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Abstract. We study an allocation problem that arises in various scenarios. For instance, a health monitoring sys-
tem where ambulatory patients carry sensors that must periodically upload physiological data. Another example is
participatory sensing, where communities of mobile device users upload periodically information about their envi-
ronment. We assume that devices or sensors (generically called clients) join and leave the system continuously, and
they must upload/download data to static devices (or base stations), via radio transmissions. The mobility of clients,
the limited range of transmission, and the possibly ephemeral nature of the clients are modeled by characterizing
each client with a life interval and a stations group, so that different clients may or may not coincide in time and/or
stations to connect. The intrinsically shared nature of the access to base stations is modeled by introducing a maxi-
mum station bandwidth that is shared among its connected clients, a client laxity, which bounds the maximum time
that an active client is not transmitting to some base station, and a client bandwidth, which bounds the minimum
bandwidth that a client requires in each transmission. Under the model described, we study the problem of assigning
clients to base stations so that every client transmits to some station in its group, limited by laxities and bandwidths.
We call this problem the Station Assignment problem. We study the impact of the rate and burstiness of the arrival
of clients on the solvability of Station Assignment. To carry out a worst-case analysis we use a typical adversarial
methodology: we assume the presence of an adversary that controls the arrival and departure of clients. The adver-
sary is limited by two parameters that model the rate and the burstiness of the stations load (hence, limitting the rate
and burstiness of the client arrivals). Specifically, we show upper and lower bounds on the rate and burstiness of the
arrival for various client arrival schedules and protocol classes. The problem has connections with Load Balancing
and Scheduling, usually studied using competitive analysis. To the best of our knowledge, this is the first time that
the Station Assignment problem is studied under adversarial arrivals.

Keywords: Station Assignment, Periodic Sensing, Health Monitoring Systems, Participatory Sensing, Con-
tinuous Adversarial Dynamics.

1 Introduction

We study a dynamic allocation problem that arises in various scenarios where data sensed using mobile
devices has to be gathered using one of many static access points available. Examples include wearable
health-monitoring systems, where ambulatory patients carry physiological sensors, and the data gathered
must be periodically uploaded, and participatory sensing, where communities of mobile device users upload
periodically information about their environment. We call this problem Station Assignment.
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29688-C02-01), the National Natural Science Foundation of China (61020106002), the National Science Foundation (CCF-
0937829, CCF-1114930), and Kean University UFRI grant.



We study the Station Assignment problem assuming a continuous arrival of mobile devices, called
clients, who have to upload data to static devices, called base stations, via radio transmissions. The mo-
bility of clients, the limited range of transmission, and the possibly limited time that they will be uploading
to a given station, are modeled by assigning to clients a life interval and a stations group. That is, as clients
move, the set of stations that they could possibly upload data may change. We model this event as a client
that departs and a new client that arrives. The intrinsically shared nature of the base stations is modeled
by introducing a maximum station bandwidth that a station can share among its connected clients, a client
laxity, which bounds the maximum time that an active client is not transmitting to some base station, and a
client bandwidth, which bounds the minimum bandwidth that a client requires in each transmission.

Under the described model, we study the problem of assigning clients to base stations so that every
client transmits to some station in its group, limited by laxities and bandwidths. We study the impact of the
frequency of client arrivals on the solvability of Station Assignment. Specifically, we show upper and lower
bounds on the rate and burstiness of the client arrivals for solvability of Station Assignment under various
client arrival schedules and protocol classes. To carry out a worst-case analysis, we use a typical adversarial
methodology: we assume the presence of an adversary that controls the arrival and departure of clients. The
adversary is limited by two parameters that model the rate and burstiness of the arrival. We also study the
connections of this problem with online load balancing and scheduling, usually studied using competitive
analysis. To the best of our knowledge, this is the first time when the Station Assignment problem is studied
under adversarial arrivals.

2 Adversarial Model and Problem Definition

Model. We consider a Mobile Radio Network composed of a set S of base stations, or simply stations for
short and a set C of clients that want to transmit packets to some station. Throughout we denote n , |C|
and m , |S|. The time is assumed to be slotted and the time domain is N. Each time slot is long enough to
transmit one packet.

Each client c ∈ C has the following characterization.

– A life interval, which is the set τc = [a, b] ⊆ N of consecutive slots in which c is active.
– A stations group, which is the set Sc ⊆ S of stations to which c may transmit packets.
– A laxity wc ∈ N, 0 < wc ≤ |τc|, such that c ∈ C must transmit to some station in Sc at least once within

every wc consecutive time slots in τc. In this work we assume the laxity to be some value w, which is
the same for all clients.

– A bandwidth bc ∈ R+ that models a resource requirement (such as frequency bandwidth).

On the other hand, each station s ∈ S has the following characterization.

– A bandwidth Bs ∈ R+, which limits the sum of the bandwidth of the clients transmitting to s. In this
work we assume the station bandwidth to be some value B, which is the same for all stations.

We refer to the set of stations (with their parameters) as the system and to the set of clients (with their
parameters) as the client arrival schedule .

To carry out a worst-case analysis, we consider adversarial client arrival schedules where the adversary
is limited as follows. For any C ′ ⊆ C, let S(C ′) =

⋃
c∈C′ Sc. For a given pair of values ρ > 0 and β ≥ 0

(that limit the rate and burstiness of the stations load, which in turn limits the arrival/departure of clients),
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we say that a client arrival schedule is (ρ, β)-admissible if the following conditions hold:

∀C ′ ⊆ C : ∀T = [t, t′] ⊆ N :
∑
c∈C′

bc
|τc ∩ T |
w

≤ |T ||S(C ′)|ρB + β (1)

∀c ∈ C : bc ≤ B . (2)

The first condition (1) restricts the load of the stations for any set of clients C ′ and any time interval
T . In particular, given any C ′ and any T , the total bandwidth requested by the clients in C ′ (specifically,∑

c∈C′ bc|τc ∩ T |/w) has to be no larger that a fraction ρ of the bandwidth that can be provided by the
stations that can serve the clients in C ′ (S(C ′)) plus a constant term β (that allows for some burstiness).
The second condition (2) imposes that the requested bandwidth bc of each client must be no larger that the
bandwidth B of each station. Naturally, if some client had a request of bandwidth larger than B it would
be impossible to satisfy it. Adversarial methodology characterized as above is typically used for performing
worst-case analysis of the considered problem [11,3,10].

Problem. The Station Assignment problem is defined as follows. For a given system and admissible client
arrival schedule, for each time slot t ∈ N schedule a set of clients to transmit to each station in t, so that

1. Each client c ∈ C transmits to some station in Sc at least once within each w consecutive time slots in
τc using a bandwidth bc;

2. For each station s ∈ S the sum of the bandwidths of the clients transmitting to s in any time slot is at
most B.

Protocols. We consider the following classes of protocols, commonly used in scheduling literature.

– A Station Assignment algorithm is called irrevocable if for each client c all the transmissions of c are to
the same station s. We say that the algorithm irrevocably assigns the client c to station s.

– A Station Assignment algorithm is called online if the information about any client c is revealed to the
algorithm only at the arrival time of c.

– A Station Assignment algorithm is called improvident if the algorithm does not know when a client will
leave the system.

3 Our Results

The results presented in this work are summarized in Tables 1 and 2. The tables are organized by the system
characteristics (columns) and the rows are further subdivided by double lines into comparable settings for
which upper and lower bounds are presented. Lower bounds are for impossibility whereas upper bounds are
for solvability.

We study offline Station Assignment under various model assumptions, starting from a more optimistic
one where all clients have the same bandwidth and the same stations group, and removing gradually as-
sumptions making the model more pessimistic and, hence, realistic. Studying different models gives insight
on what the inherent challenges of Station Assignment are, c.f., Table 1.

We start considering adversarial client arrival schedules where all clients have the same stations group
and bandwidth. Then, Theorem 1 shows that for each β > mwB ((n/(mw))/dn/(mw)e − ρ), where n =
d(mwBρ+ β)/Be, there exists a (ρ, β)-admissible client arrival schedule such that no Station Assignment
algorithm can solve the problem, even if all clients arrive simultaneously and have the same life interval.
Given that it must be β ≥ 0, this lower bound for non-solvability implies also a lower bound of ρ >
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bc Sc
arrival
time

offline
protocol class

β ρ Theorem

identical identical identical any
> mwB

“
n/(mw)
dn/(mw)e − ρ

”
n = dmwBρ+β

B
e

> n/(mw)
dn/(mw)e 1

identical identical identical
even

assignment
≤ mwB

„
n/(mw)˚
n/(mw)

ˇ − ρ«
≤ n/(mw)˚

n/(mw)
ˇ 2

distinct identical identical any — > 1/2 3

distinct identical identical any > mB(1/m+ 1/2− ρ) — 4

any identical identical
balance

station-bandwidth
usage

< mwB(1/2− ρ) < 1/2 5

distinct distinct identical any > mwB (1/(mw)− ρ) > 1/(mw) 6

any any any any ≤ mwB(1/(mw)− ρ) ≤ 1/(mw) 7

Table 1. Summary of bounds on problem solvability for offline protocols.

bc Sc
arrival
time

τc
online

protocol class
β ρ Theorem

1 distinct distinct open irrevocable > mB
`

1
lnm
− ρ

´
> 1

lnm
9

1 distinct distinct distinct
irrevocable
improvident
randomized

> mB
“

3√
2m
− ρ

”
> 3√

2m
10

1 distinct distinct distinct
irrevocable
improvident
deterministic

> mB
“

1√
2m
− ρ

”
> 1√

2m
10

b ≥ ρB any any open
irrevocable
improvident

< ρB ≤ 1

1+
√

2m
11

Table 2. Summary of bounds on problem solvability for online protocols.

(n/(mw))/dn/(mw)e. Corollary 1 shows a stronger bound on β that holds for any positive ρ. Under the
same conditions, Theorem 2 shows that the offline algorithm that distributes the clients evenly solves Station
Assignment, for any (ρ, β)-admissible client arrival schedule that matches those bounds on β and ρ.

Then, we move to a class of client arrival schedules where clients may have different bandwidths, al-
though the stations group is still the same for all. In this scenario, Theorem 3 shows that, for each ρ > 1/2,
there exists a (ρ, β)-admissible client arrival schedule such that no Station Assignment algorithm can solve
the problem, even if all clients must arrive simultaneously. Changing the adversarial client arrival schedule
slightly, Theorem 4 shows a bound of β > mB(1/m + 1/2 − ρ) for the same conditions. This bound im-
plies a bound on ρ as well, but it is subsumed by Theorem 3. Under the same conditions, Theorem 5 shows
that an algorithm that (somehow) balances the station-bandwidth usage solves Station Assignment, for any
(ρ, β)-admissible client arrival schedule such that β < mwB(1/2− ρ) and ρ < 1/2.

The last class of client arrival schedules we consider in our offline analysis does not restrict station
groups or bandwidths. Theorem 6 shows that, for each β > mB (1/m− ρ) (which implies ρ > 1/m
because β ≥ 0) there exists a (ρ, β)-admissible client arrival schedule such that Station Assignment cannot
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be solved by any algorithm, even if all clients arrive at the same time. Theorem 7 matches those bounds,
showing that if ρ ≤ 1/(mw) and β ≤ mwB (1/(mw)− ρ) the Station Assignment problem is solvable
using any algorithm for any client arrival schedule.

Moving to online protocols, c.f., Table 2, by showing a reduction from Load Balancing [7], we prove
in Theorem 9 that for any irrevocable algorithm, that is, algorithms where the station-client assignments are
final, there is a client arrival schedule such that if β > mB(1/ lnm− ρ) the Station Assignment problem is
not solvable. Again, the lower bound implies a lower bound of ρ > 1/ lnm because β ≥ 0. If the algorithm
is additionally improvident, that is, the departure time of clients already in the system is not known in
advance, then Theorem 10 shows lower bounds of β > mB

(
3/
√

2m− ρ
)

and β > mB
(
1/
√

2m− ρ
)

for randomized and deterministic algorithms respectively. Those bounds imply that if ρ > 3/
√

2m and if
ρ > 1/

√
2m respectively the Station Assignment problem cannot be solved. Finally, Theorem 11 shows

that, when all clients have the same bandwidth b ≥ ρB and do not depart, even if the station groups and
arrival times are different, if ρ ≤ 1/(1 +

√
2m) and β < ρB the algorithm that distributes clients evenly

(restricted to station group) solves Station Assignment.
We also show in Theorem 8 (not included in Table 2) a lower bound on ρ for non-solvability with

irrevocable algorithms that applies to systems with distinct station-bandwidths. Corollary 2 shows that in-
stantiating Theorem 8 on a system where all stations have the same bandwidth B, the lower bound on ρ for
non-solvability is ρ > 1/(1 + lnm).

4 Related Work

Adversarial queuing was introduced in [3,11], applied to store-and-forward networks, to measure stability
of buffers and packet latency of dynamically injected packets. Later, there were approaches to apply it in the
context of wireless networks: modelled as time-varying channels [4], radio channels with collisions [12,2],
or SINR networks [15]. In a single-hop radio channels with collisions, more detail competitive analysis of
dynamic and stochastic traffic was performed [9]. The difference between this line of research and our work
is that it considered simple packet forwarding requests without additional scheduling constraints.

In [7], Azar, Broder, and Karlin studied a load balancing problem where a set of tasks that arrive and
depart in time (temporary, as opposed to permanent when tasks do not depart) have to be assigned to a
set of machines. Each task has an associated weight that represents the load that the processing of such
task adds to a machine. Additionally, each task has an associated subset of machines that may process the
task (restricted assignment). Upon arrival, a task must be assigned to a machine immediately and cannot
be transferred to another machine later. The machine starts processing the task immediately and continues
until the task departs. An assignment algorithm selects a machine to assign each task upon arrival. In the
online version the algorithm does not know future arrivals or departures, whereas an offline algorithm has
complete knowledge. The cost of an assignment of a given input is the maximum load of the machines for
such assignment. The authors study the competitive ratio of an online algorithm with respect to an offline one
as the supremum over all inputs of the cost ratio. Specifically, for the greedy online algorithm that assigns
each task to the least loaded machine, they show matching upper and lower bounds of ((3m)2/3/2)(1+o(1))
on the competitive ratio, and a lower bound of Ω(

√
m) for any deterministic or randomized algorithm. The

lower bound is matched in [8]. Variants of the problem include relaxing the constraint such that the duration
of a job is known on arrival (temporary) or the job never depart (permanent). Another direction of relaxation
includes making all machines to be available for all jobs (identical or related). Table 3 gives a summary of
the results.

In [1], Alon et al. studied a similar model for permanent tasks. They consider two cases: (i) the tasks
have associated weights and can be assigned to any machine (unrestricted), (ii) the tasks have unit weights

5



Unknown duration Known duration Permanent
Identical 2− o(1) [13,7] 2− o(1) [13,7] 2− ε [14]
Related Θ(1) [8] Θ(1) [8] Θ(1) [8]

Restricted O(
√
m) [8] O(logmT ) [8] Θ(logm) [5]

Ω(
√
m) [7]

Table 3. Competitive ratios of load balancing problem

and can be assigned only to a subset of the machines (restricted). They provide an ε-approximation scheme
for the Lp norm of the loads. Interestingly, for the restricted unit-weights model, they show that there exists
an assignment that is optimal for all norms. For further references on dynamic online scheduling and load
balancing, see the chapters [16,6].

5 Analysis of Offline Protocols

In this section, we study the impact of ρ and β on the offline solvability of Station Assignment.

5.1 Unique Stations Group and Client Bandwidth

We start with a very optimistic scenario (for Station Assignment algorithms) where all clients have the same
stations group and the same bandwidth. We show a lower bound for non-solvability that holds even under
those optimistic conditions. Given that β ≥ 0 by definition, the bound obtained implies a lower bound on ρ.

Theorem 1. Given a system of m stations each with bandwidth B, even if all clients must have the same
stations group and the same bandwidth, for any β > mwB

(
n/(mw)
dn/(mw)e − ρ

)
, where n ≥ d(mwBρ +

β)/Be, n ∈ Z+, there exists a (ρ, β)-admissible client arrival schedule such that no algorithm can solve
the Station Assignment problem, even if all clients must have the same life interval.

Proof. Consider a client arrival schedule of n clients, for any n ≥
⌈
(mwBρ+β)/B

⌉
, n ∈ Z+, with the same

bandwidth b = (mwBρ + β)/n and the same life interval of length w. Such schedule is (ρ, β)-admissible
because, for any n′ ≤ n and any subinterval T of the life interval of the clients (i.e., |T | ≤ w), it holds
n′b |T |w ≤ nb |T |w = (mwBρ + β) |T |w ≤ m|T |Bρ + β, and b = mwBρ+β

n ≤ mwBρ+β⌈
(mwBρ+β)/B

⌉ ≤ B. However,

by the pigeonhole principle, there is at least one station and one slot for which the sum of bandwidths of the
clients assigned to the station in the slot is at least dn/(mw)eb = dn/(mw)e(mwBρ + β)/n. Replacing
β > mwB ((n/(mw))/dn/(mw)e − ρ), the latter is bigger than B. ut

Given that the client arrival schedule is adversarial, by choosing the station group to be a singleton in the
above proof, that is m = 1, and the laxity w = 1, the lower bound obtained becomes β > B (1− ρ), which
implies that if ρ > 1 the Station Assignment is not solvable. We assume that ρ ≤ 1 throughout the rest of
the paper. This result can also be used to show that, for some higher values of β, Station Assignment is not
solvable for any ρ > 0.

Corollary 1. Given a system of m stations each with bandwidth B, even if all clients must have the same
stations group and the same bandwidth, if ρ > 0 and β ≥ nB/dn/(mw)e, where n = d(mwBρ +
β)/Be, there exists a (ρ, β)-admissible client arrival schedule such that no algorithm can solve the Station
Assignment problem, even if all clients must have the same arrival time.
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Proof. Let ρ > 0, from Theorem 1 it is enough to prove the claim that β > mwB
(

n/(mw)
dn/(mw)e − ρ

)
, where

n = d(mwBρ+ β)/Be. This holds if β ≥ mwB n/(mw)
dn/(mw)e = nB

dn/(mw)e . ut

Now we show a matching upper bound for solvability in the same optimistic scenario. That is, all clients
have the same stations group and bandwidth.

Theorem 2. Given any (ρ, β)-admissible client arrival schedule of n clients, such that all clients have the

same bandwidth, the same station group of sizem > 0, and the same arrival time, if β ≤ mwB
(

n/(mw)⌈
n/(mw)

⌉ − ρ) ,
the algorithm that assigns clients evenly among stations and intervals of w times slots solves the Station As-
signment problem on any system of at least m stations each with bandwidth B.

Proof. Let b be the client bandwidth. In order to show the claim, it is enough to show it for the initial w time
slots after the arrival of the clients, given that, if some client departs, the bandwidth usage of the assigned
station is reduced. Note that the life interval of all clients is at least w, by the definition of laxity. Given
that the assignment of clients is even, the station most used has at most dn/(mw)e clients assigned per slot.
Hence, in order to prove the claim, it is enough to prove d n

mweb ≤ B. Due to admissibility (Equation (1))
for w slots (i.e., |T | = w), we know that nb ≤ mwBρ+ β. Replacing this bound on b, it is enough to show
that d n

mwe
mwBρ+β

n ≤ B. Replacing the bound on β, it can be seen that the inequality holds. ut

5.2 Unique Stations Group and Distinct Client Bandwidth

We now consider a less optimistic scenario where the client bandwidths may be different. Theorems 3 and 4
show lower bounds for non-solvability on ρ and β respectively.

Theorem 3. Given a system of m stations each with bandwidth B, even if all clients must have the same
station group, for any ρ > 1/2, there exists a (ρ, β)-admissible client arrival schedule such that no algorithm
can solve the Station Assignment problem, even if all clients must have the same life interval.

Proof. Consider a client arrival schedule of mw+ 1 clients with the same station group S and the same life
interval of length w. One of the clients, call it x, has bandwidth b = (ρ − δ)mwB for some value δ such
that 1/2 < δ < ρ and ρ − 1/(mw) ≤ δ < (ρmw − 1)/(mw − 1). Each of the remaining mw clients
has bandwidth δB. Such schedule is (ρ, β)-admissible because, for any subset of n ≤ mw + 1 clients that
includes x, Equation (1) becomes ∀T : |T | ≤ w : ((n− 1)δB + (ρ− δ)mwB) |T |w ≤ |T |mρB + β, which
is true because n − 1 ≤ mw and β ≥ 0. On the other hand, if we consider the n ≤ mw clients that do
not include x, Equation (1) becomes ∀T : |T | ≤ w : nδB |T |w ≤ |T |mρB + β, which is true because
n ≤ mw, β ≥ 0, and δ < ρ. Finally, Equation (2) also holds because δB < ρB ≤ B because ρ ≤ 1, and
(ρ−δ)mwB ≤ B for δ ≥ ρ−1/(mw). However, given that there aremw+1 clients, due to the pigeonhole
principle two clients have to be assigned to the same slot of the same station. Then, there is a slot in some
station such that the sum of the assigned clients is either 2δB > B or δB + (ρ − δ)mwB > B because
δ < (ρmw − 1)/(mw − 1). ut

The following theorem shows a lower bound on β for this scenario. The proof uses an adversarial client
arrival schedule similar to the schedule used in the proof of Theorem 3. The details are left to the full version
of this paper.

Theorem 4. Given a system of m stations each with bandwidth B, even if all clients must have the same
station group, for any β > mB(1/m + 1/2 − ρ), there exists a (ρ, β)-admissible client arrival schedule
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such that no algorithm can solve the Station Assignment problem, even if all clients must have the same
arrival time.

Now we show an upper bound for solvability for the same scenario. That is, the stations group is unique
among clients but the bandwidth may be different.

Theorem 5. Given any (ρ, β)-admissible client arrival schedule, such that all clients have the same station
group of size m > 0 and the same arrival time, if β < mwB(1/2 − ρ), there exists a polynomial time
algorithm that computes an assignment of clients to stations that solves the Station Assignment problem on
any system of at least m stations each with bandwidth B. The transmission schedule of such assignment is
periodic with period w.

Proof. Consider a (ρ, β)-admissible client arrival schedule where all clients have the same station group,
arrive simultaneously, and all have laxity w. Let the time slot of clients arrival be labeled as 1. We will focus
on the first interval of slots [1, w]. Notice that all clients that arrive at time 1 stay active during such interval,
given that by definition ∀c ∈ C : wc ≤ |τc|. We will show how to assign each client to one station and one
slot within this window, so that no station is overloaded in any slot. The assignment in all the subsequent
intervals [iw+1, (i+1)w], for each integer i > 0, is identical. LetA be any initial assignment of each client
to one of the m stations and one of the w slots. Let Bmax be the maximum bandwidth used in A in any slot,
and let (s, i) be some station-slot pair with such bandwidth usage in the assignmentA. IfBmax ≤ B, we are
done. Otherwise, given that Bmax > B, station s has more than one client assigned in slot i, since otherwise
the client arrival schedule would violate Equation (2). If the sum of the bandwidth used on some pairs (s′, j)
and (s′′, k) is at most B, consider another assignment A′ where the clients assigned to (s′, j) and (s′′, k)
in A are now all assigned to (s′, j), and the clients assigned to (s, i) in A are now split between (s, i) and
(s′′, k). Repeat the procedure above until the sum of bandwidth usage in each two station-slot pairs is at
least B, or Bmax ≤ B. In the latter case we are done. Otherwise, adding in pairs, the total bandwidth used
throughout all stations and slots is at leastmwB/2. But, according to Equation (1), the total bandwidth used
must be at most mwρB + β < mwB/2. Which is a contradiction. ut

A similar bound can be obtained if clients never depart, even if they arrive at different times.

5.3 Distinct Stations Group and Client Bandwidth

Now we consider the harshest scenario where clients may have different station groups and different band-
widths. Given that β ≥ 0 by definition, the bound obtained implies that if ρ > 1/m the problem is not
solvable.

Theorem 6. Given a system ofm stations each with bandwidthB, for each β > mwB(1/(mw)−ρ), there
exists a (ρ, β)-admissible client arrival schedule such that no algorithm can solve the Station Assignment
problem, even if all clients must have the same life interval.

Proof. Consider a client arrival schedule of n + 1 clients, where n = amw, for some integer a ≥ 1, such
that n ≥ (mwBρ + β − B)/B. The first n clients have a singleton station group so that, for each station
si, i = 1, 2, . . . ,m, the number of clients with station group {si} is aw. The bandwidth of each of these n
clients is b = (mwBρ+β−B)/n. There is one additional client x with station group M and bandwidth B.
All the n + 1 clients in the client arrival schedule have the same life interval of length w ≥ 1). Such client
arrival schedule is (ρ, β)-admissible because, for any subinterval T such that |T | ≤ w, the total bandwidth of
any subset of n′ ≤ n+1 clients is, if x is included then ((n′−1)b+B) |T |w = ((n′−1)mwBρ+β−Bn +B) |T |w ≤
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(mwBρ + β) |T |w ≤ |T |mBρ + β. Otherwise, if x is not included, and hence n′ ≤ n, the total bandwidth

is n′b |T |w = n′mwBρ+β−Bn
|T |
w = n′

awBρ|T |+ n′ β−Bn
|T |
w ≤

⌈
n′

aw

⌉
|T |Bρ+ β. Therefore, Equation (1) holds.

Additionally, replacing the expression of n in b, it can be seen that b ≤ B. Thus, Equation (2) holds for
all clients. However, for any assignment, there must be at least one slot of one station with bandwidth
usage B + ab = B + n

mb = B + n
mw

mwBρ+β−B
n = B(1 + ρ) + β−B

mw , which is bigger than B for
β > mwB(1/(mw)− ρ). ut

Now we show a matching upper bound for solvability for the same strict scenario. That is, both, the
stations group and bandwidth, may be different among clients.

Theorem 7. Given any (ρ, β)-admissible client arrival schedule, if β ≤ mwB(1/(mw) − ρ), the Station
Assignment problem can be solved on any system of m stations each with bandwidth B.

Proof. Consider an assignment of a given (ρ, β)-admissible client arrival schedule. Consider the set C ′ ⊆ C
of clients that are active at any given time step t in such assignment. Because the client arrival schedule
is (ρ, β)-admissible, making |T | = w in Equation (1) and using that w ≤ |τc|, it must be

∑
c∈C′ bc ≤

w|S(C ′)|ρB+ β ≤ wmρB+ β. Replacing in the latter the upper bound on β, we have that
∑

c∈C′ bc ≤ B.
Thus, no station can have a bandwidth usage bigger than B. ut

6 Analysis of Online Protocols

In this section, we present bounds for irrevocable improvident online protocols.

6.1 Lower Bounds for Non-Solvability

We show now that irrevocable algorithms do not always solve the problem. Theorem 8 applies to a more
general model where the station bandwidths may be different. The corollary that follows instantiates the
result on a model where the station bandwidth is unique. The proof is left to the full version of this paper.

Theorem 8. For any system of m stations, where station s has bandwidth Bs, any β ≥ 0, and for each
irrevocable online algorithmA, there is a station labeling {s1, . . . , sm} and a (ρ, β)-client arrival schedule
such that, if ρ > Bsm/

(
Bsm +

∑m−1
j=1

(∑m
i=j Bsi −maxj∈[j,m]Bsj

)
1

m−j+1

∏m−j
k=2

(
1− 1

k

))
, A cannot

solve the Station Assignment problem.

Corollary 2. For any system of m stations each with bandwidth B, and for each irrevocable algorithm A,
and for any ρ > 1/(1 + lnm) and β ≥ 0, there is a (ρ, β)-client arrival schedule such that A cannot solve
the Station Assignment problem.

Proof. Replacing all bandwidths in the lower bound of ρ in Theorem 8 by B, we get ρ >
(∑m

j=1
1
j

)−1
=

H−1
m > 1

1+lnm . ut

Observe that for the above proof to work it is not needed that an irrevocable algorithm assigns a client
to a station forever. It is enough that it assigns it for m+ w steps to reach the same result.

The following theorem for irrevocable algorithms relates β and ρ for the case where the bandwidth of
all stations is the same. Given that β ≥ 0 by definition, the bound implies that if ρ > 1/ lnm, the Station
Assignment problem is not solvable.
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Theorem 9. For any system of m stations, such that all stations have the same bandwidth B, and for each
irrevocable algorithm A, there is a (ρ, β)-client arrival schedule such that, if β > mB(1/ lnm − ρ), then
A cannot solve the Station Assignment problem.

Proof. Consider an adaptive adversary that decides the clients that arrive according to the actions of A.
The adversarial client arrival schedule is the following. Let w = 1. For each client c, it is bc = 1. The life
interval of all clients is open ended. That is, upon arrival, clients stay active forever. Clients arrive in batches.
A new batch of clients arrive after the previous batch has been irrevocably assigned by algorithm A. Time
is conceptually divided in m rounds, which are enumerated sequentially as 1, 2, . . . ,m. A new round starts
when a new batch of clients arrive. The number of clients arriving in each round is ρB + β/m. (We omit
ceilings and floors throughout the proof for clarity.) All clients arriving in the same round i have the same
stations group Si. Starting from the whole set of stations S in the first round, the stations group for each new
round is reduced by one station. We say that such station is removed. Thus, for round 1 the stations group
has size m, for round 2 the size is m − 1, and so on until round m when the stations group has size 1. For
any round r > 1, the station removed is the station with the smallest number of clients assigned.

First we notice that the client arrival schedule defined is (ρ, β)-admissible. For this purpose, it is enough
to show that the property is preserved after each batch of arrivals. Consider any round i = 1, . . . ,m. Let
Cj be any subset of clients with stations group Sj , for j = 1, . . . , i. We know that |Cj | ≤ ρB + β/m. So,
in Equation (1), the ρB term can be applied to the station removed in round j, and putting together all the
β/m terms they add up to iβ/m ≤ β.

We show now that, with the above client arrival schedule, the sum of the bandwidths of the clients
assigned to the station in Sm is more than B. Let the number of clients arriving in each round be called
X = ρB + β/m. In round 1 the overall number of clients is X . Given that the station removed is the one
with the smallest number of clients, in round 2 the overall number of clients assigned to stations in S2 is at
least X(1 − 1/m) +X . Likewise, in round 3, the overall number of clients assigned to stations in S3 is at
least ((X(1−1/m)+X)(1−1/(m−1))+X . Inductively, the number of clients assigned to the station in Sm
is at least

(
. . .
((
Xm−1

m +X
)
m−2
m−1 +X

)
m−3
m−2 . . .

)
1
2 + X = X

(
1
m + 1

m−1 + · · ·+ 1
2 + 1

)
> X lnm.

That is, the total bandwidth of the clients assigned to the station in Sm is at least lnm(ρB + β/m). Thus, if
β > mB(1/ lnm− ρ) the claim follows. ut

The following theorem shows that the restriction on ρ for solvability with irrevocable assignments is
stronger for improvident algorithms. Theorem 10 shows that, for randomized online algorithms, if β >
mB

(
3/
√

2m− ρ
)

the Station Assignment problem is not solvable, and if β > mB
(
1/
√

2m− ρ
)

the
Station Assignment problem is not solvable online deterministically. Given that β ≥ 0 by definition, the
bound implies that if ρ > 3/

√
2m, or if ρ > 1/

√
2m respectively, the problem is not solvable.

Theorem 10. For any set of m stations each with bandwidth B, the following holds, even if all clients must
have the same bandwidth:

1. For any m ≥ 5 and β > mB
(
3/
√

2m− ρ
)
, there exists a (ρ, β)-admissible client arrival schedule

such that no online irrevocable improvident randomized algorithm can solve Station Assignment.
2. For any m ≥ 1 and β > mB

(
1/
√

2m− ρ
)
, there exists a (ρ, β)-admissible client arrival schedule

such that no online irrevocable improvident deterministic algorithm can solve Station Assignment.

Proof. If β > mB(1 − ρ), the claim follows from Theorem 1. So, for the rest of the proof we assume that
β ≤ mB(1− ρ).
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For the Load Balancing problem, where computing tasks have to be assigned to servers, the proof of
Theorem 3.3 in [7] shows a sequence of unit-weight tasks such that, the maximum (over the servers) off-
line load at all times is 1, and the competitive ratio of any randomized irrevocable improvident algorithm is
at least (

√
2m/3)(1 + o(1)). (The theorem is stated in asymptotic notation, but the bound obtained in the

proof is the expression given here.) We reuse such adversary mapping tasks to clients, servers to stations and
weights/loads to bandwidths. Let the bandwidth of such clients be instead ρB + β/m and the laxity w = 1.
This client arrival schedule is (ρ, β)-admissible because (i) β ≤ mB(1−ρ) and then ρB+β/m ≤ B, and (ii)
the maximum off-line bandwidth at all times on each station is at most ρB+β/m. However, the bandwidth
used at some station is at least (

√
2m/3)(ρB + β/m), which is larger than B if β > mB

(
3/
√

2m− ρ
)
,

which is feasible form > 9/2. The same argument can be used for deterministic algorithms and competitive
ratio of

√
2m. ut

6.2 Upper Bounds for Solvability

The following theorem applies to a setting where the station bandwidth is unique, but the station group may
be different for each client.

Theorem 11. For any system of m stations each with bandwidth B, there exists an online algorithm, such
that if ρ ≤ 1/(1 +

√
2m), β < ρB, all clients have the same bandwidth b ≥ ρB and laxity w = 1, and

never depart, the Station Assignment problem is solved.

Proof. Let S be the set of stations in the system and, for any subset of stations S′ ⊆ S, let C ′ be the set of
clientsC ′ = {c|Sc = S′}. Using that b ≥ ρB and β < ρB, the following properties arise from admissibility.

Property 1. ∀S′ ⊆ S : |C ′| ≤ |S′|.

That is, for each station group of x stations, there are at most x clients with that station group.

Property 2. ∀S′′ = {S′|S′ ⊆ S} : | ∪S′∈S′′ C ′| ≤ | ∪S′∈S′′ S′|.

That is, for any set of station groups, the maximum number of clients with those station groups is at most
the size of the union of those groups.

Consider the online algorithm that, for each client c, assigns c to the station s ∈ Sc with the largest
available bandwidth, breaking ties arbitrarily. We show that, under the assumptions of the theorem, this
algorithm solves the problem. For the sake of contradiction, assume that some station si is overloaded. That
is, si has some integer number k of clients assigned such that k > 1/ρ. We show that then the number of
clients in the system must be more than m, which is not possible according to property 1.

We compute a lower bound on the number of clients that should be in the system in order to have more
than 1/ρ clients in si. For clarity, we label the clients assigned to si in the order in which they were assigned.
Client 1 is the first one and, hence, does not require any other clients to be in the system before. For each
client c = 2, 3, . . . , k, we identify clients that must have been assigned before c to some station. We allocate
some of those clients to each c. In order to avoid over-counting, sometimes we may reallocate some clients,
so that each client in the system is allocated to at most one client.

Assume that, for each client c ∈ [2, k], we can allocate c− 1 “new” clients. Then, overall, we will have
1 + 2 + · · ·+ k − 1 allocated clients which yields a lower bound of k(k − 1)/2 > m clients in the system
proving the claim. The details of the allocation procedure follow.

For each client c = k, k− 1, . . . , 2 in si, we know that there must be at least c− 1 clients in each station
in Sc, because the algorithm distributes clients evenly in Sc. If the clients in one or more of the stations in Sc
have not been allocated yet, we choose one of those stations arbitrarily and allocate the c−1 clients assigned
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to that station to c. If the clients in all stations in Sc have been already allocated to some client, assume that
there is at least one client c′ ∈ [c + 1, k] such that the clients assigned to some station sj ∈ Sc′ have not
been allocated. Then, we reallocate c− 1 clients from c′ to c, and we allocate the c′ − 1 clients in sj to c′.

We show now that if the latter assumption is false, property 2 has been violated. For the sake of contra-
diction, assume that, at the point of allocating clients for some client c, the clients in all stations in∪kc′=c+1Sc′

have been already allocated to some client in [c + 1, k]. This implies that k − c = | ∪kc′=c+1 Sc′ |. Thus, if
Sc ⊆ ∪kc′=c+1Sc′ , property 2 is violated.

7 Conclusions

This paper presented worst-case (adversarial) analysis of scheduling periodic communication between base
stations and mobile clients. We considered various classes of scheduling settings and protocols, and provided
limitations on feasible mobility patterns given in the form of upper and lower bounds on client injection
rates and burstiness. The obtained variety of results is a promising starting point for further study of more
complex scheduling settings in the proposed mobility model, including the settings motivated by sensor and
local wireless network applications.
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