COMP104 - 2017 -

Second CA Assignment

Storage Management

Page Replacement Methods

Assessment Information

Assignment Number 2 (of 2)

Weighting 10%

Assignment Circulated Monday 13th March 2017
Deadline Wednesday 3rd May 2017; 12.00

Submission Mode

Electronic

Learning outcome assessed

Marking criteria

4, viz “Construct programs which demonstrate in a
simple form the operation of examples of systems programs
Scheme provided at end of document.

Submission necessary in order
to satisfy Module requirements?

No

1 Introductory Background

The organization of memory into Page Frames each of which can store a single
fixed size Page, is a standard method of presenting a view that the available
“fast” memory is much larger than is actually the case. Typically fast RAM
and cache storage may be less than 1% of the total physical storage available.

As has been described in the lectures, paged memory uses a physical division
assigning numbers to page frames from 0 up to N —1 (with N dependent on the
total amount of storage space provided) and a logical division of pages between
running processes. At any given time page number k will be resident in some
page frame and, in order to keep track of which page number is (currently)
resident in a given page frame, the Memory Manager makes use of a Page
Table. This being a mapping from page numbers to the frames in which they
are held, so that if PT[k] = m this captures the fact that page number k is in
page frame m.

In order to be read and written to, a page has to reside in a frame corre-
sponding to one of those forming part of the RAM, and since this cannot hold
every physical page, from time to time a page held in RAM may be swopped
out (ie moved to the secondary disk store) in order to free a page frame for a
page which has been referenced but (after checking the page table) has been
found to reside in a frame outside main memory: an event referred to as a page
fault.

As was discussed in lectures, in order to alleviate this problem a decision has
to be made regarding which of those pages currently held in RAM ought to be
removed and, to facilitate this decision a number of page replacement policies
have been proposed. In particular:

A. Longest Resident: use the page frame which is holding the page that has
been held in memory for the longest time.

B. Least recently used (LRU): use the the page frame holding the page which
has not been accessed for the longest time.

C. Least frequently used (LFU): use the page frame holding the page which
has been accessed the least number of times.

2 Assignment Details

The purpose of the present assignment is to provide a comparison of three
approaches with respect to a given trace of page references. Specifically, you
should implement (in Java) a simulation of the following:

a. Using a Store size of 1024 page frames, the first 8 of which are RAM
and the remaining 1016 disk, page frames (i.e. secondary memory), a
page trace is any sequence of numbers < pi, p2, ... ,pg, ... > all of
which are at least 0 and at most 1023. The item p; gives the page number
referenced at time 4.

b. If the page frame, Y say, in which page number p; is resident is greater
than 7 then a page fault has occurred. Dealing with this requires,

1. Identifying the page frame in RAM (ie with a number between 0
and 7) that contains the page number to be replaced according to
the page replacement method used. Frame X and page P say.

2. Swopping page P with page p;: after this swop, page number P is
in the page frame that had held p;, (ie page frame Y') while page
number p; is now in page frame X.

3. Updating the page table so that PT[p;] = X and PT[P] =Y
c. Deal with the next page reference in the page trace.
The three (3) files located at

www.csc.liv.ac.uk/"ped/COMP104/COMP104-2016-17/Page_Trace_0ldest
www.csc.liv.ac.uk/“ped/COMP104/COMP104-2016-17/Page_Trace_LRU
www.csc.liv.ac.uk/“ped/COMP104/COMP104-2016-17/Page_Trace_Random

contain “randomly” generated lists! of 20,000 of page references, the first num-
ber in each indicating the page replacement policy to be applied so that

First Number in File ‘ Page Replacement Policy
0 OLDEST — choose the page that has been held in RAM longest
1 LRU — choose the least recently used
2 RANDOM — choose a random page in RAM to swop out

Your Java program should carry out the following, using these data files as
sample inputs:

1. Determine the page replacement method to be used (as specified by the
first number in the file and the mapping just described). (Note the “ran-
dom” policy — not discussed in lectures — is simply to choose any one of
the 8 page frames in RAM at random).

2. Process the sequence of page references (at most 20,000) maintaining
details of

A. Which page number is (currently) held in page frame k (for 0 <
k < 1024).

B. Which page frame (currently) holds page number p (again for 0 <
p < 1024): note this is the basic information that is maintained by
the Page Table.

1For anyone interested in more detail, this is not simply produced by generating a sequence
of random numbers between 0 and 1023, but is intended to reflect a Poisson arrival process
for new processes: this is one of the standard models of event occurrences studied in Queuing
Theory, once an important topic forming part of most Computer Science degree programmes.

It may be assumed at the start of the simulation that page frame k

contains page number k.

3. Using the page reference data in the files, output a log of the page fault

data. This should be of form

Page Replacement Method used

FrO | Frl | Fr2 | Fr3 | Fr4 | Fr5 | Fr6 | Fr7 | Time | Page Faults since last check

Here FrX is the page number of the page in Frame X; Time is the total
number of page references processed so far (and thus will be at most
20,000). The data should be output every 100 page references and the
final column of output is the number of page faults seen in the last 100

references.

3 Further Details

In addition to the main program details you should implement a Page class

using the following fields and methods:

Fields

private int current_frame

The frame occupied by this page

private int loaded._at

The Clocktime this page was loaded into RAM

private int last_read

The Clocktime this page was last accessed

Constructor

Page ()

Initiates all fields to —1

Methods

private int GetFrame()

Return current_frame for this page

private void LoadPage(int frame_value, int ClockTime)

Assigns this page to frame frame_value
if frame_value is < 7 loaded_at=ClockTime

if frame_value is > 7 loaded_at=-1

private void Update(int ClockTime)

Updates last_read to ClockTime for this page

private int GetAge ()

returns the value of loaded_at for this page

private int GetLastAccess()

returns the value of last_read for this page

Additional Methods

public static int Find _Oldest(int[] Store, Page[] Table)

return the frame number of the frame

with the longest resident page

public static int Find LRU(int[] Store, Page[] Table)

return the frame number of the frame

with the least recently used page

With this class the Page Table is simply an array of Page. It is important to
note that this table should not be confused or conflated with the array (of int|]
corresponding to the physical memory (ie the array Store[] mentioned in the
Find_Oldest and Find LRU methods): when Store [k]=p this means that “page
number p is currently held in page frame k” so that Table[p] .GetFrame ()

should return the value k.

Submission Instructions

Firstly, check that you have adhered to the following list:

1.
2.

All of your code is within a single file. Do NOT use more than one file.

Both your name AND User ID are clearly indicated at the start of your
code, eg by

The file’s name MUST be
Paging. java

This means that the main class name must also be Paging.

Submit only the Java source: design documentation, compiled .class files,
sample outputs, extraneous commentary and similar ephemera are neither
required nor desired.

. Please note that it is NOT required to submit the output from your

program: this can be generated independently by running your code.
Your program is written in Java, not some other language.
The file is a text file: not compressed or encoded or otherwise mangled.

Your program compiles and runs on the Departmental Windows system.
If you have developed your code elsewhere (eg your home PC), port it to
our system and perform a compile/check test before submission. It is your
responsibility to check that you can log onto the departmental system well
in advance of the submission deadline.

Your program does not bear undue resemblance to anybody else’s. Elec-
tronic checks for code similarity will be performed on all submissions and
instances of plagiarism will be dealt with in accordance with the proce-
dures and sanctions prescribed by the relevant University Code of Practice.
The rules on plagiarism and collusion are explicit: do not copy anything
from anyone else’s code, do not let anyone else copy from your code and
do not hand in “jointly developed” solutions.

Your solution must be

SUBMITTED ELECTRONICALLY

Electronic submission: Your code must be submitted to the departmental
electronic submission system at:

http://intranet.csc.liv.ac.uk/cgi-bin/submit.pl

You need to login in to the above system and select COMP104-2: Storage
Management from the drop-down menu. You then locate the file containing
your program that you wish to submit, check the box stating that you have read
and understood the University Code of Practice on Plagiarism and Collusion,
then click the Upload File button.

MARKING SCHEME

Below is the breakdown of the mark scheme for this assignment. Each category
will be judged on the correctness, efficiency and modularity of the code, as well
as whether or not it compiles and produces the desired output.

e Adherence to specification (ie information requested, correct naming etc.)
=10

e Implementation of Page class and methods = 25.
e Simulation Structure = 15

e Implementation of replacement algorithms = 25
e Output form = 15 marks

e Comments and layout = 10 marks

This assignment contributes 10% to your overall mark for COMP104.

Finally, please remember that it is always better to hand in an incomplete
piece of work, which will result in some marks being awarded, as opposed to
handing in nothing, which will guarantee a mark of 0 being awarded. Demon-
strators will be on hand during the COMP104 practical sessions to provide
assistance, should you need it.

