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Abstract— The DNA microarray technology, originally devel-
oped to measure the level of gene expression, had become one of
the most widely used tools in genomic study. Microarrays have
been proved to benefit areas including gene discovery, disease
diagnosis, and multi-virus discovery. The crux of microarray
design lies in how to select a unique probe that distinguishes
a given genomic sequence from other sequences. However, in
cases that the existence of a unique probe is unlikely, e.g., in the
context of a large family of closely homologous genes, the use of
a limited number of non-unique probes is still desirable.qyy

Due to its significance, probe selection attracts a lot of
attention. Various probe selection algorithms have been developed
in recent years. Good probe selection algorithms should produce
as small number of candidate probes as possible. Efficiency is also
crucial because the data involved is usually huge. Most existing
algorithms usually select probes by filtering, which is usually not
selective enough and quite a large number of probes are returned.
We propose a new direction to tackle the problem and give an
efficient algorithm to select (randomly) a small set of probes
and demonstrate that such a small set of probes is sufficient to
distinguish each sequence from all the other sequences. Based
on the algorithm, we have developed a probe selection software
RANDPS, which runs efficiently and effectively in practice. A
number of experiments have been carried out and the results
will be discussed.

I. INTRODUCTION

DNA microarrays [6] have become a very important re-
search tool. They are used for performing a large number
of hybridization experiments simultaneously. Besides their
prevalent use to measure the amount of gene expression [23] in
a cell, microarrays are an efficient tool for making a qualitative
statement about the presence or absence of biological target
sequences in a sample. A DNA microarray (“chip”) is a
plastic or glass slide which consists of thousands of (about
60,000) short DNA sequences known as probes. A probe is a
contiguous substring of a gene, which acts as its fingerprint
(a.k.a signature). Fingerprinting is the technique of identifying
or confirming specific DNA fragments by “cutting” them with
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special enzymes, observing the unique pattern of the fragment
sizes that result, and then comparing this with the pattern of
a known DNA fragment. Usually, a probe is 20-70 base pairs
(bps) long.

A typical application of microarrays is detection of different
members of a virus family in a sample. In this case, we have
a database of the DNA sequences (called targets) for a known
family of viruses and we wish to identify an unspecified virus
whose DNA sequence is present in the database. What we need
is a set of hybridization tests based on good selection of probes
such that on every known family, the set of answers (red, green,
yellow or black signal on the microarray) that we receive
is unique with respect to any other virus in the database.
Therefore, the probe should bind only to its corresponding
sequence, and not to any other sequence available in the
database. If this is the case, we say that the probe is unique.
The quality of the probe selection process can be expressed by
the proportion of DNA sequences in the database possessing
unique probes.

Depending upon the application, the hybridization experi-
ments are conducted using either single or multiple probes
and very often under the assumption that there is only one
target present in the sample. The probe selection problem we
studied is to find the smallest number of good probes with
specified length for every gene in the genome, that satisfies
(1) Homogeneity - melting temperature for every probe should
be within some pre-defined range, to make sure that the
probes are able to hybridize to their intended targets at about
the same experimental temperature; (2) Sensitivity - to detect
self-complementarity of probes and (3) Specificity - identifies
probes that are unique to each gene in the genome on the
basis of the Hamming Distance [7] as the similarity measure1.
The specificity check is computationally expensive and takes
the most time in the probe selection process. The brute force
approach for specificity checking scans through the whole
length-n genome for every length-m probe and determines if
the Hamming distances are large enough. Such a process is
expensive and requires O(mn2) time. For example, brute force
specificity checking would take about 72 hours for S.pombe
genome of length 7.1 × 106 bps and is thus impractical for

1For two strings s and t, the Hamming distance H(s, t) is the number of
positions where the characters at corresponding positions of the two strings
differ. For example, if s = 00010101, t = 00011010, then H(s, t) = 4.



large genomes.
To further improve the quality of the probe selected, we use

additional constraints, including the rules described by [14]
and those used in the Affymetrix probe selection criteria: (1) no
single base (A, T, C or G) exceeds 50% of the probe size;
(2) the length of any contiguous sequence of As and Ts or
Cs and Gs region is less than 25% of the probe size; (3) GC-
content is between 40% and 60% of the probe sequence (GC-
content is the percentage of nucleotides which are G or C in
the sequence). We refer to these constraints as Quantitative
criteria.

In this work, we focus on efficient selection of a minimal set
of good probes which leads to the use of smaller and therefore
cheaper microarrays rather than reporting all probes in order to
increase the efficiency. The search for probes should be both
time and space efficient. All probes should be far (in terms
of Hamming distance) from each other. We propose a new
approach that takes as input a set of known gene sequences and
builds a small cardinality set of probes allowing us to identify
the unknown target in the sample. Instead of checking all
possible probes, we exploit randomization. We randomly pick
probes with some minimal criteria checking. Our experimental
results show that almost all genes can be uniquely identified
by a single probe; the others need at most a combination of
two probes.

A. Previous work
Selection criteria
Lockhart et al. [14] were among the first to study the probe
selection problem. The quantitative criteria they proposed are
widely used [2, 12, 19, 20, 25, 26], with some minor variations.
Homogeneity and specificity were also used in their algorithm,
though the exact algorithm has not been published. Homogene-
ity is used in almost all existing algorithms, which is usually
measured by the nearest neighbor model (NNM) proposed by
SantaLucia [22]. Kaderali and Schliep [9] focus on melting
temperature (Tm) and compute the optimal (the best) probe
using suffix trees and dynamic programming. However, this is
too slow, especially for large genomes, e.g., it takes 2 weeks
to design a probe set for the whole yeast genome. A different
formula was also used in [2, 28] to calculate Tm. Other work
like [15] also only focuses on criteria related to thermodynamic
evaluation. It is generally agreed that Tm and free energy can
be used as parameters to evaluate probe hybridization behavior
and have been shown to be useful [12] 2.

2Some researchers [17, 29] argue that thermodynamic criteria may not be
adequate for microarray analysis, we leave this decision to biologists while
we mainly provide a computational tool to design probe using thermodynamic
criteria.

As for specificity, there are two major measurements: Ham-
ming distance [12, 18, 25] and BLAST search [2, 19, 20, 26,
28]. Using BLAST [1] (http://www.ncbi.nih.gov/blast/), the
algorithms assume the search is done in advance and the
results passed as input. The computation time, thus, depends
on the number of sequences in the BLAST database; e.g., the
algorithm by Rouillard et al. [20] takes from 4 to 12 hours
to design up to three 45mers probes per gene for most of the
bacterial genome. On the other hand, if Hamming distance is
used, the algorithm becomes fully automatic since the distance
is calculated purely computationally.

Sensitivity is also a popular consideration to avoid self-
binding of probes selected. This may be done by checking
the stability of the secondary structure formed (stable means
not a good candidate). MFOLD [30], Vienna RNAfold [8]
and Smith-Waterman [24] algorithms have been used in [2,
15, 20, 28] for this purpose. Other algorithms [12, 18, 19, 25,
26] directly check sensitivity by eliminating probes that are
self-complementary.
Existing software
Based on all three criteria, a number of algorithms have been
proposed. Li and Stormo [12] use a fast approximate matching
search algorithm myersgrep [16] for uniqueness checking.
However, the algorithm is still not fast enough for computing
probes of large genome sets. It takes almost four days to
design a length-24 probe set for Saccharomyses cerevisiae
genome (12M bps with about 6000 genes). Rahmann [18]
presented a fast algorithm eliminating candidates that have a
long common factor with other genes. This algorithm allows
selection of probes for large genomes like N.crassa with total
size 43MB in 4 hours on Compaq ES40 (833 MHz) with
16GB memory. However, the approach only designs short
probes and requires a lot of space during computation. Sung
and Lee [25] attempted to reduce the time complexity by
using several filtering steps and exploiting the Pigeon Hole
Principle [3] to avoid redundant comparisons. A length 50mers
probe set for N.crassa can be generated in 3.5 hours on
SunFire Workstations (700MHz) with 4GB memory. Relogio
et al. [19] proposed a modified version of the Gene Skipper
software; the specificity check only considers perfect matches
ignoring possible mismatches which may still result in probes
that are non-specific and bind to other sequences in addition
to the target. Tolonen et al. [26] also only considers per-
fect match; specificity checking requires no region of self-
complementarity of five or more bases at either end; the
Quantitative criteria is relaxed such that the GC-content is
between 25% to 75%. Wright and Church [28] proposed an
algorithm which terminates once good probes (not necessary
optimal) are found. They also introduced an interesting concept



to define probe sequence complexity based on the Lempel-Ziv
(LZ) compression algorithm [11]. Independently, this idea was
also employed by Bozdech et al. [2].

Recently, Klau et al. [10] presented the first approach to
select a minimal probe set for the case of non-unique probes
in the presence of a small number of multiple targets in
the sample. Their approach is based on Integer Programming
mixed with a branch-and-cut algorithm. Their preliminary
implementation is capable of separating all pairs of targets
optimally in a reasonable time and achieves a considerable
reduction on the numbers of probes needed compared to
previous greedy algorithms.

B. Our result
We propose a new approach to probe selection for DNA

microarrays. Our algorithm performs efficient probe selection
providing unique probes for almost all target sequences in the
considered genomes (the datasets are summarized in Table I).
The best results are obtained on large genomes. This is due
to the size of datasets from which our randomized procedure
profits in the context of certain probability laws governing
large numbers. More detailed discussion on the selection of
our procedure can be found in Section II-C. Our algorithm is
quick because exhaustive search is not required, it is also fully
automatic as we do not rely on external software.

The experimental results show that our algorithm is much
faster than existing algorithms especially for large genomes.
Our randomized procedure selects probes efficiently from short
(24 bases) through long (64 bases) probes for large genomes.
Furthermore, our approach significantly reduces the number of
probes needed in microarray design.

The length of the probes designed by existing soft-
ware ranges from 20 to 70: around 20 [9, 12, 14, 25, 26],
around 30 [9, 18] around 50 [12, 20, 25], and around 70 [2, 12,
25, 28]. Our software is able to design probes of various length
in this range (see Section III). As for the number of probes
returned, some algorithms returned all probes [25] requiring
longer computational time while most of the other software
return a small number of probes. We follow the approach
adopted by most software and report a small number (this is
feasible due to the randomization procedure we employed).

II. PROBE SELECTION

We start with the criteria of the probe selection problem.

A. Probe selection criteria
Every length-m substring of a gene sequence is called a

candidate. For every candidate, we check whether it satisfies

fundamental probe selection criteria: (1) Quantitative criteria;
(2) Homogeneity; (3) Sensitivity. Any candidate that passes all
these three criteria is called a probe.
Quantitative criteria are described by Lockhart et al. [14] and
are used in Affymetrix probe selection criteria: (1) the content
of any single base (As, Ts, Cs or Gs) does not exceed 50% of
the candidate size; (2) the length of any contiguous As and Ts
or Cs and Gs region is less than 25% of the candidate size;
(3) GC-content is between 40% and 60% of the candidate.
Homogeneity criterion requires that the melting temperature of
candidates should be within some pre-defined range, because
a good probe set needs to hybridize to their intended targets
at about the same temperature in experiments.

Melting temperature [21] of a probe is the temperature at
which 50% of the oligonucleotides and its perfect complement
are in duplex. Since it is impossible to know the target DNA
concentration, the calculation is approximate, but still useful.
Melting temperature Tm of each candidate in our approach is
calculated as

Tm =
∆H

∆S + R × ln(c/4)
− 273.15

where ∆H and ∆S are the enthalpy and entropy for the helix
formation respectively, R is the molar gas constant (1.987
cal/(K mol)), and c is the total molar concentration of the
annealling oligonucleotides when oligonucleotides are not self-
complementary1.
Sensitivity criterion filters out candidates prone to self-
complementarity (see Figure 1). This is to reject all candidates
who may fold back on themselves rather than on target
sequences. Consider every segment of a candidate of length `.
If its reversal forms a consecutive length ` complementary
segment within itself, the candidate is considered prone to fold
back on itself.
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Fig. 1. A candidate prone to self-complementarity.
1The nearest neighbor model is well adapted to compute the Tm for short

sequences, but may lead to an overestimate of the Tm of probes longer
than 50nt. Other methods of Tm is calculated by the formula [27] Tm =
81.5 + (16.6 log([Na+]) + 41[(G + C)/length] - (500/length) where
[Na+] is the sodium ion concentration. However, evidence for size limitation
of the nearest neighbor model and parameters is sparse [2]. For 70-mer
probes, the difference between the Tm values calculated using these method
is negligible [28].



TABLE I
INFORMATION OF THE DATASETS.

E.coli S.cerevisiae S.pombe N.crassa A.thaliana Mouse Chromosome 2
Total length 4,752,411 8,783,280 7,272,320 17,484,362 33,581,216 182,887,278
No. of genes 5,253 5,888 5,471 10,633 26,186 1,302
Avg. length per gene 905 1,492 1,329 1,644 1,282 140,466

Another useful measure for sensitivity is the free energy. The
total difference in the free energy of the folded and unfolded
states of a DNA duplex is approximated by a nearest-neighbour
model:

∆Gi(total) =
∑

j

nij∆Gj + ∆Gi(init) + ∆Gi(sym) (1)

where each different oligonucleotide duplex is given the
subscript i, ∆Gj is the free energy for the 10 possible
Watson-Crick nearest-neighbour stacking interactions, nij is
the number of occurrences of each nearest neighbour j, in
each sequence i, ∆Gi(init) is the initiation free energy,
and ∆Gi(sym) equals +0.4 kcal/mol if duplex i is self-
complementary and zero if it is non-self-complementary [4].
DNA oligonucleotide nearest-neighbour thermodynamic pa-
rameters are available [22] and they allow prediction of
oligonucleotide DNA hybridization energies.

The thermodynamic parameters used in our melting temper-
ature and free energy calculation were estimated from experi-
mental measurements on short probes. Therefore, although we
used both to model long probe binding stability, the free energy
values should be viewed as a function of binding stability on
a relative scale, rather than be interpreted as the absolute free
energy generated during DNA duplex formation.

In this work, we are mainly interested in efficient selection
of unique probes, playing a role of gene signatures. We say
that probe p is a unique probe for gene g in a genome, if
and only if it occurs in g and there is no close occurrence (in
terms of Hamming distance, see Specificity criterion) of p in
any other gene of the genome.
Specificity identifies probes that are unique to each gene in the
genome. This condition minimizes cross-hybridization of the
probes with other gene sequences. For two strings s and t,
the Hamming distance H(s, t) is the number of positions
where the characters at corresponding positions of the two
strings differ. For example, if s = 00010101, t = 00011010,
then H(s, t) = 4. Hamming distance has been used as the
basis for coding theoretic approaches [5, 13] to the DNA word
design problem. In particular, Hamming distance becomes a
powerful tool for determining closeness/similarity and recently
has been adopted as the specificity measure [12, 18, 25]. Thus,
if the Hamming distance between a probe and every candidate
(excluding those candidates from the gene where the probe
belongs to) is greater than some constant, the probe is said to

be specific enough.

B. The problem
To summarize, given a set S of gene sequences also called

targets or target sequences, the objective is to find for each
gene sequence g in S a probe p (a contiguous substring of a
gene) which hybridizes only to g. The probe p is said to be
a unique probe of gene g. If such a probe p does not exist,
i.e. p cross-hybridizes to other sequences in S, then find a
small collection of probes that uniquely identifies g.

As shown in Table II, we are interested in finding a unique
or a small group of probe(s) for each gene sequence in S. In
this example, probe p4 is a unique probe of gene sequence g1,
while p2 and p5 together identify g2.

TABLE II
AN EXAMPLE OF TARGETS AND THEIR PROBES.

p1 p2 p3 p4 p5

g1 •

g2 • •

g3 • •

g4 • •

C. Randomized probe selection algorithm
In this section, we present a new algorithm to select probes

for DNA microarrays. Initially, our algorithm exploits sev-
eral filters (based on probe selection criteria) to reduce the
search space for probes. However, the main idea used here is
to explore randomization to reduce the time complexity of
the search. And indeed, randomly generated sequences are
expected to possess properties of unique probes. E.g. probe
selection criteria enforce balanced distribution of base pairs
in probes which is naturally satisfied by random sequences.
Moreover, the Hamming distance between two randomly
chosen sequences of length m over a 4 letter alphabet is
about 3m/4, which is also highly desired property of a system
of probes.

Our probe selection algorithm starts with the filtering stage
applied on the whole genome. For each candidate, we test
whether it passes the probe selection criteria (1), (2) and
(3) and we eliminate all candidates who fail the test. For
(2) Homogeneity, we require that the melting temperature lies
between 78 and 90; for (3) Sensitivity, we reject all candidates
with a self-complementary segment of length more than or



Algorithm 1 Probe selection (m: length of probe, S: genome, d: Hamming distance
threshold, default as 5).

i ⇐ 0 and not_found ⇐ true;
for every gene g ∈ S: do

while i < 5 and not_found is true do
generate a random sequence ri of length m;
find the closest probe pi in gene g;
if H(pi, q) ≥ d for all candidates q in other genes in S-{g} then

pi is chosen as the unique probe for g, report pi, not_found ⇐

false;
end if
i ⇐ i + 1;

end while
end for

equal to 4. When this is completed, we iterate a probe selection
procedure which acts on all genes in the genome consecutively.
The probe selection procedure, see Algorithm 1, runs with
gene g ∈ S, generates a unique (if it is able to find it) probe p
for gene g. This is done as follows: (a) generate a random
sequence r of length m; (b) find the closest match p of r among
probes in the target; (c) check whether p satisfies specificity
criterion. This process is iterated at most five times which
allows us to obtain a good trade-off between the accuracy of
the search procedure and its running time. The code of the
procedure could be easily modified to incorporate the case
when a unique probe is not found, in this case, we check
whether a combination of any two (and very rarely three)
already selected probes identifies uniquely the considered
gene g.

It should be pointed out that our algorithm terminates
once probes have been found to satisfy the probe selection
criteria, rather than searching for optimal probes. In this end,
we are in line with [2, 18–20, 25, 26, 28]. Using this strategy,
our algorithm can select probes for large genomes for which
algorithms demanding optimality are unsuccessful [9, 12].

D. Time complexity
The brute force approach for specificity checking scans

through the whole length-n genome for every length-m
probe and determines if the Hamming distances are large
enough. Such a process is computationally expensive, requiring
O(mn2) time. In comparison, we pick up a probe of length m
by using randomization for every gene in the genome, then
scan through the whole genome for specificity checking. By
doing this, we do not need to check every probe in each
gene which greatly reduce the time complexity. Thus, the time
complexity of our algorithm is O(kmn) where k (usually
much smaller than n) is the number of genes in the whole
genome, m is the length of probe and n is length of the whole
genome.

E. Speeding up methods
To speed up our probe selection procedure, we exploit an

“encoding” method to test self-complementarity and speci-
ficity. Consider every segment of a candidate of length 4, if
its reversal forms complementary segment within itself, the
candidate is prone to form a secondary structure. In particular,
every segment of a candidate of length ` is encoded as follows:

`−1∑

i=0

ci × 4(`−i−1) (2)

where ci is either 0, 1, 2 or 3 (standing for A, C, G, T,
respectively) representing the ith base of the segment. For
example, a sequence ATCG is encoded as 0 × 43 + 3 × 42 +
1 × 41 + 2 × 40 = 54. Furthermore, we exploit the tabling
method to speed up the specificity checking process. We pre-
compute a matrix D = [Dij ] in which the rows and columns
are indexed by numerical values obtained (by Formula 2)
from all possible DNA sequences of length 4. Each entry Dij

is the Hamming distance between two DNA sequences with
numerical value i and j. For example, if i = 0, representing
AAAA, and j = 255, representing TTTT, then D0,255 = 4.
By looking up the appropriate entry in the table, Hamming
distance between two probes of length-m can be quickly
determined.

III. ANALYSIS OF EXPERIMENTAL RESULTS

Our software RANDPS is written in C and is
developed and tested on Athlon XP2000+ Cluster with
2GB memory. The software is available on our website
(http://www.csc.liv.ac.uk/∼cindy/RandPS/RandPS.htm). The
size of RANDPS code is 25KB which is simple and clean
while being efficient and effective. Inputs of RANDPS are
FASTA formatted gene sequences, downloaded from the
NCBI website (http://www.ncbi.nlm.nih.gov/). RANDPS
uses a size-n array, where n is the concatenated length of
gene sequences of a genome, to store the inputs, together
with another two size-n arrays to store the corresponding
numerical value of each base in the genome and the status
(candidate or probe) of each position in the concatenated
sequence. We report our results using several genomes that
have been widely used for the probe selection problem. The
genomes involved in the experiments are listed in Table I.
These datasets have been used in experiments in [9, 12, 18,
20, 25, 26].

The experiments were undertaken in order to evaluate the
performance of our software on various types of genomes.
In terms of time consumption, it takes about 20 minutes
to process the E.coli genome, 40 minutes to process the



S.cerevisiae genome, 60 minutes for S.pombe, 310 minutes
for N.crassa, 470 minutes for Mouse chromosome 2 and 1520
minutes for A.thaliana. In terms of accuracy of probe selection,
we are able to find unique probes for up to 99% of genes in
the whole genome. The full details of the experimental results
are shown in Tables III-VIII 3. We have run our programme
30 times on each dataset for each probe length. In these four
tables, the first three rows are basic information about the
datasets, which are name of the genome, length of the genome
and number of genes in the genome. The column “Probe
length” lists the different lengths we used to test performance
of our software. The column “1 probe” shows the number
of genes which can be identified by a unique probe, while
“2 probes” column shows the number of genes which require
a combination of two probes for unique identification. The
percentages in brackets are calculated on the basis of the
number of genes with probes (i.e., total number of genes minus
number of genes without probes). The “no probe” column
shows the number of genes with no feasible probes.

TABLE III
RESULTS OF RANDPS FOR E.COLI.

Genome E.coli
Length 4,752,411

# of genes 5,253
Probe Number of genes requiring
length 1 probe 2 probes no probe

24 4759 (90.7%) 490 (9.3%) 4
32 4791 (91.3%) 457 (8.7%) 5
40 4805 (91.6%) 442 (8.4%) 6
48 4808 (91.7%) 436 (8.3%) 9
56 4827 (92.1%) 413 (7.9%) 13
64 4832 (92.3%) 405 (7.7%) 16

TABLE IV
RESULTS OF RANDPS FOR S.CEREVISIAE.

Genome S.cerevisiae
Length 8,783,280

# of genes 5,888
Probe Number of genes requiring
length 1 probe 2 probes no probe

24 5481 (93.2%) 401 (6.8%) 6
32 5516 (93.9%) 361 (6.1%) 11
40 5525 (94.2%) 341 (5.8%) 22
48 5549 (94.7%) 313 (5.3%) 26
56 5560 (95.0%) 292 (5.0%) 36
64 5560 (95.1%) 288 (4.9%) 40

As a further illustration of our software in terms of accuracy
of the probe set, we compare the free energy of a group of
our probes with the optimal probes with minimum free energy,
which is found by using a brute force approach. This is shown

3The melting temperature range has been slightly modified for longer probe
lengths 48, 56, and 64.

TABLE V
RESULTS OF RANDPS FOR S.POMBE.

Genome S.pombe
Length 7,272,320

# of genes 5,471
Probe Number of genes requiring
length 1 probe 2 probes no probe

24 5061 (92.6%) 407 (7.4%) 3
32 5064 (92.6%) 404 (7.4%) 3
40 5131 (94.1%) 321 (5.9%) 19
48 5141 (94.3%) 308 (5.7%) 22
56 5154 (94.6%) 294 (5.4%) 23
64 5152 (94.7%) 287 (5.3%) 32

TABLE VI
RESULTS OF RANDPS FOR N.CRASSA.

Genome N.crassa
Length 17,484,362

# of genes 10,633
Probe Number of genes requiring
length 1 probe 2 probes no probe

24 10530 (99.2%) 90 (0.8%) 13
32 10551 (99.5%) 57 (0.5%) 25
40 10557 (99.5%) 50 (0.5%) 26
48 10558 (99.6%) 45 (0.4%) 30
56 10559 (99.6%) 42 (0.4%) 32
64 10544 (99.6%) 40 (0.4%) 49

TABLE VII
RESULTS OF RANDPS FOR A.THALIANA.

Genome A.thaliana
Length 33,581,216

# of genes 26,186
Probe Number of genes requiring
length 1 probe 2 probes no probe

24 22407 (85.6%) 3773 (14.4%) 6
32 24400 (93.2%) 1777 (6.8%) 9
40 24813 (94.8%) 1358 (5.2%) 15
48 25094 (95.9%) 1063 (4.1%) 29
56 25238 (96.5%) 910 (3.5%) 38
64 25327 (96.9%) 807 (3.1%) 52

in Figures 2-7 on examples of one hundred arbitrarily chosen
genes for each genome. In comparison, probes that we found
are very close to the optimal one. Thus our software is able
to find high quality probes.

In our experiments, we have noticed that there are some
genes with no probes. An investigation of these genes revealed
that some of these genes are duplicated or very similar to some
other genes in the genome. Another reason is that the lengths
of some of these genes are too short. Apart from these cases,
our algorithm is able to select probes for all genes.

IV. CONCLUSION

We have proposed a new approach to select (randomly) a
small set of probes and demonstrated that such a small set
of probes is sufficient to distinguish each gene from all the



TABLE VIII
RESULTS OF RANDPS FOR MOUSE CHROMOSOME 2.
Genome Mouse chromosome 2
Length 182,887,278

# of genes 1,302
Probe Number of genes requiring
length 1 probe 2 probes no probe

24 1194 (91.7%) 108 (8.3%) 0
32 1229 (94.4%) 73 (5.6%) 0
40 1231 (94.5%) 71 (5.5%) 0
48 1235 (94.9%) 67 (5.1%) 0
56 1239 (95.2%) 63 (4.8%) 0
64 1240 (95.2%) 62 (4.8%) 0

Fig. 2. Comparison of free energy between the optimal probe and the probe
chosen by RANDPS on E.coli.

other genes in the genome. Almost all genes can be identified
by a unique probe, the others need at most two probes. As
we have shown, our method is suitable for large scale datasets
and it relies on relatively large length of probes. Moreover, our
approach should prove to be useful in the design of a fault-
tolerant system of multiple probes, to accommodate common
lack of accuracy characterising wetlab experiments. Based on
our algorithm, we have also implemented a probe selection
procedure RANDPS, which runs efficiently and effectively. The
software will be available on request. In further research, we
will focus on identification and classification of multiple genes
by a system of probes.
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Fig. 3. Comparison of free energy between the optimal probe and the probe
chosen by RANDPS on S.cerevisiae.

Fig. 4. Comparison of free energy between the optimal probe and the probe
chosen by RANDPS on S.pombe.

Fig. 5. Comparison of free energy between the optimal probe and the probe
chosen by RANDPS on N.crassa.



Fig. 6. Comparison of free energy between the optimal probe and the probe
chosen by RANDPS on A.thaliana.

Fig. 7. Comparison of free energy between the optimal probe and the probe
chosen by RANDPS on Mouse Chromosome 2.
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