̸= ⊤. For all n ≥ 0, since Reachn(⊤) ⊆ Reachn+1(⊤),
we have for all s ∈ S

valn(s) ≤ valn+1(s) = sup
α∈D(A(s))

inf
β∈D(B(s))

⟨p(s, α, β), valn⟩

= sup
α∈D(A(s))

min
b∈B(s)

⟨p(s, α, b), valn⟩ ,

as Min’s action sets are finite. For all s ∈ S, since val0(s) ≤ val1(s) ≤ . . . ≤ 1,
there is a limit val∞(s)

def
= limn→∞ valn(s).

Lemma 7. Suppose that Min’s action sets are finite. For all s ∈ S we have

val∞(s) = sup
α∈D(A(s))

min
b∈B(s)

⟨p(s, α, b), val∞⟩ .

Proof. Let s ∈ S. Towards the “≤” inequality, for any n we have

valn+1(s) = sup
α∈D(A(s))

min
b∈B(s)

⟨p(s, α, b), valn⟩

≤ sup
α∈D(A(s))

min
b∈B(s)

⟨p(s, α, b), val∞⟩ .

Thus, val∞(s) ≤ supα∈D(A(s)) minb∈B(s)⟨p(s, α, b), val∞⟩.
Towards the “≥” inequality, for any fixed α and b the function ⟨p(s, α, b), ·⟩ :

RS → R is a linear map and, thus, continuous. Hence, for any α

lim
n→∞

min
b∈B(s)

⟨p(s, α, b), valn⟩ = min
b∈B(s)

lim
n→∞

⟨p(s, α, b), valn⟩

= min
b∈B(s)

⟨p(s, α, b), val∞⟩ .

It follows that

val∞(s) = lim
n→∞

valn+1(s) = lim
n→∞

sup
α∈D(A(s))

min
b∈B(s)

⟨p(s, α, b), valn⟩

≥ sup
α∈D(A(s))

lim
n→∞

min
b∈B(s)

⟨p(s, α, b), valn⟩

= sup
α∈D(A(s))

min
b∈B(s)

⟨p(s, α, b), val∞⟩ . ⊓⊔

Now the following lemma follows from Lemma 1.

Lemma 8. Suppose that Min’s action sets are finite. Then valReach(⊤) = val∞.
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Proof. Since Reach(⊤) ⊇ Reachn(⊤), we have valReach(⊤) ≥ valn. Towards the
other inequality, define a function v : S → [0, 1] by v(s)

def
= 1 − val∞(s). We

have v(⊤) = 1 − val∞(⊤) = 0. Let σ be an arbitrary Max strategy. For every
history h, let bh ∈ argminb∈B(sh)

⟨p(sh, σ(h), b), val∞⟩. Define a Min strategy π
with π(h)(bh) = 1 for all histories h. For all histories h we have

⟨p(sh, σ(h), π(h)), v⟩ = 1− ⟨p(sh, σ(h), π(h)), val∞⟩ from the definition of v
≥ 1− val∞(sh) Lemma 7
= v(sh) definition of v.

By Lemma 1, for all s ∈ S

Ps,σ,π(Reach(⊤)) = 1− Ps,σ,π(Avoid(⊤)) ≤ 1− v(s) = val∞(s) .

Since σ was arbitrary, we conclude that valReach(⊤) ≤ val∞. ⊓⊔

Let us introduce an operation on games which makes transitions “leak” to ⊥.
The intention is to “reduce” reachability to safety, in the sense that in a leaky
game, Avoid(⊥) is included in (and, hence, equal to) Reach(⊤) up to a measure-
zero set of plays. We set up the leaky game so that Max has an optimal strategy
for Avoid(⊥), which, according to Proposition 2, can be chosen to be memoryless.

For technical reasons, which will manifest themselves later, we associate the
leaks with Min actions. Concretely, for a state s, a Min action b ∈ B(s), and
some ε > 0, by making b leak ε we refer to obtaining from p another transition
function p̌ by setting, for all a ∈ A(s) and t ∈ S,

p̌(s, a, b)(t)
def
=

{
(1− ε)p(s, a, b)(t) if t ̸= ⊥
(1− ε)p(s, a, b)(⊥) + ε if t = ⊥ .

Intuitively, a fraction of ε of the probability mass leaks to ⊥ whenever b is taken.
We use leaks to prove Proposition 5.

Proof (of Proposition 5). Let ε > 0, and let S0 ⊆ S be finite. Choose ε1, ε2, ε3 >
0 such that ε1+ε2+ε3 = ε. For each s ∈ S choose a(s) ∈ A(s). By Lemma 8, since
S0 is finite, there is n ≥ 0 such that valn(s) ≥ valReach(⊤)(s) − ε1 holds for all
s ∈ S0. Inductively define (in general non-memoryless) Max strategies σ0, . . . , σn

as follows. For each history h, define σ0(h)(a(sh))
def
= 1. For i ∈ {0, . . . , n−1} and

each state s ∈ S we have supα∈D(A(s)) minb∈B(s)⟨p(s, α, b), vali⟩ = vali+1(s);
thus we can define σi+1(s) so that minb∈B(s)⟨p(s, σi+1(s), b), vali⟩ ≥ vali+1(s)−
ε2
n . Since ε2

n > 0, we can assume without loss of generality that the support of
σi+1(s) is finite. Finally, define σi+1(zh)

def
= σi(h) for all z ∈ Z and h ∈ H.

We show inductively that for all i ∈ {1, . . . , n} and all s ∈ S

inf
π∈Π

PG,s,σi,π(Reachi(⊤)) ≥ vali(s)− i · ε2
n

. (3)
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This is immediate for i = 0. For i ∈ {0, . . . , n− 1} we have

inf
π∈Π

PG,s,σi+1,π(Reachi+1(⊤))

≥ min
b∈B(s)

⟨p(s, σi+1(s), b), inf
π∈Π

PG,·,σi,π(Reachi(⊤))⟩

≥ min
b∈B(s)

⟨p(s, σi+1(s), b), vali⟩ − i · ε2
n

induction hypothesis

≥ vali+1(s)−
ε2
n

− i · ε2
n

definition of σi+1(s) ,

proving (3).
Now in every state except ⊤, make each Min action leak ε3

n . Further, remove
any Max actions that σn never takes. Call the resulting game G−. Then Max’s
action sets in G− are finite and we have for all s0 ∈ S and all Min strategies π

PG−,s,σn,π(Avoid(⊥))

≥ PG−,s,σn,π(Reachn(⊤)) Avoid(⊥) ⊇ Reachn(⊤)

≥ PG,s,σn,π(Reachn(⊤))− ε3 at most n · ε3
n

leaks in n steps

≥ valn(s)− ε2 − ε3 by (3)
≥ valG,Reach(⊤)(s)− ε1 − ε2 − ε3 choice of n
= valG,Reach(⊤)(s)− ε choice of ε1, ε2, ε3.

Thus, for all s ∈ S0

valG−,Avoid(⊥)(s) ≥ valG,Reach(⊤)(s)− ε . (4)

Due to the leaks, in G− the events Reach(⊤) and Avoid(⊥) coincide up to mea-
sure zero for all Max and all Min strategies. Since Max’s action sets in G− are
finite, by Proposition 2 Max has a memoryless strategy σ that is optimal for
Avoid(⊥) from every state. Thus, for all s ∈ S0 and all Min strategies π

PG,s,σ,π(Reach(⊤)) ≥ PG−,s,σ,π(Reach(⊤))

= PG−,s,σ,π(Avoid(⊥)) as argued above
≥ valG−,Avoid(⊥)(s) σ is optimal

≥ valG,Reach(⊤)(s)− ε by (4).

That is, the memoryless strategy σ is ε-optimal from all s ∈ S0, and for each
s ∈ S the support of σ(s) is finite. ⊓⊔

6 Optimal Reachability

In this section we show the following result, a generalization of Bordais et al. [4,
Theorem 28], via a different proof.
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transition
s1 ⊥function p

p(s0, a, bq) q 1− q

s0 s1 ⊤

⊥

r

t

r w

h t

h w

a bq : q

a
bq : 1− q

Fig. 3. A game where Max has no memoryless optimal strategy for Reach(⊤). The
states ⊤ and ⊥ are sink states. Min’s action set at s0 is {bq | q ∈ ( 1

2
, 1)∩Q}, while Max

has a single action a at s0. The game in dashed box is the snowball game from Figure 2.

Theorem 9. Suppose that S and Min’s action sets are finite. Then for every
ε > 0 Max has a memoryless strategy σ that is ε-optimal for Reach(⊤) from all
states and optimal from all states from which Max has any optimal strategy.

The assumption that Min’s action sets are finite cannot be dropped, as the
following example shows.

Example 10. Consider the game depicted in Figure 3, wherein state s1 is the start
state of the snowball game from Example 4. Recall that valReach(⊤)(s1) = 1, but
Max does not have an optimal strategy from s1. By this, and the fact that Min
can choose bq for q arbitrary close to 1

2 , we deduce that valReach(⊤)(s0) = 1
2 .

Observe that when taking action bq at s0, Min is increasing the value from 1
2

to q > 1
2 . Indeed, we claim that Max has an optimal strategy from s0. If Max

observes which action bq Min takes in s0, and plays a (q − 1
2 )-optimal strategy

from s1, the probability of reaching ⊤ will be at least q·(1−(q− 1
2 )) ≥ q−(q− 1

2 ) =
1
2 . But Max has to “remember” Min’s value increase in order to play sufficiently
well in s1. So Max does not have a memoryless optimal strategy from s0. In fact,
a step counter (discrete clock) would not help Max either, since the step counter
value does not contain any information about q. ⊓⊔

The assumption that S is finite cannot be dropped either, not even for the
subclass of turn-based games, as the following example shows.

Example 11. Consider the finitely-branching turn-based reachability game de-
picted in Figure 4 (from [13, Section 9]). The initial state is u1, states ui are
Min-controlled, states si are Max-controlled and t is the target state.

At every state ui, Min can either go right (red transition) or go up. At every
state si, Max can either go right (red transition) or go down. It is easy to show
that valG(si) > valG(ui) for all i. Thus the only locally optimal Min move is to
go right. Similarly, valG(si) > yi, and thus the only locally optimal Max move
is to go right.

Max has an optimal strategy from u1 (and also from every other state) as
follows. First, always go right. If Min ever goes up at some ui then go down at si.
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ui si ui+1 si+1 ui+2

t ⊥

1
2

1

1
4 − 1

2i+1
1
4 + 1

2i+1

t ⊥

yi 1− yi

t ⊥

1
2

1

1
4 − 1

2i+2
1
4 + 1

2i+2

t ⊥

yi+1 1− yi+1

· · ·· · ·

Fig. 4. A finitely-branching turn-based reachability game G with initial state u1, where
optimal Max strategies cannot be memoryless (and cannot even be Markov). For clarity,
we have drawn several copies of the target state t. The number yi is defined as 1

2
− 1

2i+1 .

Intuitively, by going up, Min increases the value (i.e., gives a “gift” to Max). By
going down at si, Max plays sub-optimally locally, but realizes most of the value
of si, i.e., loses less than Min’s previous gift.

However, no memoryless strategy (and not even any Markov strategy, i.e.,
any strategy that uses only a step counter) can be optimal for Max from u1. First,
a step counter gives no advantage to Max, since in this example the step counter
is implicit in the current state anyway. For any memoryless Max strategy, there
are to cases. Either this strategy never goes down with any positive probability
at any state si. Then Min can avoid the target t completely by always playing
up, and thus this Max strategy is not optimal. Otherwise, let sj be first state
where Max goes down with some positive probability. This Max strategy is not
optimal either, since Min can always go right (locally optimal), and Max’s choice
at sj is locally sub-optimal.

See [13, Section 9] for a formal proof of this example. It is also shown there
that, in every countably infinite finitely-branching turn-based reachability game,
optimal Max strategies (if they exist at all) can be chosen as deterministic and
using a step counter plus 1 bit of public memory. So the example above is tight.

⊓⊔

Now we prove Theorem 9. Let S and Min’s action sets be finite. We partition
the finite state space S into S0, S1 so that S0 contains exactly the states from
which Max has an optimal strategy for Reach(⊤), and S1 contains exactly the
states from which Max does not have an optimal strategy. Clearly, ⊤,⊥ ∈ S0.

By the finiteness of Min’s action sets and (1), for every value-0 state s and
every mixed Max action α ∈ D(A(s)) Min has an action b that keeps the game
(surely) in a value-0 state. Therefore, an optimal Max strategy cannot rely on
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Min “gifts” in value-0 states. Hence, we can assume without loss of generality
that ⊥ is the only value-0 state. We write S+

0
def
= S0 \ {⊥}, so that all states in

S+
0 have a positive value.

The challenge is that the play can “cross over” between S0 and S1. Our
approach is as follows. First we fix a memoryless strategy σ0 on S0 that is
optimal for Max as long as Min responds optimally. Then, building on the idea
of the previous section, we add “leaks” to the game so that

– in S0 the leaks do not decrease the value and Max still has an optimal
strategy;

– in S1 the leaks decrease the value only by little.

After having fixed σ0 on S0 and introduced suitable leaks, an optimal safety
strategy for Avoid(⊥) will serve as the memoryless strategy σ claimed in Theo-
rem 9. This strategy extends σ0 to the whole state space and is optimal from S0

(no matter what Min does).
Below, to avoid clutter whenever we write val(s) we mean valG,Reach(⊤)(s)

where G is the original game, even when other auxiliary games are discussed.
We start by defining a memoryless strategy, σ0, only on S0 so that σ0 is

optimal from S0 as long as Min “does not increase the value”.
For a state s ∈ S0, call a mixed Max action α ∈ D(A(s)) optimality-

preserving if for all Min actions b ∈ B(s) we have ⟨p(s, α, b), val⟩ ≥ val(s)
and if ⟨p(s, α, b), val⟩ = val(s) then the support of p(s, α, b) is a subset of S0.
Note that every optimal Max strategy from S0 is optimality-preserving at least
in the first step. Therefore, every state in S0 has an optimality-preserving mixed
Max action.

For a state s ∈ S0 and an optimality-preserving mixed action α, call a Min
action b ∈ B(s) value-preserving if ⟨p(s, α, b), val⟩ = val(s) and value-increasing
otherwise (i.e., ⟨p(s, α, b), val⟩ > val(s)).

We define inductively a non-decreasing sequence R(0), R(1), R(2), . . . of sub-
sets of S0. Define R(0)

def
= {⊤}. For every n ≥ 0, define R(n+1) as R(n) union the

set of those states s ∈ S0 from which Max has an optimality-preserving mixed ac-
tion, say αs, and a number δs > 0 such that for all value-preserving Min actions
b ∈ B(s) we have p(s, αs, b)(R(n)) ≥ δs. We note in passing that the existence
of δs > 0 is guaranteed due to finiteness of Min’s action set. Informally speaking,
R(n+1) consists of those states that are already in R(n) or have an optimality-
preserving mixed action αs so that in the next step R(n) is entered with a positive
probability unless Min takes a value-increasing action. Defining R

def
= R(|S| − 1),

since S is finite we have R = R(|S| − 1) = R(|S|) = R(|S|+ 1) = . . .. Moreover,
we can define δ

def
= mins∈R δs > 0.

Lemma 12. We have R = S+
0 .

Proof. By an easy induction, ⊥ ̸∈ R. Hence R ⊆ S+
0 . Towards the reverse

inclusion, suppose there is s ∈ S0 \ R. It suffices to show that s = ⊥. Let σ be
an arbitrary optimal Max strategy starting from s. Note that σ(s) is optimality-
preserving. Since s ̸∈ R = R(|S|), there is a value-preserving Min action b ∈
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B(s) such that the support of p(s, σ(s), b) does not overlap with R(|S| − 1) =
R. That is, the support of p(s, σ(s), b) is a subset of S0 \ R and, thus, does
not contain ⊤. Since σ is optimal, σ has to play optimally—and, thus, has to
use optimality-preserving mixed actions—as long as Min has taken only value-
preserving actions. Then it follows inductively that there is a deterministic Min
strategy (playing b in the very first step) that keeps the play in S0 \ R forever.
In particular, ⊤ is not reached. Since the optimal strategy σ was arbitrary, we
have val(s) = 0; i.e., s = ⊥. ⊓⊔

Define σ0 to be the memoryless Max strategy on S0 with σ0(s) = αs for all
s ∈ S0, where αs is from the definition of R(n). For s ∈ S0, call b ∈ B(s) value-
preserving (or value-increasing) if b is value-preserving (or value-increasing, re-
spectively) for s and σ0(s).

Lemma 13. For any Max strategy that plays σ0 on S0 and any Min strategy,
almost all plays that eventually remain in S+

0 and eventually contain only value-
preserving Min actions reach ⊤.

Proof. Let σ be a Max strategy that plays σ0 on S0, and let π be a Min strategy.
Since the set of (finite) histories is countable, it suffices to consider the set of
plays which always remain in S+

0 and contain only value-preserving Min actions.
Let s ∈ S+

0 . By Lemma 12, we have s ∈ R. Let n ≤ |S| − 1 be the smallest n
with s ∈ R(n). We have p(s, σ0(s), b)(R(n− 1)) ≥ δ for all value-preserving Min
actions b. It follows that at any time the probability that in at most |S|−1 steps
R(0) = {⊤} is reached is at least δ|S|−1 > 0. Thus, almost surely ⊤ is eventually
reached. ⊓⊔

Since S0 and Min’s action sets are finite, we can choose an ε > 0 small enough
so that for all s ∈ S0 and all value-increasing Min actions b we have

⟨p(s, σ0(s), b), val⟩ ≥ val(s) + 2ε (5)

So any value increase by a Min action is at least 2ε.
Define a game G1 with state space S1 ∪ {⊤,⊥}. Its transition function p1 is

obtained from p by redirecting probability mass away from S0\{⊤,⊥} as follows.
Each transition to a state s ∈ S0 \ {⊤,⊥} is redirected to ⊤ with probability
val(s) and to ⊥ with probability 1− val(s). Then the value of each state in G1

is equal to its value in G.
As in the proof of Proposition 5 we obtain from G1 a “leaky” version, G−

1 ,
with transition function p−1 , such that Max’s action sets are finite and, defining
v(s)

def
= valG−

1 ,Avoid(⊥)(s) for all s ∈ S1 ∪ {⊤,⊥}, we have

v(s) ≥ val(s)− ε for all s ∈ S1. (6)

By Proposition 2 Max has a memoryless optimal (for safety) strategy σ1 in G−
1 .

Thus, for all s ∈ S1 and all b ∈ B(s), as in Equation (2), we have

⟨p−1 (s, σ1(s), b), v⟩ ≥ v(s) .
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Next we define a “leaky” version, G−, of the whole game G with the whole
state space S and a transition function p−. On S1, function p− is defined similarly
to p−1 , except that the probability mass that was directed away from S0 \{⊤,⊥}
in the definition of G1 is now not directed away and instead enters S0 as originally.
However, the leaks in every transition from S1 are also present in p−. Extend the
function v to the whole state space S by defining v(s)

def
= val(s) for all s ∈ S0.

Then, for all s ∈ S1 and all b ∈ B(s)

⟨p−(s, σ1(s), b), v⟩ = ⟨p−1 (s, σ1(s), b), v⟩ ≥ v(s) .

On S0, the transition function p− is obtained from p by making value-
increasing Min actions leak ε, in the sense defined in Section 5. For all s ∈ S0

and all value-increasing Min actions b ∈ B(s)

⟨p−(s, σ0(s), b), v⟩
≥ ⟨p−(s, σ0(s), b), val⟩ − ε by (6) and the definition of v on S0

≥ ⟨p(s, σ0(s), b), val⟩ − ε− ε from the definition of p−

≥ val(s) + 2ε− ε− ε by (5)
= v(s) definition of v on S0.

For all s ∈ S0 and all value-preserving Min actions b ∈ B(s)

⟨p−(s, σ0(s), b), v⟩
= ⟨p(s, σ0(s), b), v⟩ from the definition of p−

= ⟨p(s, σ0(s), b), val⟩ support of p(s, σ0(s), b) is a subset of S0

= val(s) b is value-preserving
= v(s) definition of v on S0.

Define the memoryless strategy σ by naturally combining σ0 and σ1. We have
shown above that for all s ∈ S and all b ∈ B(s) we have ⟨p−(s, σ(s), b), v⟩ ≥ v(s).
From applying Lemma 1 we conclude that for all s ∈ S and all Min strategies π
we have

PG−,s,σ,π(Avoid(⊥)) ≥ v(s) .

In G−, due to the leaks, almost all ⊥-avoiding plays eventually remain in S+
0 and

eventually have only value-preserving Min actions. But by Lemma 13, almost all
of these plays reach ⊤. Thus, we have for all s ∈ S and all Min strategies π

PG−,s,σ,π(Reach(⊤)) = PG−,s,σ,π(Avoid(⊥)) ≥ v(s) ,

which, by definition, equals val(s) if s ∈ S0 and, by (6), is at least val(s) − ε
if s ∈ S1. Since PG,s,σ,π(Reach(⊤)) ≥ PG−,s,σ,π(Reach(⊤)), this completes the
proof of Theorem 9.
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7 Conclusion and Related Work

We have shown that, in finite reachability games with finite action sets for Min,
optimal Max strategies, where they exist, can be chosen as memoryless random-
ized. However, this does not carry over to countably infinite reachability games.

Intuitively, the reason for this is that Min can play sub-optimally and give
“gifts” to Max that increase the expected value of the current state, but delay
progress towards the target. In countably infinite reachability games, Min might
give infinitely many smaller and smaller gifts and delay progress indefinitely,
unless Max uses memory to keep track of these gifts in order to react correctly.

Finite reachability games are simpler, because gifts from Min to Max are
universally lower bounded in size, due to the finite state space and the finiteness
of Min’s action sets. Therefore, Min cannot give infinitely many gifts to Max,
except in a nullset of the plays. Without such distracting gifts, Max can make
steady progress towards the target. Moreover, if Min does give a gift once, then
Max does not need to remember how large it was, since it is universally lower
bounded.

The existence of optimal strategies is also affected by the size of the state
space. While finite turn-based reachability games always admit optimal Max
strategies [7], even in countably infinite MDPs, optimal Max strategies for reach-
ability need not exist. However, it was shown by Ornstein [20, Thm. B] that ε-
optimal Max strategies for reachability in countably infinite MDPs can be chosen
as memoryless and deterministic. These strategies can even be made uniform,
i.e., independent of the start state. Moreover, if an optimal strategy does exist
for Max in a countable MDP, then there also exists one that is memoryless and
deterministic [20, Prop. B].

These results on countable MDPs do not carry over to countable 2-player
stochastic reachability games. While Max always has ε-optimal randomized mem-
oryless strategies in countable concurrent reachability games with finite action
sets [21, Corollary 3.9], these strategies depend on the start state and cannot be
made uniform [19]. This non-uniformity even holds for the subclass of countable
finitely branching turn-based reachability games [13]. However, uniformity can
be regained with 1 bit of public memory, i.e., there exist uniformly ε-optimal
Max strategies in countable concurrent reachability games with finite action sets
that are deterministic and use just 1 bit of public memory [13]. Optimal Max
strategies in countable turn-based finitely branching reachability games, where
they exist, can be chosen to use just a step counter and 1 bit of public memory
(but not just a step counter or just finite memory). On the other hand, in con-
current games with finite action sets, a step counter plus finite private memory
does not suffice for optimal Max strategies in general [13].

If Min is allowed infinite action sets (resp. infinite branching) in countably
infinite reachability games, then Max generally needs infinite memory for ε-
optimal, optimal and almost surely winning strategies. There exists a turn-based
countable reachability game with infinite Min branching (and finite Max branch-
ing), such that every state admits an almost surely winning strategy for Max, and
yet every Max strategy that uses only a step counter plus finite private memory
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is still useless (in the sense that Min can make its attainment arbitrarily close
to zero) [13].
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