
Online Speed Scaling Based on Active Job Count

to Minimize Flow plus Energy

Tak-Wah Lam∗ Lap-Kei Lee† Isaac K. K. To‡ Prudence W. H. Wong‡

1 Introduction

This paper is concerned with online scheduling algorithms that aim at minimizing the total flow
time plus energy usage. The results are divided into two parts. First, we consider the well-studied
“simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that
changes speed discretely. This is in contrast to the previous algorithms which change the speed
continuously [4, 6]. More interestingly, AJC admits a better competitive ratio, and without using
extra speed. In the second part, we extend the study to a more general speed scaling model where
the processor can enter a sleep state to further save energy. A new sleep management algorithm
called IdleLonger is presented. This algorithm, when coupled with AJC, gives the first competitive
algorithm for minimizing total flow time plus energy in the general model.

1.1 Speed scaling, flow and energy

Energy usage has become a major issue in the design of microprocessors, especially for battery-
operated devices. Many modern processors support dynamic speed scaling to reduce energy usage.
Recent research on online job scheduling has gradually taken speed scaling and energy usage into
consideration (see [14] for a survey). The challenge arises from the conflicting objectives of providing
good quality of service and conserving energy. Among others, the study of minimizing flow time
plus energy has attracted much attention [1, 4–6, 10, 12, 18, 19]. The results to date are based on
a speed scaling model in which a processor can vary its speed dynamically, and when running at
speed s, consumes energy at the rate of sα, where α is typically 2 [20] or 3 (the cube-root rule [8]).
Most results assume the infinite speed model [22] where the processor speed can be scaled arbitrarily
high; some consider the more realistic bounded speed model [9], which imposes a maximum processor
speed T .

Total flow time is a commonly used QoS measure for job scheduling. The flow time (or simply
flow) of a job is the time elapsed from when the job arrives until it is completed. In the online
setting, jobs with arbitrary sizes arrive at unpredictable times. They are to be scheduled on a
processor which allows preemption without penalty. To understand the tradeoff between flow and

∗Department of Computer Science, University of Hong Kong, Hong Kong. Email: twlam@cs.hku.hk; T.W. Lam
is partially supported by HKU Grant 201007176149.

†MADALGO (Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation),
Department of Computer Science, Aarhus University, Denmark. Email: lklee@madalgo.au.dk.

‡Department of Computer Science, University of Liverpool, UK. Email: {isaacto, pwong}@liverpool.ac.uk;
I.K.K. To and P.W.H. Wong are partially supported by EPSRC Grant EP/E028276/1.

0The results in this paper have appeared in preliminary form in the proceedings of the 16th Annual European
Symposium on Algorithms, 2008 and the proceedings of the 36th International Colloquium on Automata, Languages
and Programming, 2009.

1

energy, Albers and Fujiwara [1] initiated the study of minimizing a linear combination of total flow
and total energy. The intuition is that, from an economic viewpoint, both flow and energy can be
compared with respect to their monetary value, and one can assume that users are willing to pay
a certain (say, ρ) units of energy to reduce one unit of flow time. Thus, one would like to have
a schedule that minimizes the total flow plus the total energy weighted with ρ. Furthermore, by
changing the units of time and energy, one can further assume that ρ = 1.

Under the infinite speed model, Albers and Fujiwara [1] considered jobs of unit size. They
proposed a speed scaling algorithm that changes the speed according to the number of active
jobs which are jobs released but not yet completed, but they did not analyze it. Instead they
considered a batched variation (in which newly arrived jobs will be ignored until all jobs of the
current batch are completed) and showed that it is 8.3e(1 + Φ)α-competitive for minimizing flow
plus energy, where Φ = (1 +

√
5)/2 is the Golden Ratio. Bansal, Pruhs and Stein [6] later proved

that the more natural algorithm proposed in [1] is indeed 4-competitive for unit-sized jobs. More
interestingly, [6] gave a new algorithm to handle jobs of arbitrary sizes, which scales the speed as a
function of the total remaining work of active jobs and selects the job with the smallest (original)
size to run. This algorithm, referred to as the BPS algorithm below, is O((α

lnα)
2)-competitive

for minimizing flow plus energy; precisely, the competitive ratio is µǫγ1, where ǫ is any positive
constant, µǫ = max{(1 + 1/ǫ), (1 + ǫ)α} and γ1 = max{2, 2(α−1)

α−(α−1)1−1/(α−1) }. E.g., if α = 2, the

competitive ratio is 5.236.
Bansal et al. [4] later adapted the BPS algorithm to the bounded speed model, where a processor

has a maximum processor speed T . The competitive ratio remains O((α
lnα)

2) if the maximum
speed is relaxed slightly; precisely, assuming that the BPS algorithm can vary its speed between
0 and (1 + ǫ)T , where ǫ > 0, then the competitive ratio increases slightly to µǫγ2, where γ2 =
2α/(α − (α − 1)1−1/(α−1)). E.g., if α = 2, the competitive ratio is 10.472 using maximum speed
1.618T . Both results [4, 6] also hold for weighted flow time plus energy.

The BPS algorithm allows us to understand the tradeoff between flow and energy when schedul-
ing jobs of arbitrary size, and it also gives rise to some interesting questions. First, the speed
function of the BPS algorithm depends on the remaining work of active jobs, and a work-based
speed function would demand the processor to change the speed continuously, which may not be
desirable practically. Note the a speed function depending on the count of active jobs would change
in a discrete manner and is stabler.

Second, the BPS algorithm requires the online algorithm to have extra speed. In contrast,
the classic result on flow time scheduling is that SRPT (shortest remaining processing time) gives
minimum flow time without requiring extra speed [3]. This is perhaps due to fact that sometimes
BPS would be too slow. Precisely, we observe that the speed of BPS can be lower than the critical
threshold (n

α−1)
1/α, where n is the number of active jobs; whenever this happens, one can decrease

the flow plus energy by increasing the speed. To see why this is the case, suppose a job J with
p(J) units of work is processed to completion using speed s, the energy usage is P (s)p(J)/s and
flow time accumulated during its execution is n p(J)/s, where P (s) = sα. The sum of energy and
flow time is minimized if P (s) + n = s × P ′(s), i.e., s = (n

α−1)
1/α. It is sensible to ask whether a

speed function that never goes below the critical threshold can work without extra speed and give
a better competitive ratio.

In this paper, we consider an online algorithm AJC which selects jobs according to SRPT
and sets its speed based on the number of active jobs (like the one proposed in [1] for unit-sized
jobs). Thus its speed changes only at job arrival or completion. We show that AJC works for jobs
with arbitrary sizes and that AJC is more competitive for minimizing flow plus energy than the

2

α = 2 α = 3

Infinite speed 5.236 [6] 7.940 [6]
Without model (T = ∞) 2.667 [this paper] 3.252 [this paper]
sleep state Bounded speed 10.472 with max speed 1.618T [4] 11.910 with max speed 1.466T [4]

model 3.6 with max speed T [this paper] 4 with max speed T [this paper]
Infinite speed

7.333 [this paper] 8.503 [this paper]
With multiple model (T = ∞)
sleep states Bounded speed

11 with max speed T [this paper] 12 with max speed T [this paper]
model

Table 1: Results on scheduling with and without sleep states for minimizing flow time plus energy.
Note that the new results in this paper do not demand extra speed.

BPS algorithm [4, 6]. More importantly, AJC does not demand extra processor speed. For the
infinite and bounded speed model, the competitive ratios are respectively β1 = 2/(1 − α−1

αα/(α−1))

and β2 = 2(α + 1)/(α − α−1
(α+1)1/(α−1)). Table 1 compares these ratios with those in [4, 6]. The

improvement is more significant for large α, as β1 and β2 are approximately 2α/ lnα, while µǫγ1
and µǫγ2 [4, 6] are approximately 2(α/ lnα)2.

Technically speaking, the results of AJC stem from a more direct analysis. Previous analysis of
the BPS algorithm [4, 6] makes use of potential functions that are based on the fractional amount
of unfinished work, which lead to good upper bounds on an intermediate notion called fractional
flow which varies continuously with time. Extra speed is needed when transforming the result on
fractional flow to (integral) flow. A technical contribution of this paper is a different potential
function, which is based on the (integral) number of unfinished jobs. It allows us to directly
compare the flow of the online algorithm against an optimal offline algorithm, and to obtain a
tighter analysis.

1.2 Sleep management plus speed scaling

In earlier days when the speed scaling technology was not available, energy reduction was mostly
achieved by allowing a processor to enter a low-power sleep state, (e.g., an Intel Xeon E5320
server requires 240W when working, 150W when idling and 10W and 0W for two low-power sleep
states [11]) yet waking up requires extra energy [15]. In the (embedded systems) literature, there are
different energy-efficient strategies to determine when to bring a processor to sleep during a period
of zero load [7]. This is an online problem, usually referred to as dynamic power management.
The input is the length of a zero-load period, known only when the period ends. There are several
interesting results with competitive analysis (e.g., [2, 15, 17]). In its simplest form, the problem
assumes the processor is in either the awake state or the sleep state. The awake state always
requires a static power σ > 0. To have zero energy usage, the processor must enter the sleep state,
but a wake-up back to the awake state requires ω > 0 energy. In general, there can be multiple
intermediate sleep states, which demand some static power but less wake-up energy.

It is natural to study job scheduling on a processor that allows both sleep states and speed
scaling. More specifically, a processor in the awake state can run at any speed s ≥ 0 and consumes
energy at the rate sα + σ, where σ > 0 is the static power and sα is the dynamic power1. In
this model, job scheduling requires two components: a sleep management algorithm to determine

1Static power is dissipated due to leakage current and is independent of processor speed, and dynamic power is
due to dynamic switching loss and increases with the speed.

3

when to sleep or work, and a speed scaling algorithm to determine which job and at what speed
to run. Notice that sleep management here is not the same as in dynamic power management; in
particular, the length of a sleep or idle period is part of the optimization (rather than the input),
and we care about both flow and energy. Technically, adding a sleep state changes the nature of
speed scaling. If there is no sleep state, running a job slower is a natural way to save energy. Now
one can also save energy by sleeping more and working faster later. It is even more complicated
when flow is concerned. Prolonging a sleeping period by delaying job execution can save energy,
yet it also incurs extra flow. Striking a balance is not trivial.

In the theory literature, the only relevant work is by Irani et al. [16]; they studied deadline
scheduling on a processor with one sleep state and infinite speed scaling. They showed an O(1)-
competitive algorithm to minimize the energy for meeting the deadlines of all jobs. Their idea is
to delay execution of jobs when the processor is in the sleep state and compensate for such delay
by using extra speed on top of that recommended by a speed scaling algorithm. This approach,
however, is difficult to use in the bounded speed model because we cannot increase the speed
above T . More importantly, the idea is not applicable to flow-energy scheduling as we need new
ideas to tackle the dilemma over delaying job execution while saving energy incurs extra flow time.
In the context of flow-energy scheduling, it has been open how to design a sleep management
algorithm and a speed scaling algorithm to achieve O(1)-competitiveness.

In this paper, we initiate the study of flow-energy scheduling that exploits both speed scaling
and multiple sleep states. We give a sleep management algorithm called IdleLonger, which works for
a processor with one or more levels of sleep states. Under the infinite speed model, the speed scaling
algorithm AJC together with IdleLonger is shown to be O(α

lnα)-competitive for minimizing flow
plus energy (precisely, the ratio is 2β1 + 2 = O(α

lnα)). For the bounded speed model, the problem
becomes more difficult because the processor, once overslept, cannot rely on unlimited extra speed
to catch up the delay. Nevertheless, we are able to make IdleLonger more conservative to observe the
maximum processor speed, and IdleLonger remains O(α

lnα)-competitive under the bounded speed
model (precisely, the ratio is max{β2(2 + 1/α) + ζ + 1, 3β2 + 3}, where ζ = max{4, β2(1− 1/α)}).
Table 1 shows the competitive ratios when α = 2 and 3.

The design of IdleLonger is interesting. When the processor is sleeping, it is natural to delay
waking up until sufficient jobs have arrived. The non-trivial case is when the processor is idle (i.e.,
awake but at zero speed), IdleLonger has to determine when to start working again or go to sleep.
If there are no new jobs arriving and we only need to determine when the processor goes to sleep,
it is like a continuous version of the ski rental problem and it makes sense to sleep if the idle energy
reaches the wakeup cost. A dilemma arises when there are new jobs arriving. At first glance, if
some new jobs arrive while the processor is idle, the processor should run the jobs immediately so
as to avoid extra flow. Yet this would allow the adversary to easily keep the processor awake, and
it is difficult to achieve O(1)-competitiveness. During an idle period, IdleLonger considers static
energy consumed (due to static power) and flow accumulated as two competing quantities. Only if
the flow exceeds the energy does IdleLonger start to work. Otherwise, IdleLonger will remain idle
until the energy reaches to a certain level; then the processor goes to sleep even in the presence of
jobs. The latter is perhaps counter-intuitive.

Apparently, a sleep management algorithm and a speed scaling algorithm would affect each
other; analyzing their relationship and their total cost could be a complicated task. Interestingly,
the results of this paper stem from the fact that we can isolate the analysis of these algorithms.
We divide the total cost (flow plus energy) into two parts, working cost (incurred while working on
jobs) and inactive cost (incurred at other times). We upper bound the inactive cost of IdleLonger

4

independently of the speed scaling algorithm.
Although the working cost does depend on both the speed scaling and sleep management al-

gorithms, our potential analysis of the speed scaling algorithm reveals that the dependency on
the sleep management algorithm is limited to a simple quantity called inactive flow, which is the
flow part of the inactive cost. Intuitively, large inactive flow means many jobs are delayed due to
prolonged sleep, and hence the processor has to work faster later to catch up, incurring a higher
working cost. It is easy to minimize inactive flow at the sacrifice of the energy part of the inactive
cost. IdleLonger is designed to maintain a good balance between them. In conclusion, coupling
IdleLonger with AJC, we obtain competitive algorithms for flow plus energy.

Organization of the paper. Section 2 defines the model formally. Sections 3 and 4 focus on
the infinite speed model and discuss the speed scaling algorithm AJC and the sleep management
algorithm IdleLonger, respectively. Section 5 presents our results in the bounded speed model.
Finally, we conclude with discussion in Section 6.

2 Preliminaries

The input is a sequence of jobs arriving online. We denote the release time and work requirement
(or size) of a job J as r(J) and p(J), respectively. All jobs are to be executed on a single processor,
where preemption is allowed, and a preempted job can resume at the point of preemption.

Speed, static and dynamic power. We first consider the speed scaling model that allows one
sleep state. At any time, the processor is in either the awake state or the sleep state. In the former,
the processor can run at any speed s ≥ 0 and demands power in the form sα + σ, where α > 1 and
σ ≥ 0 are constants. We call sα the dynamic power and σ the static power. In the sleep state, the
speed is zero and the power is zero. State transition requires energy; without loss of generality, we
assume a transition from the sleep state to the awake state requires an amount ω of energy, and the
reverse takes zero energy. To simplify our study, we follow the previous work [16] to assume state
transition takes no time. Initially, the processor is in the sleep state. It is useful to differentiate
two types of awake state, namely, with zero speed and with positive speed. The former is called
the awake-idle or simply idle state and the latter is called awake-working or simply working state.

Next we generalize the above setting to m > 1 levels of sleep. A processor is in either the awake
state or a sleep-i state, where 1 ≤ i ≤ m. The awake state is the same as before, demanding static
power σ and dynamic power sα. For convenience, we let σ0 = σ. The sleep-m state is the only
“real” sleep state, which has static power σm = 0; other sleep-i states have decreasing positive
static power σi such that σ = σ0 > σ1 > σ2 > · · · > σm−1 > σm = 0. We denote the wake-up
energy from the sleep-i state to the awake state as ωi. Note that ωm > ωm−1 > · · · > ω1 > 0.
Initially, the processor is in the sleep-m state. Note that this model of having multiple sleep states
is similar to that in [2].

In the literature most of the speed scaling results are based on a model with no sleep state,
which we will refer to as the simple speed scaling model. The speed scaling model with sleep states
will be referred to as the general speed scaling model. The simple speed scaling model is a special
case of the general speed scaling model, where the static power σ and the wake-up energy ω are
both zero. In other words, the power consumption is modeled as sα. Any speed scaling algorithm
for the general model can be carried to the simple model.

Flow, energy, inactive and working cost. Consider any schedule of jobs. At any time t, for
any job J , we let q(J) denote the remaining work of J , and J is said to be active if r(J) ≤ t and
q(J) > 0. The flow F (J) of a job J is the time elapsed since it arrives and until it is completed.

5

The total flow is F =
∑

J F (J). Note that F =
∫∞

0 n(t) dt, where n(t) is the number of active jobs
at time t. Based on this view, we divide F into two parts: Fw is the working flow incurred during
all the times in the working state, and Fi is the inactive flow incurred during all the times in the
idle or sleep state. The energy usage is also divided into three parts: W denotes the energy due to
wake-up transitions, Ei is the idling energy (static power consumption in the idle or intermediate
sleep states), and Ew is the working energy (static and dynamic power consumption in the working
state). Our objective is to minimize the total cost G = Fw + Fi + Ei + Ew + W . It is useful to
define the working cost Gw = Fw + Ew, and the inactive cost Gi = Fi + Ei +W .

Below we use OPT to denote the optimal offline algorithm, and we let G∗ denote OPT’s total
cost, and W ∗ its total wake-up energy. For the purpose of analysis, we also define C∗ = G∗ −W ∗.

SRPT. It is well known that SRPT (shortest remaining work) is optimal for classic flow time
optimization. SRPT is still optimal when speed scaling is allowed and sleep states are considered.
We provide a proof (Lemma 1) for the sake of completeness. With this, we assume that, without
loss of generality, OPT uses the SRPT policy for job selection.

Lemma 1. To minimize flow plus energy, the optimal schedule selects jobs in accordance with
SRPT whenever it works on jobs.

Proof. Consider a job sequence J . Suppose there is an optimal schedule S for J and S does not
follow SRPT. We modify S in multiple steps to a schedule which uses SRPT for job selection. In
each step the new schedule S′ has total flow time reduced with energy usage preserved. Then the
lemma follows.

Let t be the first time when S does not follow SRPT, running job Jℓ instead of job Js with
the shortest remaining work. S′ differs from S during the time intervals after t when S runs either
job: Js is run to completion before Jℓ, using the same speed and state transitions at any time;
this guarantees that energy usage is preserved. Js thus completes in S′ earlier than Jℓ does in S.
Therefore, the sum of their completion time and hence the total flow time in S′ are less than that
in S.

3 Speed Scaling based on Active Job Count

This section gives the details of the speed scaling algorithm AJC (active job count). The discussion
is based on the general speed scaling model with m ≥ 1 sleep states. We analyze the working
cost Gw of AJC when coupled with an arbitrary sleep management algorithm. Note that a sleep
management algorithm determines when the processor should sleep, idle, and work, while AJC
specifies which job and at what speed the processor should run when the processor is working.

Under the simple speed scaling model (which assumes no sleep states and zero static power),
the result of this section already yields a competitive algorithm for minimizing flow plus energy.
To this end, we consider AJC coupled with the trivial sleep management algorithm which always
keeps the processor in the working state whenever there are active jobs. Then the inactive cost is
always zero, and the working cost of AJC is equal to the total cost. More details will be given at
the end of this section.

To obtain a competitive result for the general speed scaling model, we also need a sleep man-
agement algorithm to work with AJC. In Section 4, we present a sleep management algorithm
called IdleLonger and derive an upper bound of its inactive cost.

6

3.1 AJC and analysis of working cost

Let n(t) be the number of active jobs at time t. Suppose that there is no sleep state and the
static power σ is zero. Running at the speed n(t)1/α can maintain a good balance between flow
and energy because, at any time t, both the flow and the energy are incurred at the same rate of
n(t). However, when the static power σ is bigger than zero, the balance cannot be maintained.
In general, if σ is large, running at speed n(t)1/α would be too slow to be cost effective as the
dynamic power could be way smaller than σ. In fact, one can show that running at this speed has
unbounded competitive ratio no matter what sleep management algorithm is used. This motivates
us to take σ into the design of the speed function of AJC.

Algorithm AJC. At any time t, AJC runs the active job with the shortest remaining
work (SRPT) at the speed (n(t) + σ)1/α.

We remark that in Section 5, when the speed is bounded, we cap the speed at T , i.e., at any time t,
the processor runs at the speed min{(n(t) + σ)1/α, T}. To assist understanding in later sections,
in the analysis below, we state when the analysis follows directly in the bounded speed model and
when further arguments are needed, with details given in Section 5.

As mentioned earlier, the analysis of AJC will be done under the general speed scaling model
with sleep states, and the following argument of AJC’s working cost is valid no matter what sleep
management algorithm, denoted Slp, is being used together with AJC. We use Slp(AJC) to denote
the resulting algorithm of AJC coupled with Slp.

Ideally we want to upper bound the working cost of Slp(AJC) solely by the total cost of the
optimal offline schedule OPT, yet this is not possible as the working cost also depends on the
sleeping strategy Slp. Intuitively, if Slp prefers to sleep even when there are many active jobs,
the working cost would be very high. Below we give an analysis of the working cost in which
the dependency on Slp is bounded by the inactive flow Fi incurred by Slp(AJC). Recall that the
inactive flow refers to the flow incurred while the processor is in the idle or sleep state. The main
result of this section is a potential analysis showing that the working cost of Slp(AJC), denoted Gw,
is O(C∗ + Fi), where C∗ is the total cost of OPT minus its wake-up energy (i.e., C∗ = G∗ −W ∗).

Theorem 2. With respect to Slp(AJC), Gw ≤ βC∗ + (β − 2)Fi, where β = 2/(1− α−1
αα/(α−1)).

The rest of this section is devoted to proving Theorem 2. Before showing the technical details,
it is useful to have a digest of the relationship between Gw, C

∗ and Fi as stipulated in Theorem 2.
Suppose that Slp always switches to working state whenever there are active jobs, then Fi = 0. In
this case, Theorem 2 implies that Gw = O(C∗). However, the inactive cost of Slp and the total
cost of Slp(AJC) may be unbounded. In Section 4, we will present a sleep management algorithm
IdleLonger that prefers to wait for more jobs before waking up to work. Then AJC would start at
a higher speed and Gw can be much larger than C∗. The excess is due to the fact that sometimes
the online algorithm is sleeping while OPT is working. Nevertheless, Theorem 2 states that the
excess can be upper bounded by O(Fi) (intuitively, the cost to catch up is at a rate depending on
n(t)). In Section 4, we will show that IdleLonger has nice upper bounds on the inactive flow Fi and
the inactive cost Gi. This leads to the result that IdleLonger(AJC) has a competitive total cost.

We are ready to look into the technical details. Our analysis exploits amortization and potential
functions (e.g., [6, 9]). As mentioned in [6], a common technique to analyze the performance of
an online algorithm is to show that the algorithm is locally competitive, i.e., to show that the
algorithm is competitive at all times. Yet it is not always possible to achieve local competitiveness,
in which case, we turn to amortization and make use of potential functions. Roughly speaking,

7

(a) (b) (c)q q q

n(q)n(q) n(q)

p

Figure 1: (a) At any time, na(q) or no(q) (denoted by n(q) above) is a step function containing unit height
stripes, and the area under n(q) is the total remaining work. (b) If we run the job with the smallest remaining
processing time at speed s for a period of time ∆, the top stripe shrinks by s∆. (c) When a job of size p is
released, n(q) increases by 1 for all q ≤ p.

a potential function attempts to capture some accumulated difference between the online and the
optimal algorithms, which allows one to show that the cost of the online algorithm at a certain time
together with the accumulated difference is competitive against the cost of the optimal algorithm.

Consider any time t. Let Gw(t), Fi(t) and C∗(t) denote the corresponding value of Gw, Fi and
C∗ incurred up to t. We drop the parameter t when it is clear that t is the current time. We will
define a potential function Φ(t), which is a function of time satisfying the following conditions: (i)
Φ is zero initially and finally; (ii) Φ is a continuous function except at some discrete times (when a
job arrives, or AJC or OPT finishes a job or changes speed), where Φ can never increase; and more
importantly, (iii) at any other time, the rate of change of Gw(t) and Φ(t) can be upper bounded as

dGw(t)

dt
+

dΦ(t)

dt
≤ β

dC∗(t)

dt
+ (β − 2)

dFi(t)

dt
, (1)

where β is a constant. Condition (iii) is also called the running condition. By integrating the
running condition over all times, we can conclude that Gw+net-Φ ≤ βC∗+(β−2)Fi, where net-Φ
is the net change of Φ excluding those discrete changes occurring at times specified in Condition
(ii). Note that Conditions (i) and (ii) together guarantee that net-Φ cannot be negative. It follows
that Gw ≤ βC∗ + (β − 2)Fi.

3.2 Potential analysis

Potential function Φ(t). The potential function Φ attempts to capture the difference of the re-
maining work of Slp(AJC) and OPT. The formal definition is as follows. Consider any time t.
For any q ≥ 0, let na(q) be the current number of active jobs of Slp(AJC) with remaining work
at least q, and similarly no(q) for OPT. It is useful to consider na(q) and no(q) as functions of q.
These two functions would change over time, e.g., when a new job arrives or after a job has run
for some time (see Figure 1). Let β > 0 be a constant (to be fixed later). We define the potential
function as

Φ(t) = β

∫ ∞

0
φ(q)dq , where φ(q) =

(na(q)
∑

j=1

(j + σ)1−1/α

)

− (na(q) + σ)1−1/αno(q) .

Intuitively, φ(q) and hence Φ(t) is composed of two parts. The first term of φ(q) when integrated
over all q is proportional to the cost (flow plus energy) required by AJC to complete all the active
jobs if the processor keeps working after time t and no more job arrives (precisely, the exact amount

is 2
∫∞

0

∑na(q)
i=1 (i+ σ)1−1/α dq). The second term of φ(q) guarantees that Φ does not increase when

a job arrives (Lemma 3).

8

Boundary conditions and discrete events. By definition, Φ(t) = 0 initially and when Slp(AJC)
and OPT both finish all jobs. At any time t, when either AJC or OPT finishes a job or changes the
speed, φ(q) only changes at a discrete point of q, and hence Φ(t) does not change at all. Lemma 3
below further shows that when a job arrives, φ(q) cannot increase for any q, and hence Φ(t) does
not increase. As can be shown in the proof, this lemma holds because of the design of the potential
function; this potential function is also used in Section 5 for the bounded speed model in which the
lemma also holds.

Lemma 3. When a job arrives, the change of Φ is non-positive.

Proof. Suppose a job J arrives and na(q) and no(q) denote the values just before J arrives. For
q > p(J), na(q) and no(q), and hence φ(q), are unchanged. For q ≤ p(J), both na(q) and no(q)
increase by 1 (see Figure 1(c)). Thus the first term of φ(q) increases by (na(q) + 1 + σ)1−1/α. The
increase of the second term (na(q) + σ)1−1/αno(q) can be interpreted in two steps: (i) increase to
(na(q) + 1 + σ)1−1/αno(q), and (ii) increase to (na(q) + 1 + σ)1−1/α(no(q) + 1). The increase in
step (ii), i.e., (na(q) + 1 + σ)1−1/α, covers the increase in the first term of φ(q), so φ(q) cannot
increase when J arrives.

The change rate of Φ. At any other time t (when there is no job arrival/completion or speed
change), Φ(t) may increase, but the rate of increase is always within a bound, which would allow
us to prove the running condition.

At time t, denote the total number of active jobs of Slp(AJC) as na, its current speed as sa,
and the remaining work of the current job as qa. Similarly, we define no, so and qo for OPT. To
analyze dΦ

dt , we consider how the function φ(q) changes over an infinitesimal amount of time (from
t to t + dt), which would then lead to the change of Φ. Conceptually, φ(q) changes in two ways:
(i) the execution of Slp(AJC) affects φ(q) for q in (qa − sadt, qa]; and (ii) the execution of OPT
affects φ(q) for q in (qo − sodt, qo]. We denote the change of Φ due to these two ways as dΦ1 and
dΦ2, respectively. Note that dΦ

dt = dΦ1
dt + dΦ2

dt . We first upper bound dΦ1
dt . Note that the following

lemmas hold for any fixed positive value of β.

Lemma 4. Assume that β > 0. Then dΦ1
dt ≤ −β(na + σ − no)

sa
(na+σ)1/α

.

Proof. Note that na(qa) = na and na(q) decreases from na to na − 1 for all q ∈ (qa − sadt, qa] (see
Figure 1(b)). For any q ∈ (qa − sadt, qa], φ(q) changes by

(

na−1
∑

i=1

(i+ σ)1−1/α

)

− (na − 1 + σ)1−1/αno(q)−
(

na
∑

i=1

(i+ σ)1−1/α

)

+ (na + σ)1−1/αno(q)

= −(na + σ)1−1/α + ((na + σ)1−1/α − (na + σ − 1)1−1/α)no(q).

Note that x1−1/α − (x − 1)1−1/α ≤ x−1/α for all x ≥ 1. By setting x = na + σ and the fact
that no(q) ≤ no, φ(q) changes by at most −(na + σ)1−1/α + (na + σ)−1/αno. Integrating over all
q ∈ (qa − sadt, qa], we have

dΦ1
dt ≤ β(−(na + σ)1−1/α + (na + σ)−1/αno)sa = −β sa

(na+σ)1/α
(na + σ − no) .

Corollary 5. Assume that β > 0. If sa > 0, dΦ1
dt ≤ −β(na + σ − no); if sa = 0, dΦ1

dt ≤ 0.

Proof. If sa = 0, then Lemma 4 implies that dΦ1
dt ≤ 0. If sa > 0, then by the definition of AJC,

sa = (na + σ)1/α, and by Lemma 4 again, dΦ1
dt ≤ −β(na + σ − no).

9

We note that Lemma 4 continues to hold in the bounded speed model in Section 5 as long as we
choose a positive β. However, this is not the case for Corollary 5 since the speed sa may be capped
at T and smaller than (na+σ)1/α, which is required in the argument of the corollary. In such case,
we bound dΦ1

dt differently in Lemma 17.

Next, we consider the upper bound of dΦ2
dt .

Lemma 6. Assume that β > 0. Then dΦ2
dt ≤ β(na + σ)1−1/αso.

Proof. From t to t+dt, φ(q) changes only at those points q ∈ (qo − sodt, qo]. Note that na(q) ≤ na

for all q. For any q ∈ (qo − sodt, qo], φ(q) changes by (na(q) + σ)1−1/α ≤ (na + σ)1−1/α. Integrating
over all q ∈ (qo − sodt, qo], we have dΦ2

dt ≤ β(na + σ)1−1/αso.

Using the Young’s inequality [13], we can introduce any constant µ > 0 into the above bound
of dΦ2

dt as follows.2

dΦ2
dt ≤ β((na + σ)1−1/αµ)

(

so
µ

)

≤ β

(

∫ so
µ

0
xα−1 dx+

∫ (na+σ)1−1/αµ

0
x1/(α−1) dx

)

≤ βsαo
αµα

+ β(1− 1

α
)µ

α
α−1 (na + σ) . (2)

In particular, for any µ > 0 and β ≥ 2/(1 − (1 − 1
α)µ

α
α−1), we have β(1 − 1

α)µ
α/(α−1) ≤ β − 2

and Inequality (2) can be simplified to Corollary 7(i). In this section, we set β = 2/(1− α−1
αα/(α−1))

and µ = α−1/α. Then αµα = 1 and (1 − 1
α)µ

α/(α−1) = 1 − 2/β. The upper bound of dΦ2
dt can be

simplified as in Corollary 7(ii) below. In Section 5, we will use a smaller β = 2/(1 − 1−1/α

(α+1)1/(α−1))

and a bigger µ = (α + 1)−1/α. The relation (1 − 1
α)µ

α/(α−1) = 1 − 2/β remains valid, though
αµα = α/(α+ 1). Then we have Corollary 7(iii).

Corollary 7. (i) Assume that µ > 0 and β ≥ 2/(1−(1− 1
α)µ

α
α−1). Then dΦ2

dt ≤ βsαo
αµα+(β−2)(na+σ).

(ii) Assume that β = 2/(1 − α−1
αα/(α−1)). Then dΦ2

dt ≤ βsαo + (β − 2)(na + σ). (iii) Assume that

β = 2/(1− 1−1/α

(α+1)1/(α−1)). Then dΦ2
dt ≤ β(1 + 1/α)sαo + (β − 2)(na + σ).

3.3 Running condition

With Corollaries 5 and 7, we can prove the running condition. Recall that we set β = 2/(1 −
α−1

αα/(α−1)), which is at least 2 for any α ≥ 1.

Lemma 8. At any time when no discrete events (i.e., a job arrives, or AJC or OPT finishes a job
or changes speed) occur, dGw

dt + dΦ
dt ≤ β dC∗

dt + (β − 2) dFi

dt , where β = 2/(1− α−1
αα/(α−1)).

Proof. When Slp(AJC) is working, dGw

dt = sαa +σ+na = 2(na+σ) and dFi

dt = 0; otherwise, dGw

dt = 0

and dFi

dt = na. When OPT is working, dC∗

dt = sαo +σ+no; otherwise,
dC∗

dt ≥ no. Below we give a case
analysis depending on whether Slp(AJC) or OPT are working. The interesting case is Case (iii),

2Young’s Inequality is stated as follows. Let f be a real-valued, continuous and strictly increasing function such
that f(0) = 0. Then, for all g, h ≥ 0,

∫ g

0
f(x) dx +

∫ h

0
f−1(x) dx ≥ gh, where f−1 is the inverse function of f .

When using Young’s inequality to adapt the bound of dΦ2

dt
, we set f(x) = xα−1, f−1(x) = x1/(α−1), g = so/µ, and

h = (na + σ)1−1/αµ.

10

where OPT is working but Slp(AJC) is not. In this case the increase of potential is partially offset
by the increase of inactive flow.

Case i. sa > 0, so > 0: In this case, dGw

dt = 2(na + σ), dC∗

dt = sαo + σ+no, and
dFi

dt = 0. We can

use Corollary 5 and Corollary 7(ii) to upper bound dΦ1
dt and dΦ2

dt . It follows that

dGw

dt + dΦ
dt ≤ 2(na + σ)− β(na + σ − no) + βsαo + (β − 2)(na + σ)

= βsαo + βno

≤ β dC∗

dt .

Case ii. sa > 0, so = 0: In this case, dGw

dt = 2(na + σ), dC∗

dt ≥ no,
dFi

dt = 0, and dΦ2
dt ≤ 0 (by

Lemma 6). Using Corollary 5 and the fact that β ≥ 2, we have

dGw

dt + dΦ
dt ≤ 2(na + σ)− β(na + σ) + βno ≤ βno ≤ β dC∗

dt .

Case iii. sa = 0, so > 0: In this case, dGw

dt = 0, dC∗

dt = sαo + σ + no,
dFi

dt = na, and
dΦ1
dt ≤ 0 (by

Corollary 5). To upper bound dΦ2
dt , we use Corollary 7(ii) again. Therefore,

dGw

dt + dΦ
dt ≤ βsαo + (β − 2)(na + σ) ≤ β(sαo + σ) + (β − 2)na ≤ β dC∗

dt + (β − 2)dFi

dt .

Case iv. sa = so = 0: In this case, dGw

dt = 0, dC∗

dt ≥ no,
dFi

dt = na, and
dΦ
dt = 0. Therefore,

dGw

dt + dΦ
dt = 0 ≤ β dC∗

dt .

Generalized running condition. The above case analysis can be generalized to prove a more
general running condition, which holds for other choices of β. In particular, in Cases (i) and (iii),
we apply Corollary 7(i) instead, then we have dGw

dt + dΦ
dt ≤ β

αµα
dC∗

dt + (β − 2) dFi

dt . Combining with
Cases (ii) and (iv), we have the following bound.

dGw

dt + dΦ
dt ≤ max{β, β

αµα }dC∗

dt + (β − 2) dFi

dt ,where µ > 0 and β ≥ 2/(1− (1− 1
α)µ

α
α−1). (3)

In Lemma 8, we set µ = α−1/α and β = 2/(1− α−1
αα/(α−1)), then

dGw

dt + dΦ
dt ≤ β dC∗

dt + (β − 2)dFi

dt . In

Section 5, when we consider bounded maximum speed, we will use a smaller β = 2/(1− 1−1/α

(α+1)1/(α−1))

and a bigger µ = (α+1)−1/α. The running condition becomes dGw

dt + dΦ
dt ≤ β(1+1/α)dC

∗

dt +(β−2)dFi

dt .

3.4 Summary

Under the general speed scaling model, we have shown a potential analysis of AJC; in particular,
the running condition as stated in Lemma 8, the boundary and discrete events conditions lead to
an upper bound on the working cost of AJC, completing the proof of Theorem 2. In the next
section, we will analyze the sleep management algorithm IdleLonger. Then we can conclude the
overall performance of IdleLonger(AJC).

Remark on the simple speed scaling model. Recall that in the simple speed scaling model,
there is no sleep state and the static power is zero. In this case, AJC itself can produce a schedule
with competitive performance on minimizing flow plus energy. The idea is to apply Theorem 2
with a trivial sleep management algorithm Slpo that always keeps the processor working whenever
there are active jobs. Then both the inactive flow Fi and the inactive cost are zero, and hence the
total cost of Slpo(AJC) is equal to the working cost, which is at most β times the total cost of OPT
(of the simple speed scaling model). The result is summarized below.

11

Corollary 9. When there is no sleep state and the power function is in the form of sα (i.e., σ = 0),
AJC is β-competitive for flow plus energy, where β = 2/(1− α−1

αα/(α−1)).

4 Sleep Management Algorithm IdleLonger

This section presents a sleep management algorithm called IdleLonger that determines when the
processor should sleep, idle, and work. IdleLonger can be coupled with any speed scaling algorithm.
In this section, we derive an upper bound on the inactive cost (as well as the inactive flow) of
IdleLonger independent of the choice of the speed scaling algorithm. As a warm-up, we first
consider the case with a single sleep state. Afterwards, we consider the general case of multiple
sleep states.

4.1 Sleep management for a single sleep state

When the processor is in the working state or sleep state, it is relatively simple to determine the
next transition. In the former, the processor keeps on working as long as there is an active job;
otherwise it switches to the idle state. In the sleep state, we avoid waking up immediately after a
new job arrives as this requires energy. It is natural to wait until the new jobs have accumulated
enough flow, say, at least the wake-up energy ω, then we let the processor switch directly to the
working state. Below we refer to the flow accumulated due to new jobs over a period of idle or
sleep state as the inactive flow of that period.

When the processor is in the idle state, it is non-trivial when to switch to the sleep or working
state. Intuitively, the processor should not stay idle too long, because it consumes energy (at the
rate of σ) but does not get any work done. Yet to avoid frequent wake-up in future, the processor
should not sleep immediately. Instead the processor should wait for possible job arrival and sleep
only after the idling energy (i.e., σ times the length of idling interval) reaches the wake-up energy ω.
When a new job arrives in the idle state, a naive idea is to let the processor switch to the working
state to process the job immediately; this avoids accumulating inactive flow. Yet this turns out to
be a bad strategy as it becomes too difficult to sleep; e.g., the adversary can use some tiny jobs
sporadically, then the processor would never accumulate enough idling energy to sleep.

It is perhaps counter-intuitive that IdleLonger always prefers to idle a bit longer, and it can
switch to the sleep state even in the presence of active jobs. The idea is to consider the inactive flow
and idling energy at the same time. Note that when an idling period gets longer, both the inactive
flow and idling energy increase, but at different rates. We imagine that these two quantities are
competing with each other.

The processor switches from the idle state to the working state once the inactive flow
incurred during the current idle period catches up with the idling energy. If the idling
energy reaches ω before the inactive flow catches up with the idling energy, the processor
switches to the sleep state.

Algorithm 1 gives a summary of the above discussion. For simplicity, IdleLonger is written in a
way that it is being executed continuously. In practice, we can rewrite the algorithm such that the
execution is driven by discrete events like job arrival, job completion and wake-up. Furthermore,
one might implement the algorithm slightly differently by running a newly arrived job immediately
when the processor is in idle state, while keeping the same accounting of inactive flow to determine
when to sleep. This makes the implementation and calculation more complicated, but cannot
improve the competitive ratio in the worst case. We adopt the rules as shown in Algorithm 1.

12

Algorithm 1 IdleLonger(A): A is any speed scaling algorithm

At any time t, let n(t) be the number of active jobs.
In working state: If n(t) > 0, keep working on jobs according to the algorithm A; else (i.e.,
n(t) = 0), switch to idle state.
In idle state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If the inactive
flow over [t′, t] equals (t− t′)σ, then switch to working state;
Else if (t− t′)σ = ω, switch to sleep state.
In sleep state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If the inactive
flow over [t′, t] equals ω, switch to working state.

Now we upper bound the inactive cost of IdleLonger. It is useful to define three types of time
intervals. An Iw-interval is a maximal interval in idling state with a transition to the working state
at the end, and similarly an Is-interval for that with a transition to the sleep state. Furthermore, an
ISw-interval is a maximal interval comprising an Is-interval, a sleeping interval, and finally a wake-
up transition. As the processor starts in the sleep state, we allow the first ISw-interval containing
no Is-interval.

Consider a schedule of IdleLonger(A). Recall that the inactive cost is composed of W (wake-up
energy), Fi (inactive flow), and Ei (idling energy). We further divide Ei into two types: Eiw is the
idling energy incurred in all Iw-intervals, and Eis for all Is-intervals.

By the definition of IdleLonger, we have the following property.

Property 10. (i) Fi ≤ W + Eiw, and (ii) Eis = W .

By Property 10, the inactive cost of IdleLonger, defined as W + Fi + Eiw + Eis, is at most
3W + 2Eiw. The non-trivial part is to upper bound W and Eiw. Our main result is stated below
(Theorem 11). For the optimal offline algorithm OPT, we divide its total cost G∗ into two parts:
W ∗ is the total wake-up energy, and C∗ = G∗−W ∗ (i.e., the total flow plus the working and idling
energy).

Theorem 11. W + Eiw ≤ C∗ + 2W ∗.

Corollary 12. The inactive cost of IdleLonger is at most 3C∗ + 6W ∗.

Before we move on to the detailed analysis, we discuss the above framework for the cases of
multiple sleep states and bounded speed model. In Sections 4.2 and 5.2, we show that Property 10
remains true, implying that the inactive cost is still at most 3W+2Eiw. Furthermore, we show that
Theorem 11 continues to hold for multiple sleep states (see Theorem 14) and so does Corollary 12,
which is a result of simple arithmetic as long as Theorem 11 holds. On the other hand, in the
bounded speed model, we have to relax the bound in Theorem 11 to Theorem 22(i), leading to a
larger bound on the inactive cost in Theorem 22(ii).

The rest of this section is devoted to proving Theorem 11. Note that W is the wake-up energy
consumed at the end of all ISw-intervals, and Eiw is the idling energy of all Iw-intervals. All these
intervals are disjoint. Below we show a charging scheme such that, for each ISw-interval, we charge
OPT a cost at least ω, and for each Iw-interval, we charge OPT at least the idling energy of this
interval. Thus, the total charge to OPT is at least W + Eiw. On the other hand, we argue that
the total charge is at most C∗ + 2W ∗. Therefore, W + Eiw ≤ C∗ + 2W ∗. Roughly speaking, the
total flow plus the working and idling energy C∗ of OPT is charged at most once while the wake-up

13

energy W ∗ is charged at most twice. The detailed accounting is given after we describe the charging
scheme.

The charging scheme for an ISw-interval [t1, t2] is as follows. The target is at least ω.

Case 1. If OPT switches from or to the sleep state in [t1, t2], we charge OPT the cost ω of the
first wake-up in [t1, t2] (if it exists) or of the last wake-up before t1.

Case 2. If OPT is awake throughout [t1, t2], we charge OPT the static energy (t2 − t1)σ. Note
that in an ISw-interval, IdleLonger has an idle-sleep transition, and hence (t2 − t1)σ > ω.

Case 3. If OPT is sleeping throughout [t1, t2], we charge OPT the inactive flow (i.e., the flow
incurred by new jobs) over [t1, t2]. In this case, OPT and IdleLonger have the same amount
of inactive flow during [t1, t2] (because IdleLonger only transits to idle when there are no
active jobs and all its inactive flow during [t1, t2] is due to new jobs), which equals ω (because
IdleLonger wakes up at t2).

For an Iw-interval, we use the above charging scheme again. The definition of Iw-interval allows
the scheme to guarantee a charge of (t2 − t1)σ instead of ω. Specifically, as an Iw-interval ends
with an idle-working transition, the inactive flow accumulated in [t1, t2] is (t2− t1)σ, and the latter
cannot exceed ω. Therefore, the charge of Case 1, which equals ω, is at least (t2 − t1)σ. Case 2
charges exactly (t2 − t1)σ. For Case 3, we charge OPT the inactive flow during [t1, t2]. Note that
OPT and IdleLonger accumulate the same inactive flow, which is (t2 − t1)σ.

Summing over all Iw- and ISw-intervals, we have charged OPT at least W +Eiw. On the other
hand, since all these intervals are disjoint, in Cases 2 and 3, the charge comes from non-overlapping
flow and energy of C∗. In Case 1, each OPT’s wake-up from the sleep state is charged for ω at
most twice, thus the total charge is at most 2W ∗. In conclusion, W + Eiw ≤ C∗ + 2W ∗.

4.2 Sleep management for m ≥ 2 levels of sleep states

We extend the previous sleep management algorithm to allow intermediate sleep states, which
demand less idling (static) energy than the idle state, and also less wake-up energy than the final
sleep state (i.e., sleep-m state). We treat the sleep-m state as the only sleep state in the single-level
setting, and adapt the transition rules of the idle state for the intermediate sleep states. The key
idea is again to compare inactive flow against idling energy continuously. To ease our discussion,
we treat the idle state as the sleep-0 state with wake-up energy ω0 = 0. Details are given in
Algorithm 2.

Algorithm 2 IdleLonger(A): A is any speed scaling algorithm

At any time t, let n(t) be the number of active jobs.
In working state: If n(t) > 0, keep working on the jobs according to the algorithm A; else if
n(t) = 0, switch to idle state.
In sleep-j state, where 0 ≤ j ≤ m − 1: Let t′ ≤ t be the last time in the working state, and
let t′′, where t′ ≤ t′′ ≤ t, be the last time switching from sleep-(j − 1) state to sleep-j state. If the
inactive flow over [t′, t] equals (t− t′′)σj + ωj , then wake up to the working state;
Else if (t− t′′)σj = (ωj+1 − ωj), switch to sleep-(j + 1) state.
In sleep-m state: Let t′ ≤ t be the last time in the working state. If the inactive flow over [t′, t]
equals ωm, then wake up to the working state.

When we analyze the multi-level algorithm, the definition of W (total wake-up cost) and Fi

(total inactive flow) remain the same, but Eis and Eiw have to be generalized. Below we refer a

14

maximal interval during which the processor is in a particular sleep-j state, where 0 ≤ j ≤ m, as
a sleep interval or more specifically, a sleep-j interval. Note that all sleep intervals, except sleep-m
intervals, demand idling (static) energy. We denote Eiw as the idling energy for all sleep intervals
that end with a wake-up transition, and Eis the idling energy of all sleep intervals ending with a
(deeper) sleep transition.

IdleLonger imposes a rigid structure of sleep intervals. Define ℓj = (ωj+1 − ωj)/σj . A sleep-j
interval can appear only after a sequence of lower level sleep intervals, which starts with an sleep-0
interval of length ℓ0, followed by a sleep-1 interval of length ℓ1, . . . , and finally a sleep-(j−1) interval
of length ℓj−1. Consider a maximum sequence of such sleep intervals that ends with a transition to
the working state. We call the entire time interval enclosed by this sequence an ISw[j]-interval for
some 0 ≤ j ≤ m if the deepest (also the last) sleep subinterval is of level j. It is useful to observe
the following lemma about an ISw[j]-interval [t1, t2]. Intuitively, this lemma gives an upper bound
of the inactive flow over the ISw[j]-interval, in terms of the cost of the optimal offline schedule
OPT. Roughly speaking, suppose the deepest sleep state of OPT during [t1, t2] is sleep-k. The
lemma says that the inactive flow incurred by IdleLonger over the ISw[j]-interval is at most the
static energy of OPT over the whole interval [t1, t2] plus the wake-up energy required by OPT to
switch back from sleep-k to working.

Lemma 13. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m. Assume that the last sleep-j
subinterval is of length ℓ. Then, ωj + ℓσj ≤ ωk + (t2 − t1)σk for any 0 ≤ k ≤ m.

Proof. We consider two cases depending on whether k > j.
If k > j, then j ≤ k− 1 ≤ m− 1. Since j ≤ m− 1, by the definition of IdleLonger, ℓ ≤ ℓj . Then

ωj + ℓσj ≤ ωj + ℓjσj = ωj+1 ≤ ωk and thus ωj + ℓσj ≤ ωk + (t2 − t1)σk.
Otherwise, k ≤ j and we count the energy usage of the ISw[j]-interval in two different ways;

one count is exactly ωj + ℓσj and the other is at most ωk + (t2 − t1)σk, which implies ωj + ℓσj ≤
ωk+(t2−t1)σk. Note that for 0 ≤ i ≤ j−1, the energy usage in a sleep-i interval is ℓiσi = ωi+1−ωi.
Thus, the energy usage in the ISw[j]-interval is

∑

0≤i≤j−1 ℓiσi + ℓσj = (ωj − ω0) + ℓσj = ωj + ℓσj ,
where the last equality is due to ω0 = 0. On the other hand, the energy usage in the first k sleep
intervals is

∑

0≤i≤k−1 ℓiσi = ωk − ω0 = ωk, while the other energy usage is
∑

k≤i≤j−1 ℓiσi + ℓσj ≤
(
∑

k≤i≤j−1 ℓi + ℓ) · σk ≤ (t2 − t1)σk. In conclusion, ωj + ℓσj ≤ ωk + (t2 − t1)σk.

Adaptation of analysis. We now adapt the analysis in Section 4.1. First of all, we show that
the rigid sleeping structure of IdleLonger allows us to maintain Property 10 as before. That is, (i)
Fi ≤ W + Eiw, and (ii) Eis = W . We further show in Theorem 14 that W and Eiw have the same
upper bound as in Theorem 11. Theorem 14 and Property 10 together imply that the inactive cost,
which is equal to which is equal to Fi+Eiw+Eis+W , is still at most 3W +2Eiw, i.e., Corollary 12
still holds. This bound on the inactive cost together with the bound on working cost in Theorem 2
give the overall competitiveness of IdleLonger(AJC) in Theorem 15.

Details of analysis. We now give the proof of Property 10 and Theorem 14.

Proof of Property 10. (i) Note that Fi is equal to the inactive flow incurred in all ISw[j]-intervals,
where 0 ≤ j ≤ m. Consider any ISw[j]-interval. Assume that the last sleep-j subinterval is of
length ℓ. By definition of IdleLonger, the inactive flow is at most the idling energy ℓσj of the last
sleep subinterval plus the energy ωk of the wake-up at the end. Summing over all ISw[j]-intervals,
we have Fi ≤ Eiw +W .

(ii) Consider all ISw[j]-intervals. The first ISw[j]-interval is simply a sleep-m interval, which
does not incur any idling energy, while in any other ISw[j]-interval, the total idling energy of all

15

sleep subintervals except the last subinterval is
∑

0≤i≤j−1 ℓiσi = ωj −ω0 = ωj . Note that Eis is the
sum of such idling energy ωj of all ISw[j]-intervals (except the first ISw[j]-interval) plus the idling
energy incurred in the sleep intervals which occur after the last wake up. By the rigid sleeping
structure of IdleLonger, the latter term equals

∑

0≤i≤m−1 ℓiσi = ωm − ω0 = ωm. On the other
hand, W is the sum of the wake-up energy ωm of the first ISw[j]-interval and the wake-up energy
ωj of the other ISw[j]-intervals. In conclusion, we have Eis = W .

Theorem 14. In the setting of m ≥ 2 sleep states, W + Eiw ≤ C∗ + 2W ∗.

Proof. To account for W and Eiw, it suffices to look at all ISw[j]-intervals, where 0 ≤ j ≤ m. For
each ISw[j]-interval, we show how to charge OPT a cost ωj + ℓσj , where ℓ is the length of the
deepest sleep subinterval (it is useful to recall that ω0 = 0 and σm = 0). Then we argue that the
total cost charged is at least W +Eiw and at most C∗ +2W ∗ (similar to Section 4.1, the total flow
plus the working and idling energy C∗ of OPT is charged at most once while the wake-up energy
W ∗ is charged at most twice).

Without loss of generality, we can assume that in a maximal interval [r1, r2] that OPT is not
working, if OPT has ever slept (in sleep-1 or deeper sleep state), then [r1, r2] contains only one
sleep transition, which occurs at r1, and the processor remains in the same sleep state until r2.

Charging scheme. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m. Let ℓ be the length
of the sleep-j subinterval in this interval.
Case 1. If OPT has ever switched from or to the sleep-1 or deeper sleep state in [t1, t2], let k ≥ 1

be the deepest sleep level involved in the entire interval. Note that OPT uses static energy
at least (t2 − t1)σk during [t1, t2]. We charge OPT the sum of (t2 − t1)σk and ωk (in view of
a wake-up from sleep-k state inside [t1, t2] or after t2; if there is no-wake up after t2, then we
charge OPT the first wake-up). By Lemma 13, this charge is at least ωj + ℓσj .

Case 2. If OPT is working or idle throughout [t1, t2], we charge OPT the static energy (t2 − t1)σ0,
which, by Lemma 13, is at least ωj + ℓσj .

Case 3. If OPT is sleeping (at any level except zero) throughout [t1, t2], we charge OPT the inactive
flow over [t1, t2]. Note that OPT has the same amount of inactive flow as IdleLonger because
IdleLonger only transits to idle when there are no active jobs and all its inactive flow during
[t1, t2] is due to new jobs. By definition of a wake-up transition in IdleLonger, the inactive
flow equals ωj + ℓσj .

Since ISw[j]-intervals are all disjoint, the flow and idling (static) energy charged to OPT by
Cases 1, 2 and 3 come from different parts of C∗. For Case 1, each of OPT’s wake-up from a
sleep state is charged at most twice. Thus, W + Eiw ≤ C∗ + 2W ∗, completing the proof of the
theorem.

Remarks on bounded speed model. In Section 5, we are going to adapt IdleLonger to the
bounded speed model. We add one more wake-up condition to wake up the processor to the working
state if the number of active jobs exceeds a threshold. The motivation of this additional rule is
explained there. We note that Lemma 13 and Property 10(i) give upper bounds on the inactive flow
of IdleLonger. Since the adaptation in the bounded speed model only wakes up the processor earlier
and this does not increase the inactive flow of any ISw[j]-interval, both of these results continue to
hold. For a similar reason, Property 10(ii) also holds since Eis is not affected either. On the other
hand, in the charging scheme to prove Theorem 14, Case 3 works well in ISw[j]-intervals where
IdleLonger wakes up at the end due to excessive inactive flow but not if it is due to large amount
of active jobs. In Section 5.2, we describe how to handle this case and show that having to deal
with this case leads to slightly worse bound on W plus Eiw in Theorem 22(i).

16

4.3 Competitiveness of IdleLonger(AJC)

The above inactive cost of IdleLonger, together with the working cost of AJC in Section 3, give the
following competitiveness of IdleLonger(AJC). Let β = 2/(1− α−1

αα/(α−1)).

Theorem 15. In the general speed scaling model with m ≥ 1 sleep states, the total cost of Idle-
Longer(AJC) is at most (2β + 2) times of the total cost of OPT.

Proof. Consider the coupling of IdleLonger and AJC. By Property 10, Theorems 11 and 14, we
have Fi ≤ C∗ + 2W ∗. Furthermore, by Corollary 12, the inactive cost is at most 3C∗ + 6W ∗.
In Section 3, we proved Theorem 2 that the working cost is Gw ≤ βC∗ + (β − 2)Fi. Therefore,
the total cost of IdleLonger(AJC), comprised of the inactive cost and the working cost, is at most
(2β + 1)C∗ + (2β + 2)W ∗, which is at most (2β + 2) times of OPT’s total cost.

5 Bounded Speed Model

This section extends the speed scaling algorithm AJC and the sleep management algorithm IdleLonger
to the setting where the processor speed is upper bounded by a constant T > 0. We analyze the
working cost of AJC and the inactive cost of IdleLonger under the general speed scaling model
(which assumes m ≥ 1 levels of sleep states), and show that the total cost of IdleLonger(AJC) is
O(1) times of the optimal offline algorithm OPT.

Adaptation. Recall that AJC runs at the speed (n(t) + σ)1/α, where n(t) is the number of
active jobs at time t. To extend AJC to the bounded speed model, we simply cap the speed at T .
That is, at any time t, the processor runs at the speed min{(n(t) + σ)1/α, T}.

In the bounded speed model, IdleLonger (see Section 4) still works and the inactive cost is O(1)
times of OPT’s total cost. However, IdleLonger often allows a long sleep, then a speed scaling
algorithm, without the capability to speed up arbitrarily, cannot always catch up with the progress
of OPT and may have unbounded working cost. Thus, we adapt IdleLonger to wake up earlier,
especially when many new jobs have arrived. We add one more wake-up condition to IdleLonger.
Recall that σ(= σ0) is the static power in the working state.

In the sleep-j state, where 0 ≤ j ≤ m, if the number of active jobs exceeds σ, the
processor wakes up to the working state.

In the rest of this section, we will analyze the working cost of AJC and the inactive cost of
IdleLonger. Throughout this section, we set the constant β = 2/(1− 1−1/α

(α+1)1/(α−1)).

5.1 Working cost of AJC

Following Section 3, we want to show that Gw = O(C∗ + Fi), where Gw is the working cost of
IdleLonger(AJC), C∗ is the total cost of OPT minus its wake-up energy W ∗, and Fi is the inactive
flow of IdleLonger(AJC).

Adaptation of analysis. We adapt the potential analysis of AJC in Section 3.2. We use the
same potential function Φ(t) except that β is set to a smaller value 2/(1− 1−1/α

(α+1)1/(α−1)).

As shown in Section 3.2, it suffices to show at any time t that when no discrete event occurs,
dGw

dt + dΦ
dt = O(dC

∗

dt + dFi

dt). To upper bound dΦ
dt , we again divide dΦ

dt into two parts such that
dΦ
dt = dΦ1

dt + dΦ2
dt , where dΦ1 is the change of Φ due to execution of IdleLonger(AJC) and dΦ2 due to

OPT. It is useful to recall the following notations: At time t, na and no denote the number of active

17

jobs in IdleLonger(AJC) and OPT, respectively; sa and so are the current speed of IdleLonger(AJC)
and OPT, respectively.

Note that Lemma 4 remains valid as long as we choose β greater than zero. That is, we still
have the following upper bound of dΦ1

dt .

dΦ1
dt ≤ −β(na + σ − no)

sa
(na+σ)1/α

. (4)

Furthermore, as we set β = 2/(1− 1−1/α

(α+1)1/(α−1)), Corollary 7(iii) provides the following upper bound

of dΦ2
dt .

dΦ2
dt ≤ β(1 + 1/α)sαo + (β − 2)(na + σ) .

As we discussed in Section 3.2, Corollary 5 does not hold when sa = T . In this case, we need to
bound dΦ1

dt differently in Lemma 17 and relax the running condition of Lemma 8 to Lemma 18.
Then we can bound the working cost in Theorem 20 (cf. Theorem 2). The details are as follows.

Details of analysis. If sa < T , then sa = (na + σ)1/α and Ineqaulity (4) becomes dΦ1
dt ≤

−β(na + σ − no). That is, the upper bound of dΦ1
dt remains the same as in Corollary 5. Thus,

the generalized running condition of Lemma 8, i.e., Inequality (3), still holds. In particular, for

β = 2/(1− 1−1/α

(α+1)1/(α−1)) and µ = (α+ 1)−1/α,

dGw

dt + dΦ
dt ≤ max{β, β

αµα }dC∗

dt + (β − 2)dFi

dt ≤ β(1 + 1/α)dC
∗

dt + (β − 2)dFi

dt .

The rest of this section is devoted to the non-trivial case when sa = T , i.e., IdleLonger(AJC) is
working at the maximum speed T . In this case, Lemma 4 is no long sufficient to obtain a meaningful
bound for dΦ1

dt , as in Corollary 5. Intuitively, when na is big, the ideal speed (na + σ)1/α can be
way higher than the actual speed T . This means a longer working period and hence an excess of
flow time and static energy.

To upper bound such excess of flow time and static energy, we need two techniques. First, we ob-
serve that the modified algorithms IdleLonger and AJC can indeed guarantee that IdleLonger(AJC)
keeps up with OPT on the number of active jobs. Lemma 16 below shows that na−no is bounded by
Tα and σ. Together with Lemma 4, we are able to upper bound dΦ1

dt as O(no−na) (see Lemma 17).
Second, we relax the running condition with a new notion Ews, the total working static energy,
which is the static power σ times the total length of working intervals of IdleLonger(AJC). When
sa > 0, dEws

dt = σ. A detailed analysis shows that dGw

dt + dΦ
dt = O(dC

∗

dt + dFi

dt + dEws

dt) (see Lemma 18).
Since Ews changes continuously over time, together with the boundary and discrete events condi-
tions, Gw = O(C∗ + Fi + Ews). Finally, we prove that Ews ≤ C∗ (see Lemma 19). Then it follows
that Gw = O(C∗ + Fi).

Lemma 16. At any time t, na − no ≤ max{Tα, σ}.

Proof. The non-trivial case is when na > max{Tα, σ}. Let t0 < t be the last time when na ≤
max{Tα, σ}. By definition, IdleLonger(AJC) is working at maximum speed T using SRPT during
[t0, t]. Suppose that h new jobs are released during [t0, t] and OPT can complete ℓ of them by time t.
Note that all these h jobs (and some other active jobs at t0) are available for IdleLonger(AJC) to
process and it is possible to complete ℓ of them (as OPT can). Since SRPT maximizes the number
of jobs completed by any time [21], the number of jobs completed by IdleLonger(AJC) during [t0, t]
is at least ℓ (among the h new jobs and the active jobs at t0). Thus, na ≤ max{Tα, σ} + h − ℓ ≤
max{Tα, σ}+ no.

18

Lemma 17. Assume that sa = T . (i) If na > no + σ, then dΦ1
dt ≤ −β(na − (1 + 1/α)no). (ii) If

no − σ < na ≤ no + σ, then dΦ1
dt ≤ 0. (iii) If na ≤ no − σ, then dΦ1

dt ≤ −β(na + σ − no).

Proof. Assume that sa = T . (i) Consider na − no > σ. Lemma 16 shows that na cannot be
arbitrarily larger than no, and hence σ < na−no ≤ Tα. Note that for any non-negative x and y, if
x ≤ y, then 1 + σ/x ≥ 1 + σ/y ≥ (1 + σ/y)1/α, and thus (x+ σ)/(y + σ)1/α ≥ x/y1/α. By setting

x = na−no and y = na, Inequality (4) becomes dΦ1
dt ≤ −β(na−no)n

−1/α
a T . Since T ≥ (na−no)

1/α,
we have

dΦ1
dt ≤ −β(na−no)1+1/α

n
1/α
a

≤ −β(n
1+1/α
a −(1+1/α)n

1/α
a no)

n
1/α
a

= −β(na − (1 + 1/α)no) .

Note that the second inequality is due to the fact that for any x ≥ 1 and a, b, (a+b)x ≥ ax+xax−1b.
(ii) If −σ < na − no ≤ σ, then Inequality (4) simply implies that dΦ1

dt ≤ 0.

(iii) Note that T ≤ (na + σ)1/α. If na ≤ no − σ, then −β(na + σ − no) ≥ 0. By Inequality (4),

dΦ1
dt ≤ −β(na + σ − no)

T
(na+σ)1/α

≤ −β(na + σ − no) .

We are now ready to prove the relaxed running condition which uses Ews to bound the excess
static energy.

Lemma 18. Assume that sa = T . At any time when no discrete events occur, dGw

dt + dΦ
dt ≤

β(1 + 1
α)

dC∗

dt + (β − 2)dFi

dt + ζ dEws

dt , where β = 2/(1− 1−1/α

(α+1)1/(α−1)) and ζ = max{4, β(1− 1/α)}.

Proof. We give a case analysis depending on whether OPT is working and the relative values of na

and no. Notice that when sa = T , we have T ≤ (na + σ)1/α, and dGw

dt ≤ 2(na + σ). Furthermore,
dFi

dt = 0, and dEws

dt = σ.

Case A. na > no + σ and so = 0: In this case, dΦ2
dt ≤ 0, and dC∗

dt ≥ no. By Lemma 17(i),
dΦ1
dt ≤ −β(na − (1 + 1/α)no). Thus,

dGw

dt + dΦ
dt ≤ 2(na + σ)− β(na − (1 + 1/α)no) = β(1 + 1/α)no + 2σ − (β − 2)na

≤ β(1 + 1/α)dC
∗

dt + ζ dEws

dt .

The last inequality follows from the fact that β ≥ 2 and ζ ≥ 4.

Case B. na > no + σ and so > 0: In this case, dC∗

dt = no + sαo + σ. By Lemma 17(i) and
Corollary 7(iii),

dGw

dt + dΦ
dt ≤ 2(na + σ)− β(na − (1 + 1/α)no) + β(1 + 1/α)sαo + (β − 2)(na + σ)

≤ β(1 + 1/α)no + β(1 + 1/α)sαo + βσ

≤ β(1 + 1/α)dC
∗

dt .

Case C. no−σ < na ≤ no+σ and so = 0: In this case, dΦ2
dt ≤ 0, and dC∗

dt ≥ no. By Lemma 17(ii),
dΦ1
dt ≤ 0. Thus

dGw

dt + dΦ
dt ≤ 2(na + σ) ≤ 2((no + σ) + σ) ≤ β(1 + 1/α)dC

∗

dt + ζ dEws

dt .

19

The last inequality follows from the fact that β ≥ 2 and ζ ≥ 4.

Case D. no − σ < na ≤ no + σ and so > 0: In this case, dC∗

dt = no + sαo + σ. By Lemma 17(ii),
dΦ1
dt ≤ 0. Together with Corollary 7(iii), we can show that

dGw

dt + dΦ
dt ≤ 2(na + σ) + β(1 + 1/α)sαo + (β − 2)(na + σ)

= β(1 + 1/α)sαo + β(na + σ)

≤ β(1 + 1/α)sαo + β(no + σ + σ)

≤ β(1 + 1/α)(sαo + no + σ) + (β + β − β(1 + 1/α))σ

= β(1 + 1/α)dC
∗

dt + β(1− 1/α)dEws

dt

≤ β(1 + 1/α)dC
∗

dt + ζ dEws

dt .

Case E. na ≤ no − σ. This is a relatively trivial case. Lemma 17(iii) gives an upper bound of
dΦ1
dt same as Corollary 5, i.e., dΦ1

dt ≤ −β(na + σ − no). Thus the generalized running condition

of Lemma 8, i.e., Inequality (3), holds again: For β = 2/(1 − 1−1/α

(α+1)1/(α−1)),
dGw

dt + dΦ
dt ≤ β(1 +

1/α)dC
∗

dt + (β − 2)dFi

dt .

In conclusion, in any one of the five cases, dGw

dt + dΦ
dt ≤ β(1+ 1/α)dC

∗

dt +(β− 2)dFi

dt + ζ dEws

dt .

Next we derive an upper bound of Ews in terms of C∗, which would allow us to turn the running
condition in Lemma 18 into our main result that Gw = O(C∗ + Fi) (see Theorem 20).

Lemma 19. With respect to IdleLonger(AJC), Ews ≤ C∗.

Proof. Let x be the total size of all jobs. First, consider T ≥ σ1/α. When IdleLonger(AJC) is
working, its speed is at least σ1/α and thus Ews ≤ σ · (x/σ1/α) = xσ1−1/α. Define the critical speed
scrit = (σ/(α−1))1/α. Note that running a job at the critical speed scrit minimizes the energy usage
of the job. To see why this is the case, suppose a job J with p(J) units of work is processed to
completion using speed s. The energy usage is P (s)p(J)/s, where P (s) = sα+σ. This energy usage
is minimized if P (s) = s×P ′(s), i.e., s = (σ/(α−1))1/α. Therefore, the energy usage of any schedule
and hence C∗ is at least (x/scrit) · (sαcrit+σ) ≥ (α/(α− 1)1−1/α) · (xσ1−1/α) ≥ (α/(α− 1)1−1/α)Ews.
For any α > 1, (α/(α− 1)1−1/α) ≥ 1, and hence C∗ ≥ Ews.

Now consider the case that T < σ1/α. When IdleLonger(AJC) is working, its speed is always
T and thus Ews ≤ σ · (x/T). If scrit ≤ T , then the energy usage of any schedule and hence
C∗ is at least (x/scrit) · (sαcrit + σ) ≥ σ · (x/scrit) ≥ σ · (x/T) = Ews. Otherwise, if scrit > T ,
then the optimal schedule would always run a job at speed T . It is because when running a
job below scrit, the slower the speed, the more energy as well as flow time are incurred. Thus,
C∗ ≥ (x/T) · (Tα + σ) ≥ σ · (x/T) = Ews.

Theorem 20. With respect to IdleLonger(AJC), Gw ≤ (β(1 + 1/α) + ζ)C∗ + (β − 2)Fi, where

β = 2/(1− 1−1/α

(α+1)1/(α−1)) and ζ = max{4, β(1− 1/α)}.

Remark on the simple speed scaling model. Similar to Section 3.4, the above result on the
working cost of AJC already implies that AJC itself is competitive in the simple speed scaling
model where there is no sleep states and the static power is zero. In this case, we use a trivial sleep
management algorithm Slpo that always keeps the processor working whenever there are active
jobs. Then both the inactive flow Fi and the inactive cost are zero, and hence the total cost of
Slpo(AJC) is equal to the working cost. Furthermore, the working static energy Ews is also zero

20

(cf. Lemma 19). Therefore, the working cost is at most β(1+ 1/α) times the total cost of OPT (of
the simple speed scaling model). The result is summarized below.

Corollary 21. When there is no sleep state and the power function is in the form of sα (i.e.,

σ = 0), AJC is β(1 + 1/α)-competitive for flow plus energy, where β = 2/(1− 1−1/α

(α+1)1/(α−1)).

5.2 Inactive cost of IdleLonger

It remains to analyze the inactive cost of IdleLonger. The rigid structure of sleep intervals remains
the same as before, and the inactive cost is still at most 3W + 2Eiw, where W is the wake-up
energy and Eiw is the idling energy incurred in those idling or intermediate sleep intervals that end
with a wake-up transition (see Section 4 for details). I.e., Property 10 and Lemma 13 remain valid.
However, due to the additional wake-up rule, IdleLonger has a slightly worse bound on W plus
Eiw. Our main result is stated in Theorem 22. Again, W ∗ denotes the wake-up energy of OPT,
and C∗ is the total cost of OPT minus W ∗.

Theorem 22. (i) W +Eiw ≤ C∗+3W ∗. (ii) The inactive cost of IdleLonger is at most 3C∗+9W ∗.

Theorem 22(ii) follows directly from Theorem 22(i) and Property 10. To prove Theorem 22(i),
we extend the charging scheme in Section 4.2 to show that for each ISw[j]-interval, OPT can be
charged with a cost at least ωj + ℓσj , where ℓ is the length of the deepest sleep subinterval (recall
that ω0 = 0, σ0 = σ and σm = 0). The three cases of the old charging scheme remain the same,
except that Case 3 is restricted to ISw[j]-intervals where IdleLonger wakes up at the end due to
excessive inactive flow. We supplement Case 3 with a new scheme (Case 4) to handle ISw[j]-intervals
with wake-ups due to more than σ active jobs.

Charging scheme – Case 4. If OPT is sleeping (at any level except zero) throughout an ISw[j]-
interval [t1, t2], and IdleLonger has accumulated more than σ active jobs at t2, we consider two
scenarios to charge OPT, depending on no(t1), the number of active jobs in OPT at t1.
(a) Suppose no(t1) ≥ σ0. We charge OPT the inactive flow of these jobs over [t1, t2], which is at
least (t2 − t1)σ0. By Lemma 13, this charge is at least ωj + ℓσj .
(b) Suppose no(t1) < σ0. Note that OPT stays in a sleep-k state, for some k ≥ 1, in the entire
interval and uses static energy (t2 − t1)σk during [t1, t2]. We charge OPT the sum of (t2 − t1)σk
and ωk (in view of OPT’s first wake-up after t2, which must exist because new jobs have arrived
within [t1, t2]). By Lemma 13, this charge is at least ωj + ℓσj .

In conclusion, we are able to charge OPT, for each ISw[j]-interval, a cost at least ωj + ℓσj .
Therefore, the sum of the charges to all ISw[j]-intervals is at least W + Eiw. On the other hand,
since ISw[j]-intervals are all disjoint, the flow and idling (static) energy charged to OPT by Cases
1, 2, 3, 4(a) and 4(b) come from different parts of C∗. Recall that for Case 1, each OPT’s wake-up
is charged at most twice. Below, we argue that for Case 4(b), each OPT’s wake-up is charged at
most once (Lemma 23). Then we have W + Eiw ≤ C∗ + 3W ∗.

Lemma 23. With respect to the above charging scheme, OPT is charged by Case 4(b) with a cost
of at most W .

Proof. To prove that the total charge due to Case 4(b) is at most W ∗, it suffices to show that each
wake-up of OPT is charged at most once by an ISw[j]-interval in Case 4(b). Suppose, for the sake
of contradiction, there are two ISw[j]-intervals [t1, t2] and [r1, r2] (with possibly different j), where
t2 < r1, both charging to the same wake-up transition in Case 4(b). This implies OPT is sleeping
during [t1, r2]. At time t2, IdleLonger, as well as OPT, have at least σ = σ0 active jobs. As OPT

21

is sleeping during [t1, r2], the number of active jobs of OPT at time r1 is also at least σ0 and Case
4(a) should have been applied for [r1, r2], which is a contradiction.

5.3 Summary

Summing up the inactive cost of IdleLonger and the working cost of AJC in Section 5.1, we can
show that IdleLonger(AJC) is O(1)-competitive for flow plus energy. The exact competitive ratio

is stated below. Recall that β = 2/(1− 1−1/α

(α+1)1/(α−1)) and ζ = max{4, β(1− 1/α)}.

Theorem 24. In the bounded speed model with single or multiple sleep states, the total cost of
IdleLonger(AJC) is at most max{β(2 + 1/α) + ζ + 1, 3β + 3} times of the total cost of OPT.

Proof. By Theorem 22(ii), the inactive cost is at most 3C∗ + 9W ∗. In addition, by Theorem 20,
the working cost of IdleLonger(AJC) is Gw ≤ (β(1 + 1/α) + ζ)C∗ + (β − 2)Fi. By Property 10
and Theorem 22(i), Fi ≤ W + Eiw ≤ C∗ + 3W ∗. Therefore, the total cost of IdleLonger(AJC),
comprised of the inactive cost and the working cost, is at most (β(2+1/α)+ζ+1)C∗+(3β+3)W ∗.
Therefore, the total cost of IdleLonger(AJC) is at most max{β(2 + 1/α) + ζ + 1, 3β + 3} times the
total cost of OPT.

6 Conclusion

In this paper we have initiated the study of flow-energy scheduling on a processor that allows
speed scaling and multiple sleep states. We introduce a speed scaling algorithm AJC and a sleep
management algorithm IdleLonger. AJC sets its speed based on the number of active jobs, and
changes its speed only at job arrival or completion. This is in contrast to previous work [4,6], which
changes the speed continuously over time. Under the simple speed scaling model (i.e., without sleep
state), AJC itself gives an improvement in the competitive ratio for minimizing flow plus energy,
without using extra speed (precisely, the competitive ratio is improved from O((α

lnα)
2) to O(α

lnα)).
In our analysis, we introduce a new form of potential functions based on the integral number of
active jobs. Such a potential function allows us to reason directly on total flow. Very recently,
Bansal et al. [5] adapt the analysis of such a potential function and show that AJC can be 3-
competitive; the ratio is independent of α. They also generalize the result to work for arbitrary
power functions.

The sleep management algorithm, called IdleLonger, works for a processor with one or multiple
levels of sleep states. AJC together with IdleLonger are shown to be O(α

lnα)-competitive for flow
plus energy under the general speed scaling model. Apparently, a sleep management algorithm and
a speed scaling algorithm would affect each other, and analyzing their relationship and their total
cost could be a complicated task. Nevertheless, the results of this paper stem from the fact that
we can isolate the analysis of these algorithms.

References

[1] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM
Transactions on Algorithms, 3(4):49, 2007.

[2] J. Augustine, S. Irani, and C. Swamy. Optimal power-down strategies. In Proceedings of IEEE
Symposium on Foundations of Computer Science (FOCS), pages 530–539, 2004.

22

[3] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[4] N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling for speed bounded processors. In
Proceedings of International Colloquium on Automata, Languages and Programming (ICALP),
pages 409–420, 2008.

[5] N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 693–701, 2009.

[6] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 805–813, 2007.

[7] L. Benini, A. Bogliolo, and G. de Micheli. A survey of design techniques for system-level
dynamic power management. IEEE Transactions on VLSI Systems, 8(3):299–316, 2000.

[8] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu, J. D.
Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware microarchitecture: Design and
modeling challenges for next-generation microprocessors. IEEE Micro, 20(6):26–44, 2000.

[9] H. L. Chan, W. T. Chan, T. W. Lam, L. K. Lee, K. S. Mak, and P. W. H. Wong. Energy
efficient online deadline scheduling. In Proceedings of ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 795–804, 2007.

[10] H. L. Chan, J. Edmonds, T. W. Lam, L. K. Lee, A. Marchetti-Spaccamela, and K. Pruhs.
Nonclairvoyant speed scaling for flow and energy. In Proceedings of International Symposium
on Theoretical Aspects of Computer Science (STACS), pages 255–264, 2009.

[11] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality analysis of energy-
performance trade-off for server farm management. Performance Evaluation, 67(11):1155–
1171, 2010.

[12] G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multiprocessor
scheduling. In Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 11–18, 2009.

[13] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, 1952.

[14] S. Irani and K. Pruhs. Algorithmic problems in power management. ACM SIGACT News,
32(2):63–76, 2005.

[15] S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management in sys-
tems with multiple power-saving states. ACM Transactions on Embedded Computing Systems,
2(3):325–346, 2003.

[16] S. Irani, S. Shukla, and R. K. Gupta. Algorithms for power savings. ACM Transactions on
Algorithms, 3(4):41, 2007.

[17] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive randomized algorithms
for non-uniform problems. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 301–309, 1990.

23

[18] T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Competitive non-migratory scheduling
for flow time and energy. In Proceedings of ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 256–264, 2008.

[19] T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Speed scaling functions for flow time
scheduling based on active job count. In Proceedings of European Symposium on Algorithms
(ESA), pages 647–659, 2008.

[20] T. Mudge. Power: A first-class architectural design constraint. Computer, 34(4):52–58, 2001.

[21] L. Schrage. A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16(3):687–690, 1968.

[22] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proceedings
of IEEE Symposium on Foundations of Computer Science (FOCS), pages 374–382, 1995.

24

