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Abstract. We study the problem of scheduling n jobs on m identical,
fault-prone machines f of which are prone to crashes by an adversary,
where communication takes place via a multiple access channel with-
out collision detection. Performance is measured by the total number of
available machine steps during the whole execution (work). Our goal is
to study the impact of preemption (i.e., interrupting the execution of a
job and resuming it later by the same or different machine) and failures
on the work performance of job processing. We identify features that
determine the difficulty of the problem, and in particular, show that the
complexity is asymptotically smaller when preemption is allowed.

1 Introduction

We examine the problem of performing n jobs by m machines reliably on a
multiple access shared channel (MAC). This problem, originated by Chlebus et
al. [6], has already been studied for unit length jobs, whereas this paper extends
it by considering jobs with arbitrary lengths and studying the impact of features,
such as preemption and the severity of failures, on the work performance.

The notion of preemption may be understood as the possibility of not per-
forming a particular job in one attempt. This means that a single job may be
interrupted partway through performing it and then resumed later by the same
machine or even by another machine. Intuitively, the model without preemption
is more general, yet both have subtleties that distinguish them noticeably.

Communication takes place on a shared channel, also known as multiple ac-
cess channel, without collision detection. A message is transmitted successfully
only when one machine transmits, and when more than one message is trans-
mitted then it is no different from background noise (i.e., no transmission on the
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channel). Therefore, we say that a job completion is confirmed only when the
corresponding machine transmits such message successfully (before any failure
it may suffer).

We consider the impact of an adaptive f -bounded adversary on the perfor-
mance of algorithms for the problem. This kind of adversary may decide to crash
up to f machines at any time of the execution. We use work as the effectiveness
measure, i.e., the total number of machine steps available for computations. It is
related (after dividing by m) to the average time performance of machines. Work
may also correspond to energy consumption - an operational machine generates
(consumes) a unit of work (energy) in every time step.

Previous and related results. Our work can be seen as an extension of the
Do-All problem defined in a seminal work by Dwork, Halpern and Waarts [9].
This line of research was followed up by several other papers [3,4,5,8,10] which
considered the message-passing model with point-to-point communication. In
all these papers the authors assumed that performing a single job contributes a
unit to work complexity. Paper [8] introduced a model, wherein the performance
measure for Do-All solutions is extended to the available machine steps (i.e.,
including idle rounds). Authors in [8] developed an algorithm solving the problem
with work O(n+(f +1)m) and message complexity O((f +1)m). We adopt this
kind of work measurement in our paper.

The authors of [4] developed a deterministic algorithm with effort (i.e. sum
of work and messages sent during the execution) O(n+ma), for a specific con-
stant 1 < a < 2, against the unbounded adversary which may crash all but
one machine. They presented the first algorithm for this type of adversary with
both work and communication o(n + m2), where communication is understood
as the total number of point-to-point messages sent during the execution. They
also gave an algorithm achieving both work and communication O(n+m log2m)
against a strongly-adaptive linearly-bounded adversary.

In [12] there is an algorithm based on a gossiping protocol, solving the prob-
lem with work O(n+m1+ε), for any fixed constant ε. In [16] Do-All is studied for
an asynchronous message-passing model, where executions are restricted in a way
that the delay of each message is at most d. The authors proved Ω(n+md logdm)
bound on the expected work. They also developed several algorithms - among
them a deterministic one with work O((n + md) logm). Further developments
and comprehensive related literature can be found in the book by Georgiou and
Shvartsman [13].

The line of research closest to ours is the Do-All problem of unit length jobs
on a multiple access channel with no collision detection, which was first studied
in [6], where the authors have shown a lower bound of Ω(n + m

√
n) on work

when there are no crashes, and Ω(n+m
√
n+mmin{f, n}) in presence of crashes

caused by an adaptive f -bounded adversary. They also proposed an algorithm,
called Two-Lists, with optimal performance Θ(n + m

√
n + mmin{f, n}). A

recent paper [15] discusses different models of adversaries on a multiple access
channel in the context of performing unit length jobs.



Scheduling arbitrary length jobs on a MAC 3

Extending the study of unit length jobs to arbitrary length jobs has taken
place in a different context, c.f., [17], where one can find recent results and refer-
ences to such extensions in the context of fault-tolerant centralized scheduling.
There has been a long history of studying the preemptive vs non-preemptive
model, e.g., [19,18,7], to which our work also contributes.

The problem we study finds application in other areas, e.g. in window schedul-
ing. It is common in applications (like broadcast systems [1,14]) that requests
need to be served periodically in the form of windows. Our problem could be
applied to help selecting a window length based on controlling work (aka the
number of available machine steps).
Our results. In this paper, we consider fault-tolerant scheduling of n arbitrary
length jobs on m identical machines reliably over a multiple access channel. Our
contributions are threefold, on: deterministic preemptive setting and determinis-
tic non-preemptive setting. In the setting with job preemption, we prove a lower
bound on work Ω(L+m

√
L+mmin{f, L}+mα), where L is the sum of lengths

of all jobs and α is the maximum length of a job, which holds for both deter-
ministic and randomized algorithms against an adaptive f -bounded adversary.
We design a corresponding deterministic distributed algorithm, called ScaTri,
achieving work O(L + m

√
L + mmin{f, L} + mα), which matches the lower

bound asymptotically with respect to an overhead.
In the model without job preemption, we show a slightly higher lower bound

on work Ω
(
L+ L

nm
√
n+mmin{f, n}+mα

)
, implying a separation between

the two settings: with and without preemption. Similarly as in the previous set-
ting, it holds for both deterministic and randomized algorithms against an adap-
tive f -bounded adversary, thus showing that randomization does not help against
an adaptive adversary regardless of the (non-)preemption setting. We develop
a corresponding deterministic distributed algorithm, called DefTri, achieving
work O(L + αm

√
n + αmmin{f, n}). Results are discussed and compared in

detail in Section 5.

2 Technical preliminaries

In this section we formally describe the model for the considered problem and
also provide a high-level specification of a black-box procedure TaPeBB that
we use in our algorithms. Additionally we present definitions of performing jobs
and technicalities regarding preemption.
Machines. In our model we assume having m identical machines, with unique
identifiers from the set {1, . . . ,m}. The distributed system of these machines
is synchronized with a global clock, and time is divided into synchronous time
slots, called rounds. All machines start simultaneously at a certain moment.
Furthermore every machine may halt voluntarily. Note that a halted machine
does not restart. Every operational machine generates a unit of work per round
(even when it is idle), that has to be included while computing the complexity
of an algorithm. In this paper by M we denote the number of operational, i.e.,
not crashed, machines. M may change during the execution.
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Communication model. The communication channel for machines is the,
widely considered in literature, multiple access channel [2,11], also called a shared
channel, where a broadcasted message reaches every operational machine. We do
not allow simultaneous transmissions of several messages, what means that we
consider a channel without collision detection. Hence when more than one mes-
sage is transmitted at a certain round, then machines hear a signal indifferent
from background noise. A job is said to be confirmed if a machine, completing
the job, successfully communicates this fact via the channel.

Adversarial model. Machines may fail by crashing, which happens because of
an adversary activity. One of the factors describing the adversary is its power f ,
ie., the total number of failures that it may enforce. We assume that 0 ≤ f ≤ m−
1, thus at least one machine remains operational until an algorithm terminates.
Machines that were crashed neither restart nor contribute to work.

We consider two adversarial models. An adaptive f -bounded adversary can
observe the execution and make decisions about up to f crashes arbitrarily, at
any moment of the execution. A non-adaptive f -bounded adversary, in addition
to choosing the faulty subset of f machines, has to declare prior the execution in
which rounds crashes will occur, i.e., for every machine declared as faulty, there
must be a corresponding round number in which the fault will take place.

It is worth noticing that in the context of deterministic algorithms such an
adversary is consistent with the adaptive adversary that may decide online which
machines will be crashed at any time, as the algorithm may be simulated by the
adversary in advance, before its execution, providing knowledge about the best
decisions to be taken. Finally, an (m − 1)-bounded adversary is also called an
unbounded adversary.

Complexity measure. The complexity measure to be used in our analysis is,
as mentioned before, work, also called the total number of available machine
steps. It is the number of machine steps available for computations. This means
that each operational machine that did not halt contributes a unit of work in
each round, even if it stays idle.

Precisely, assume that an execution starts when all the machines begin si-
multaneously in some fixed round r0. Let rv be the round when machine v halts
(or is crashed). Then its work contribution is equal to rv − r0. Consequently
the algorithm complexity is the sum of such expressions over all machines i.e.:∑

1≤v≤m(rv − r0).

Jobs and reliability. We assume that the list of jobs is known to all machines
and we expect that machines perform all n jobs as a result of executing an
algorithm. We assume that jobs have arbitrary lengths, are independent (may be
performed in any order) and idempotent (may be performed many times, even
concurrently by different machines).

Furthermore a reliable algorithm satisfies the following conditions in any
execution: all jobs are eventually performed, if at least one machine remains
non-faulty and each machine eventually halts, unless it has crashed.

We assume that jobs have some minimal (atomic or unit) length. Conse-
quently, we can also assume that each job’s length is a multiple of the minimal
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length. As the model that we consider is synchronous, this minimal length may
be justified by the round duration required for local computations for each ma-
chine. By `a we denote the length of job a. We also use L to denote the sum
of lengths of all jobs, i.e., L =

∑
i `i. Finally, by α we denote the length of the

longest job.

Preemptive vs Non-Preemptive Model. By the means of preemption we
define the possibility of performing jobs in several pieces. Precisely, consider
job a, of length `a (for simplicity we assume that `a is even) and machine v is
scheduled to perform job a at some time of the algorithm execution. Assume
that v performs `a/2 units of job a and then reports such progress. When pre-
emption is available the remaining `a/2 units of job a may be performed by some
machine w where w 6= v.

Length `a of job a means that job a requires `a rounds to be fully performed.
Such view allows to think that job a is a chain of `a tasks. Hence we conclude
that all jobs form a set of chains of unit length tasks.

We further denote by ak task k of job a. However, when we refer to a single
job, disregarding its tasks, we refer to it simply as job a.

We define two types of jobs regarding how intermediate progress is handled:

Oblivious job — it is sufficient to have knowledge that previous tasks were
done, in order to perform remaining tasks from the same job. In other words,
any information from in between progress does not have to be announced.

Non-Oblivious job — any intermediate progress needs to be reported through
the channel when interrupting the job to resume it later, and possibly pass the
job to another machine.

In the preemptive oblivious model a job may be abandoned by machine v
on some task k without confirming progress up to this point on the channel and
then continued from the same task k by any machine w.

As an example of the preemptive oblivious model, consider a scenario that
there is a job that a shared array of length x needs to be erased. If a machine
stopped performing this job at some point, another one may reclaim that job
without the necessity of repeating previous steps by simply reading to which
point it has been erased.

For the preemptive non-oblivious model, consider that a machine executes
Dijkstra’s algorithm for finding the shortest path. If it becomes interrupted,
then another machine cannot reclaim this job otherwise than by performing the
job from the beginning, unless intermediate computations have been shared.
In other words preemption is available with respect to maintaining information
about tasks.

On the contrary to the preemptive model, we also consider the model without
preemption i.e. where each job can be performed by a machine only in one piece
- when a machine is crashed while performing such job, the whole progress is
lost, even if it was reported on the channel before the crash took place.

The Task-Performing Black Box (TaPeBB). The algorithms we design in
this paper employ a black-box procedure for arbitrary length jobs that is able to
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reliably perform a subset of input (in the form of jobs consisting of chains of con-
secutive tasks) or report that something went wrong. In what follows, we specify
this procedure, called the Task-Performing Black Box (TaPeBB for short), and
argue that it can be implemented and employed to our considerations.

We can use the procedure in both deterministic and randomized solutions.
Precisely, all our algorithms use TaPeBB, despite the fact that they perform
differently in the sense of work complexity.

Most important ideas of our results lie within how to preprocess the input
rather than how to actually perform the jobs, thus employing such a black-box
could improve the clarity of presentation.

General properties of TaPeBB. A synchronous system is characterized by
time being divided into synchronous slots, that we already called rounds. In what
follows, each round is a possibility for machines to transmit.

The nature of arbitrary length jobs leads, however, to a concept that the
time between consecutive broadcasts needs to be adjusted. Specifically, for sets
containing long jobs in the non-preemptive configuration of the problem, it may
be better to broadcast the fact of performing the job fully, rather than semi-
broadcasting multiple times. Only the final transmission brings valuable infor-
mation about progress in performing jobs and any intermediate transmissions
congest the channel, indicating only that the broadcasting machine is still oper-
ational.

Therefore, we assume that TaPeBB has a feature of changing the duration
between consecutive broadcasts. We will call the actual time step between con-
secutive broadcasts a phase. Denote the length of a phase by φ. Unless stated
otherwise, we assume that φ = 1, i.e., the duration of a phase and a round is
consistent, thus machines may transmit in any round.

Input: TaPeBB(v, d, JOBS, MACHINES, φ)

– v represents the id of a machine executing TaPeBB.

– TaPeBB takes a list of machines MACHINES and a list of jobs JOBS as the
input, yet from the task perspective, i.e., jobs are provided as a chain of tasks.
All necessary information about tasks is available through list JOBS, including
their id’s, and how, as well as, in what order they build jobs. It may happen
that a job is not done fully and only some initial segment of tasks forming that
job is performed. Because list JOBS maintains information about tasks, such a
situation can be successfully handled.

– Additionally, the procedure takes an integer value d. It specifies the number of
machines that will be used in the procedure for performing provided job input.
The procedure works in such a way that each working machine is responsible
for performing a number of jobs. For clarity we assume that TaPeBB always
uses the initial d machines from the list of machines. Using a certain number of
machines in the procedure allows us to set an upper bound on the amount of
work accrued during a single execution.

– We call a single execution an epoch and the parameter d is called the length
of an epoch (i.e., the number of phases that form an epoch).

– φ is the length of a phase i.e. the duration between consecutive broadcasts.
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Output: what jobs/tasks have been done and which machines have crashed.
– Having explained what is the length of an epoch in TaPeBB we now describe
the capability of performing tasks in a single epoch, which is understood as the
maximal number of jobs that may be confirmed in an epoch, when it is executed
fully without any adversarial distractions. Firstly, let us note, that TaPeBB
allows to confirm j tasks in some round j. This comes from the fact that if a
machine worked for j rounds and was able to perform one task per round, then it
can confirm at most j tasks when it comes to broadcasting in round j. Therefore,
the capability of performing tasks in an epoch is at most

∑d
j=1 j which is the

sum of an arithmetic series with common difference equal 1 over all rounds of
an epoch.
– As a result of running a single epoch we have an output information about
which tasks were actually done and whether there were any machines identified
as crashed, when machines were communicating progress (a crash is consistent
with a machine being silent when scheduled to broadcast).

A candidate algorithm to serve as TaPeBB is the Two-Lists algorithm
from [6] and we refer readers to the details therein. Nevertheless, we assume that
it may be substituted with an arbitrary algorithm fulfilling the requirements that
we stated above.

3 Preemptive model

In this section we consider the scheduling problem in the model with preemption,
which is, intuitively, an easier model to tackle. We show a lower bound for
oblivious jobs (Section 3.1) and then present the algorithm for non-oblivious
jobs (Section 3.2).

3.1 Lower bound

We first recall the minimal work complexity introduced in [6].

Lemma 1 ([6], Lemma 2). A reliable, distributed algorithm, possibly random-
ized, performs work Ω(n+m

√
n) in an execution in which no failures occur.

Recall that L denotes the total length of jobs and α denotes the length of the
longest job. As jobs are built with unit length tasks, we can look at this result
from the task perspective. Precisely, as L can be considered to represent the
number of tasks needed to be performed by the system, then the lower bound
for our model translates in a straightforward way. Furthermore, in our model
there is a certain bottleneck dictated by the longest job. Reason being is that
there may be an execution with one long job, in comparison to others being
short. Thus the longest job determines the magnitude of work in the complexity
formula.

We conclude with the following theorem, setting the lower bound for the
considered problem.
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Theorem 1. The adaptive f-bounded adversary, for 0 ≤ f < m, can force
any reliable, possibly randomized and centralized algorithm and a set of obliv-
ious jobs of arbitrary lengths with preemption, to perform work Ω(L + m

√
L +

mmin{f, L}+mα).

3.2 Algorithm ScaTri

In this section we present our algorithm Scaling-Triangle MAC Scheduling (ScaTri
for short). In ScaTri machines have access to all the jobs and the corresponding
tasks that build those jobs. This means that they know their id’s and lengths.

We assume that each machine maintains three lists: MACHINES, TASKS and
JOBS. The first list is a list of operational machines and is updated according
to the information broadcasted through the communication channel. If there is
information that some machine was recognized as crashed, then this machine
is removed from the list. In the context of the TaPeBB procedure, recall that
this is realized as the output information. TaPeBB returns the list of crashed
machines so that operational machines may update their lists.

List TASKS represents all the tasks that are initially computed from the list
of jobs. Every task has its unique identifier, which allows to discover to which
job it belongs and its position in that job. This allows to preserve consistency
and coherency: task k cannot be performed before task k − 1. If some tasks are
performed then this fact is also updated on the list.

List JOBS represents the set of jobs — it is a convenient way to know what
are the consecutive parts of input for the TaPeBB procedure. Jobs are assigned
to each machine at the beginning of an epoch (TaPeBB execution). We assume
that machines have instant access to jobs lengths. Information on list JOBS may
be updated directly from information maintained on list TASKS. To ease the
discussion, by |XYZ| we denote the length of list XYZ and by M = |MACHINES|
the actual number of operational machines.

The capability of performing tasks in a TaPeBB epoch is at most
∑d

j=1 j
(cf. Section 2) which is the sum of an arithmetic series with common difference
equal 1 over all rounds of an epoch. If we take a geometric approach and draw
lines or boxes of increasing lengths one next to the other, then drawing this
sequence would form a triangle. Hence, providing a subset of jobs as the input
is consistent with packing them into such a triangle, cf., Figure 1.

In TaPeBB executed with φ = 1 broadcasts take place in each round. This
means that in round 1 machine 1 is scheduled to broadcast, in round 2 machine
2 and, in general, in round j machine j is scheduled to broadcast. Consequently,
j tasks can be confirmed as performed in round j, unless machine j is crashed
and hence silence is heard in round j. Therefore, the capability of performing
tasks by TaPeBB is referred to as the triangle.

We assume d describes the current length of an epoch. Initially it is set to
m, but it may be reduced while the algorithm is running, cf. Figure 1 (b), (c).
In what follows, let us assume that the length of the epoch d is set to m/2i for

some i. We need to fill in a triangle of size
∑m

2i

j=1 j. Initially we need to provide
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(a) (b) (c)

Fig. 1. A very general idea about how ScaTri works. The vertical stripes represent
jobs and the dotted-line triangle is the capability of the algorithm to perform jobs in a
single epoch (or parts of them i.e. some consecutive tasks). Consequently, if there are
enough jobs to pack into an epoch, then it is executed (a). Otherwise (b), the length
of the epoch is reduced (c). This helps preventing excessive idle work.

m/2i jobs, that will form the base of the triangle. Jobs are provided as the input
in such a way that the shortest ones are preferred for machines with lower id’s. If
there are several jobs with same lengths, then those with lower id’s are preferred,
cf. Figure 2. After having the base filled, it is necessary to look whether there are
any gaps in the triangle, see Figure 2 (b). If so, another layer of jobs is placed
on top of the base layer, and the procedure is repeated, see Figure 2 (c), (d).
Otherwise, we are done and ready to execute TaPeBB.

(a) (b) (c) (d)

Fig. 2. An illustration of job input. (a) Initially there is a certain capability of TaPeBB
(triangle size) for performing jobs. (b) The initial layer is filled with jobs (white blocks),
yet there are still some gaps. (c) An additional layer (gray blocks) is placed to fill in
the triangle entirely. (d) In fact those additional jobs will only be done partially.

This approach allows to “trim” longer jobs preferably — these will have more
tasks completed after executing TaPeBB than shorter ones, because they are
scheduled to be done by machines with higher id’s, which are broadcasting in
further rounds. As machines with higher id’s are broadcasting in further rounds,
then they can confirm more tasks with a single broadcast.

One can observe that performing a transmission is an opportunity to confirm
on the channel that the tasks that were assigned to a machine are done. Addi-
tionally this confirms that a certain machine is still operational. In what follows
these two types of aggregated pieces of information: which jobs were done, and
which machines were crashed, are eventually provided as the output of TaPeBB.

When d = m/2i for some i = 1, . . . , logm it may happen that there are
not enough tasks (jobs) to fill in a maximal triangle. If this happens we will, in
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some cases, reduce the job-schedule triangle (and simultaneously the length of
the epoch) to m/2i+1 and try to fill in a smaller triangle, cf., Figure 1 (b), (c).

Finally, we use TaPeBB(v, d, JOBS, MACHINES, φ) to denote which machine
executes the procedure, the size of the schedule and the length of the epoch, the
list of jobs from which the input will be provided, the list of operational machines,
and the phase duration. We emphasize that we described the process of assigning
jobs to machines from the algorithm perspective, i.e., we illustrated that the
system needs to provide input to TaPeBB. Nevertheless, for the sake of clarity
we assume that TaPeBB collects the appropriate input by itself according to
the rules described above, after having lists JOBS and MACHINES provided as the
input. Figures 1 and 2 illustrate the idea standing behind ScaTri.

Algorithm 1: ScaTri; code for machine v

1 - initialize MACHINES to a sorted list of all m names of machines;
2 - initialize JOBS to a sorted list of all n names of jobs;
3 - initialize TASKS to a sorted list of all tasks according to the information from

JOBS;
4 - initialize variable d representing the length of an epoch;
5 - initialize variable φ := 1 representing the length of a phase;
6 - initialize i := 0;
7 repeat
8 d := m/2i;
9 if |TASKS| ≥ d(d+ 1)/2 then

10 execute TaPeBB(v, d, JOBS, MACHINES, φ);
11 update JOBS, MACHINES, TASKS according to the output information from

TaPeBB;

12 end
13 else
14 i := i+ 1;
15 end

16 until |JOBS| = 0;

The following theorem summarizes work performance of ScaTri:

Theorem 2. ScaTri performs work O(L+m
√
L+mmin{f, L}+mα) against

the adaptive adversary and a set of non-oblivious, arbitrary length jobs with
preemption.

As mentioned in the beginning of Section 3, the lower bound here is proved
for oblivious jobs in the preemptive model, while the algorithm works reliably
for non-oblivious jobs in the same model, because TaPeBB procedure provides
any intermediate job performing progress as the output information and all
the information is updated sequentially after each epoch. This implies that the
distinction between oblivious and non-oblivious jobs in the preemptive model
and against an adaptive adversary does not matter, thus we finish this section
with the following corollary:

Corollary 1. ScaTri is optimal in asymptotic work efficiency for jobs with
arbitrary lengths with preemption for both oblivious and non-oblivious jobs.
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4 Non-preemptive model

In this section we consider the complementary problem of performing jobs when
preemption is not available. We begin with the lower bound and then proceed
to the algorithm description.

4.1 Lower bound

In the non-preemptive model each job can only be performed by a machine in
one piece. This reflects an all-or-nothing policy, i.e., a machine cannot make any
intermediate progress while performing a job. If it starts working on a job then
either it must be done entirely or it is abandoned without any tasks performed.

In what follows any intermediate broadcasts while performing a job are not
helpful for the system. The only meaningful transmissions are those which allow
to confirm certain jobs being done.

Theorem 3. A reliable, distributed algorithm, possibly randomized, performs
work Ω

(
L+ L

nm
√
n+mmin{f, n}+mα

)
in an execution with at most f fail-

ures against an adaptive adversary.

4.2 Algorithm DefTri

(a) (b) (c) (d)

Fig. 3. Most important features of DefTri. Similarly to ScaTri we apply the method
of reducing idle work by reducing the input size (epoch length) for the task performing
procedure ((a), (b), (c)). Additionally we change the duration on phases (time between
consecutive broadcasts) in order to be able to fill in jobs entirely - in the model without
preemption jobs cannot be done partially (d).

The key reason to consider the notion of a phase (i.e. time between consec-
utive broadcasts), introduced in the model section, is that it allows to assume
broadcasts are done after jobs are done entirely. The only question is how to set
the phase parameter appropriately.

We analyze our algorithm from the average length of the current set of jobs
perspective. To justify this setting let us consider two scenarios. For the first one,
when the phase parameter is set to 1, which is consistent with transmissions tak-
ing place each round we already mentioned above that most of the transmissions
have no effect on progressing with performing jobs. However, setting the phase
parameter to the length of the longest job α can generate excessive idle work.
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In what follows, setting the phase parameter to the average length of the
current set of jobs allows us to estimate the number of jobs that can be performed
in a certain period. What is more it proves that this setting always allows to
schedule a significant number of jobs to be done, while preventing from excessive
idle work. Hence we begin with a simple fact showing that the number of jobs
with length twice the average does not exceed half of the total number of jobs.

Fact 1 Let n be the number of jobs, L be the sum of all the lengths of jobs and let
L
n represent the average length of a job. Then we have that

∣∣{a : `a > 2L
n

}∣∣ ≤ n
2 .

Algorithm 2: DefTri; pseudocode for machine v

1 - initialize MACHINES to a sorted list of all m names of machines;
2 - initialize JOBS to a sorted list of all n names of jobs;
3 - initialize TASKS to a sorted list of all tasks;
4 - initialize variable d representing the length of an epoch;
5 - initialize variable φ representing the length of a phase;
6 - initialize i := 0;
7 repeat
8 d := m/2i;
9 if |JOBS| ≥ d(d+ 1)/2 then

10 φ := |TASKS|/|JOBS| // set φ to current average length of a job

11 execute TaPeBB(v, d, JOBS, MACHINES, φ);
12 update JOBS, MACHINES, TASKS according to TaPeBB output;

13 end
14 else
15 i := i+ 1;
16 end

17 until |JOBS| = 0;

Algorithm Deforming-Triangle MAC Scheduling (DefTri for short) is sim-
ilar to ScaTri introduced in the previous section and on the top of its design
there is the TaPeBB procedure for performing jobs. Roughly speaking, the al-
gorithm, repetitively, tries to choose jobs that could be packed into a specific
triangle (parameters of which are controlled by the algorithm) and feed them to
TaPeBB. Furthermore, once again the main goal of the algorithm is to avoid
redundant or idle work. Hence, the main feature is to examine whether there is
an appropriate number of jobs to fill in an epoch of TaPeBB. However, as we
are dealing with the non-preemptive model, jobs cannot be done in pieces.

Hence, apart from checking the number of jobs (and possibly reducing the size
of an epoch) the algorithm also changes the phase parameter, i.e., the duration
between consecutive broadcasts — this is somehow convenient in order to know
how the input jobs should be fed into TaPeBB. It settles a “framework” (epoch)
with “pumped rounds” that should be filled in appropriately.

Using Fact 1 assures that if the size of an epoch is reduced accordingly to the
number of jobs and the phase parameter is set accordingly to the actual average
length of the current set of jobs (i.e., |TASKS|/JOBS| in the code of Algorithm 2),
then we are able to provide the input for TaPeBB appropriately and expect
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that at least
∑m

2i

j=1 j jobs will be performed for some size parameter i as a result
of executing TaPeBB, yet without taking crashes into account.

Figure 3 illustrates the idea of DefTri.

Theorem 4. DefTri performs work O(L+αm
√
n+αmmin{f, n}) against the

adaptive f -bounded adversary.

5 Comparison of results for the two models

In this section we compare the upper bound for preemptive scheduling from The-
orem 2 with the lower bound in the model without preemption from Theorem 3.
This comparison shows the range of dependencies between the model parame-
ters for which both models are separated, i.e., the upper bound in the model
with preemption is asymptotically smaller than the lower bound in the model
without preemption. We settle the scope on the, intuitively greater, bound for
the model without preemption and examine how the ranges of the parameters
influence the magnitude of the formulas. Let us recall both formulas:

Preemptive, upper bound: O(L+m
√
L+mmin{f, L}+mα);

Non-preemptive, lower bound: Ω(L+ L
nm
√
n+ min{f, n}+mα).

If L is the factor that dominates the bound in the non-preemptive model, then
by simple comparison to other factors we have that L also dominates the bound
in the preemptive model. In what follows both formulas are asymptotically equal
when the total number of tasks is appropriately large.

When L
nm
√
n dominates the non-preemptive formula, then by a simple ob-

servation we have that 1 ≤
√

L
n , because the number of jobs is greater than

the number of tasks, and applying a square root does not affect the inequal-
ity. Multiplying both sides of the inequality by m

√
L gives m

√
L ≤ L

nm
√
n.

Thus, if L
nm
√
n dominates the bound in the non-preemptive formula then the

non-preemptive formula is asymptotically greater than the preemptive one.
On the other hand when L dominates the bound then they are asymptotically

equal, as both formulas linearize for such magnitude. These results confirm that
in the channel without collision detection the non-preemptive model is more
demanding for most settings of parameters.

6 Conclusions

We addressed the problem of performing jobs of arbitrary lengths on a multiple-
access channel without collision detection. Specifically, we analysed two scenar-
ios. In the preemptive model, we showed a lower bound for the considered prob-
lem that is Ω(L + m

√
L + mmin{f, L} + mα) and designed an algorithm that

meets the proved bound, hence settled the problem. We also answered the ques-
tion of how to deal with jobs without preemption, for which we showed a lower
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bound Ω(L+L
nm
√
n+mmin{f, n}+mα) and developed a solution, basing on the

one for preemptive jobs which work complexity is O(L+ L
nm
√
n+αmmin{f, n}).

Considering open directions for research considered in this paper, it is nat-
ural to address the question of channels with collision detection. Furthermore
it is worth considering whether randomization could help improving the results,
as it took place in similar papers considering the Do-All problem on a shared
channel [15]. We conjecture that the use of randomization against non-adaptive
adversaries leads to a solution with expected work O(L+m

√
L+mα), and thus

could prove that randomization helps against the non-adaptive adversary.
Finally, the primary goal of this work was to translate scheduling from classic

models to the model of a shared channel, in which it was not considered in depth;
therefore, a natural open direction is to extend the model further with other
features considered in scheduling literature.
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