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Abstract. In this paper we extend the study of flow-energy scheduling
to a model that allows both sleep management and speed scaling. Our
main result is a sleep management algorithm called IdleLonger, which
works online for a processor with one or multiple levels of sleep states.
The design of IdleLonger is interesting; among others, it may force the
processor to idle or even sleep even though new jobs have already ar-
rived. IdleLonger works in both clairvoyant and non-clairvoyant settings.
We show how to adapt two existing speed scaling algorithms AJC [15]
(clairvoyant) and LAPS [9] (non-clairvoyant) to the new model. The
adapted algorithms, when coupled with IdleLonger, are shown to be
O(1)-competitive clairvoyant and non-clairvoyant algorithms for mini-
mizing flow plus energy on a processor that allows sleep management
and speed scaling.
The above results are based on the traditional model with no limit on
processor speed. If the processor has a maximum speed, the problem
becomes more difficult as the processor, once overslept, cannot rely on
unlimited extra speed to catch up the delay. Nevertheless, we are able
to enhance IdleLonger and AJC so that they remain O(1)-competitive
for flow plus energy under the bounded speed model. Non-clairvoyant
scheduling in the bounded speed model is left as an open problem.

1 Introduction

Speed scaling, flow and energy. Energy consumption has become a major issue
in the design of microprocessors, especially for battery-operated devices. Many
modern processors support dynamic speed scaling to reduce energy usage. Re-
cently there is a lot of theory research on online job scheduling taking speed
scaling and energy usage into consideration (see [10] for a survey). The chal-
lenge arises from the conflicting objectives of providing good quality of service
and conserving energy. Among others, the study of minimizing flow time plus
energy has attracted much attention [1, 3–5, 9, 14, 15]. The results to date are
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based on a speed scaling model in which a processor, when running at speed s,
consumes energy at the rate of sα, where α is typically 3 (the cube-root rule [7]).
Most research assumes the traditional infinite speed model [16] where any speed
is allowed; some considers the more realistic bounded speed model [8], which
imposes a maximum processor speed T .

Total flow time is a commonly used QoS measure for job scheduling. The
flow time (or simply flow) of a job is the time elapsed since the job arrives
until it is completed. In the online setting, jobs with arbitrary sizes arrive at
unpredictable times. They are to be run on a processor which allows preemption
without penalty. To understand the tradeoff between flow and energy, Albers
and Fujiwara [1] initiated the study of minimizing a linear combination of total
flow and total energy. The intuition is that, from an economic viewpoint, users
are willing to pay a certain (say, ρ) units of energy to reduce one unit of time.
By changing the units of time and energy, one can further assume that ρ = 1
and thus would like to optimize flow plus energy.

Under the infinite speed model, Albers and Fujiwara [1] considered jobs of
unit size, and their work was extended to jobs of arbitrary sizes by Bansal, Pruhs
and Stein [5]. The BPS algorithm scales the speed as a function of unfinished
work and is O(( α

ln α )2)-competitive for minimizing flow plus energy. Bansal et
al. [3] later adapted the BPS algorithm to the bounded speed model; the com-
petitive ratio remains O(( α

ln α )2) if the online algorithm is given extra speed.
Recently, Lam et al. [15] gave a new algorithm AJC whose speed function de-
pends on the number of unfinished jobs. AJC avoids the extra speed requirement
and improves the competitive ratio to O( α

ln α ). Recall that α is typically equal
to 3. Then the competitive ratios of BPS are estimated to be 7.9 and 11.9,
and AJC 3.25 and 4 under the infinite and bounded speed model, respectively.
More recently, Bansal et al. [4] further showed that AJC can be adapted to be
3-competitive, independent of α. All these results assume clairvoyance, i.e., the
size of a job is known when the job arrives.

The non-clairvoyant setting, where job size is known only when the job is
completed, is practically important. Chan et al. [9] have recently given a non-
clairvoyant speed scaling algorithm LAPS that is O(α3)-competitive for total
flow plus energy in the infinite speed model.

Sleep management. In earlier days, energy reduction was mostly achieved by
allowing a processor to enter a low-power sleep state, yet waking up requires extra
energy. In the (embedded systems) literature, there are different energy-efficient
strategies to bring a processor to sleep during a period of zero load [6]. This is an
online problem, usually referred to as dynamic power management. The input
is the length of the period, known only when the period ends. There are several
interesting results with competitive analysis (e.g., [2, 11, 13]). In its simplest
form, the problem assumes the processor is in either the awake state or the sleep
state. The awake state always requires a static power σ > 0. To have zero energy
usage, the processor must enter the sleep state, but a wake-up back to the awake
state requires ω > 0 energy. In general, there can be multiple intermediate sleep
states, which demand some static power but less wake-up energy.
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It is natural to study job scheduling on a processor that allows both sleep
states and speed scaling. More specifically, a processor in the awake state can
run at any speed s ≥ 0 and consumes energy at the rate sα + σ, where σ > 0
is static power and sα is the dynamic power3. Here job scheduling requires two
components: a sleep management algorithm to determine when to sleep or work,
and a speed scaling algorithm to determine which job and at what speed to
run. Notice that sleep management here is not the same as in dynamic power
management; in particular, the length of a sleep or idle period is part of the
optimization (rather than the input). Adding a sleep state actually changes the
nature of speed scaling. Assume no sleep state, running a job slower is a natural
way to save energy. Now one can also save energy by sleeping more and working
faster later. It is even more complicated when flow is concerned. Prolonging a
sleeping period by delaying job execution can save energy, yet it also incurs extra
flow. Striking a balance is not trivial. In the theory literature, the only relevant
work is by Irani et al. [12]; they studied deadline scheduling on a processor with
one sleep state and infinite speed scaling. They showed an O(1)-competitive
algorithm to minimize the energy for meeting the deadlines of all jobs.

Our contributions. This paper initiates the study of flow-energy schedul-
ing that exploits both speed scaling and multiple sleep states. We give a sleep
management algorithm called IdleLonger, which works for a processor with one
or multiple levels of sleep states. IdleLonger works in both clairvoyant and non-
clairvoyant settings. We adapt the clairvoyant speed scaling algorithm AJC [15]
and the non-clairvoyant algorithm LAPS [9] to take the static power σ into con-
sideration. Under the infinite speed model, these adapted algorithms together
with IdleLonger are shown to be O(1)-competitive for minimizing flow plus en-
ergy in the clairvoyant and non-clairvoyant settings, respectively. More precisely,
the ratios are O( α

ln α ) and O(α3) (recall that α is a constant).
For the bounded speed model, the problem becomes more difficult since the

processor, once overslept, cannot rely on unlimited extra speed to catch up the
delay. Nevertheless, we are able to enhance IdleLonger and AJC to observe the
maximum processor speed. They remain O(1)-competitive for flow plus energy
under the bounded speed model.

Sleep management algorithm IdleLonger. When the processor is sleeping,
it is natural to delay waking up until sufficient jobs have arrived. The non-trivial
case is when the processor is idle (i.e., awake but at zero speed), IdleLonger has
to determine when to start working again or go to sleep. At first glance, if some
new jobs arrive while the processor is idle, the processor should run the jobs
immediately so as to avoid extra flow. Yet this would allow the adversary to easily
keep the processor awake, and it is difficult to achieve O(1)-competitiveness. In
an idle period, IdleLonger considers the (static) energy and flow accumulated
during the period as two competing quantities. Only if the flow exceeds the
energy, IdleLonger would start to work. Otherwise, IdleLonger will remain idle

3 Static power is dissipated due to leakage current and is independent of processor
speed, and dynamic power is due to dynamic switching loss and increases with the
speed.
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until the energy reaches to a certain level; then the processor goes to sleep even
in the presence of jobs.

Analysis framework. Apparently, a sleep management algorithm and a speed
scaling algorithm would affect each other; analyzing their relationship and their
total cost could be a complicated task. Interestingly, the results of this paper
stem from the fact that we can isolate the analysis of these algorithms. We di-
vide the total cost (flow plus energy) into two parts, working cost (incurred while
working on jobs) and inactive cost (incurred at other times). We upper bound the
inactive cost of IdleLonger independent of the speed scaling algorithm. For the
working cost, although it does depend on both algorithms, our potential analysis
of the speed scaling algorithms reveals that the dependency on the sleep man-
agement algorithm is limited to a simple quantity called inactive flow, which is
the flow part of the inactive cost. Intuitively, large inactive flow means many jobs
are delayed due to prolonged sleep, and hence the processor has to work faster
later to catch up, incurring a higher working cost. It is easy to minimize inactive
flow at the sacrifice of the energy part of the inactive cost. IdleLonger is designed
to maintain a good balance between them. In conclusion, coupling IdleLonger
with AJC and LAPS, we obtain competitive algorithms for flow plus energy.

Organization of the paper. Section 1.1 defines the model formally. Sections 2
and 3 focus on the infinite speed model and discuss the sleep management algo-
rithm IdleLonger and two speed scaling algorithms. Finally, Section 4 presents
our results on the bounded speed model.

1.1 Model and Notations

The input is a sequence of jobs arriving online. We denote the release time and
work requirement (or size) of a job J as r(J) and w(J), respectively.

Speed and power. We first consider the setting with one sleep state. At any
time, a processor is in either the awake state or the sleep state. In the former,
the processor can run at any speed s ≥ 0 and demands power in the form sα +σ,
where α > 1 and σ > 0 are constants. We call sα the dynamic power and σ the
static power. In the sleep state, the speed is zero and the power is zero. State
transition requires energy; without loss of generality, we assume a transition
from the sleep state to the awake state requires an amount ω of energy, and the
reverse takes zero energy. To simplify our work, we assume state transition takes
no time.

Next we consider the setting with m > 1 levels of sleep. A processor is in
either the awake state or the sleep-i state, where 1 ≤ i ≤ m. The awake state
is the same as before, demanding static power σ and dynamic power sα. For
convenience, we let σ0 = σ. The sleep-m state is the only “real” sleep state,
which has static power σm = 0; other sleep-i states have decreasing positive
static power σi such that σ0 > σ1 > σ2 > · · · > σm−1 > σm = 0. We denote
the wake-up energy from the sleep-i state to the awake state as ωi. Note that
ωm > ωm−1 > · · · > ω1 > 0.

It is useful to differentiate two types of awake state: with zero speed and with
positive speed. The former is called idle state and the latter is working state.
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Flow and energy. Consider any schedule of jobs. The flow F (J) of a job J
is the time elapsed since it arrives and until it is completed. The total flow is
F =

∑
J F (J). Note that F =

∫∞
0

n(t) dt, where n(t) is the number of unfinished
jobs at time t. Based on this view, we divide F into two parts: Fw is the flow
incurred during time intervals of working state, and Fi for idle or sleep state.
The energy usage is also divided into three parts: W denotes the energy due to
wake-up transitions, Ei is the idling energy (static power consumption in the idle
or intermediate sleep state), and Ew is the working energy (static and dynamic
power consumption in the working state). Our objective is to minimize the total
cost G = Fw + Fi + Ei + Ew + W . We call Fw + Ew the working cost, and
Fi + Ei + W the inactive cost.

2 Sleep Management Algorithm IdleLonger

This section presents a sleep management algorithm called IdleLonger that de-
termines when the processor should sleep, idle, and work (with speed > 0).
IdleLonger can be coupled with any speed scaling algorithm, which specifies which
job and at what speed the processor should run when the processor is working.
As a warm-up, we first consider the case with a single sleep state. Afterwards,
we consider the general case of multiple sleep states.

In this section, we derive an upper bound of the inactive cost of IdleLonger in-
dependent of the choice of the speed scaling algorithm. Section 3 will present two
speed scaling algorithms for the clairvoyant and non-clairvoyant settings, respec-
tively, and analyze their working costs when they are coupled with IdleLonger. In
conclusion, putting IdleLonger and each of these two speed scaling algorithms
together, we can show that both the inactive cost and working cost are O(1)
times of the total cost of the optimal offline algorithm OPT.

2.1 Sleep Management Algorithm for a Single Sleep State

When the processor is in the working state and sleep state, it is relatively simple
to determine the next transition. In the former, the processor keeps on working as
long as there is an unfinished job; otherwise switch to the idle state. In the sleep
state, we avoid waking up immediately after a new job arrives as this requires
energy. It is natural to wait until the new jobs have accumulated enough flow,
say, at least the wake-up energy ω, then we let the processor to switch to working
state direct. Below we refer the flow accumulated due to new jobs over a period
of idle or sleep state as the inactive flow of that period.

When the processor is in idle state, it is non-trivial when to switch to the
sleep or working state. Intuitively, the processor should not stay in idle state too
long, because it consumes energy (at the rate of σ) but does not get any work
done. Yet to avoid frequent wake-up in future, the processor should not sleep
immediately. Instead the processor should wait for possible job arrival and sleep
only after the idling energy (i.e., σ times the length of idling interval) reaches
the wake-up energy ω. When a new job arrives in the idle state, a naive idea is
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to let the processor switch to the working state to process the job immediately;
this avoids accumulating inactive flow. Yet this turns out to be a bad strategy
as it becomes too difficult to sleep; e.g., the adversary can use some tiny jobs
sporadically, then the processor would never accumulate enough idling energy
to sleep.

It is perhaps counter-intuitive that IdleLonger always prefers to idle a bit
longer, and it can switch to the sleep state even in the presence of unfinished
jobs. The idea is to consider the inactive flow and idling energy at the same time.
Note that when an idling period gets longer, both the inactive flow and idling
energy increase, but at different rates. We imagine that these two quantities are
competing with each other.

The processor switches from the idle state to the working state once the
inactive flow catches up with the idling energy. If the idling energy has
exceeded ω before the inactive flow catches up with the idling energy,
the processor switches to the sleep state.

Below is a summary of the above discussion. For simplicity, IdleLonger is written
in a way that it is being executed continuously. In practice, we can rewrite the
algorithm such that the execution is driven by discrete events like job arrival,
job completion and wake-up.

Algorithm 1 IdleLonger(A): A is any speed scaling algorithm
At any time t, let n(t) be the number of unfinished jobs at t.
In working state: If n(t) > 0, keep working on jobs according to the algorithm A;
else (i.e., n(t) = 0), switch to idle state.
In idle state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If the
inactive flow over [t′, t] equals (t− t′)σ, then switch to working state;
Else if (t− t′)σ = ω, switch to sleep state.
In sleep state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If
the inactive flow over [t′, t] equals ω, switch to working state.

Below we upper bound the inactive cost of IdleLonger (the working cost will
be dealt with in Section 3). It is useful to define three types of time intervals. An
Iw-interval is a maximal interval in idling state with a transition to the working
state at the end, and similarly an Is-interval for that with a transition to the
sleep state. Furthermore, an ISw-interval is a maximal interval comprising an
Is-interval, a sleeping interval, and finally a wake-up transition. As the processor
starts in the sleep state, we allow the first ISw-interval containing no Is-interval.

Consider a schedule of IdleLonger(A). Recall that the inactive cost is com-
posed of W (wake-up energy), Fi (inactive flow), and Ei (idling energy). We
further divide Ei into two types: Eiw is the idling energy incurred in all Iw-
intervals, and Eis for all Is-intervals.

By the definition of IdleLonger, we have the following property.

Property 1. (i) Fi ≤ W + Eiw, and (ii) Eis = W .
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Therefore, the inactive cost of IdleLonger, defined as W + Fi + Eiw + Eis, is
at most 3W + 2Eiw. The non-trivial part is to upper bound W and Eiw. Our
main result is stated below. For the optimal offline algorithm OPT, we divide its
total cost G∗ into two parts: W ∗ is the total wake-up energy, and C∗ = G∗−W ∗

(i.e., the total flow plus the working and idling energy).

Theorem 1. W + Eiw ≤ C∗ + 2W ∗.

Corollary 1. The inactive cost of IdleLonger is at most 3C∗ + 6W ∗.

The rest of this section is devoted to proving Theorem 1. Note that W is
the wake-up energy consumed at the end of all ISw-intervals, and Eiw is the
idling energy of all Iw-intervals. All these intervals are disjoint. Below we show a
charging scheme such that, for each ISw-interval, we charge OPT a cost at least ω,
and for each Iw-interval, we charge OPT at least the idling energy of this interval.
Thus, the total charge to OPT is at least W +Eiw. On the other hand, we argue
that the total charge is at most C∗ + 2W ∗. Therefore, W + Eiw ≤ C∗ + 2W ∗.

The charging scheme for an ISw-interval [t1, t2] is as follows. The target is at
least ω.

Case 1. If OPT switches from or to the sleep state in [t1, t2], we charge OPT
the cost ω of the first wake-up in [t1, t2] (if it exists) or of the last wake-up
before t1.

Case 2. If OPT is awake throughout [t1, t2], we charge OPT the static energy
(t2 − t1)σ. Note that in an ISw-interval, IdleLonger has an idle-sleep transi-
tion, and hence (t2 − t1)σ > ω.

Case 3. If OPT is sleeping throughout [t1, t2], we charge OPT the inactive
flow (i.e., the flow incurred by new jobs) over [t1, t2]. In this case, OPT
and IdleLonger have the same amount of inactive flow during [t1, t2], which
equals ω (because IdleLonger wakes up at t2).

For an Iw-interval, we use the above charging scheme again. The definition
of Iw-interval allows the scheme to guarantee a charge of (t2− t1)σ instead of ω.
Specifically, as an Iw-interval ends with an idle-working transition, the inactive
flow accumulated in [t1, t2] is (t2−t1)σ, and the latter cannot exceed ω. Therefore,
the charge of Case 1, which equals ω, is at least (t2−t1)σ. Case 2 charges exactly
(t2− t1)σ. For Case 3, we charge OPT the inactive flow during [t1, t2]. Note that
OPT and IdleLonger accumulate the same inactive flow, which is (t2 − t1)σ.

Summing over all Iw- and ISw-intervals, we have charged OPT at least W +
Eiw. On the other hand, since all these intervals are disjoint, in Cases 2 and 3,
the charge comes from non-overlapping flow and energy of C∗. In Case 1, each
OPT’s wake-up from the sleep state is charged for ω at most twice, thus the
total charge is at most 2W ∗. In conclusion, W + Eiw ≤ C∗ + 2W ∗.

2.2 Sleep Management Algorithm for m ≥ 2 Levels of Sleep States

We extend the previous sleep management algorithm to allow intermediate sleep
states, which demand less idling (static) energy than the idling state, and also



8

less wake-up energy than the final sleep state (i.e., sleep-m state). We treat the
sleep-m state as the only sleep state in the single-level setting, and adapt the
transition rules of the idling state for the intermediate sleep states. The key idea
is again to compare inactive flow against idling energy continuously. To ease
our discussion, we treat the idle state as the sleep-0 state with wake-up energy
ω0 = 0.

Algorithm 2 IdleLonger(A): A is any speed scaling algorithm
At any time t, let n(t) be the number of unfinished jobs at t.
In working state: If n(t) > 0, keep working on the jobs according to the algorithm
A; else if n(t) = 0, switch to idle state.
In sleep-j state, where 0 ≤ j ≤ m − 1: Let t′ ≤ t be the last time in the working
state, and let t′′, where t′ ≤ t′′ ≤ t, be the last time switching from sleep-(j − 1) state
to sleep-j state. If the inactive flow over [t′, t] equals (t− t′′)σj + ωj , then wake up to
the working state;
Else if (t− t′′)σj = (ωj+1 − ωj), switch to sleep-(j + 1) state.
In sleep-m state: Let t′ ≤ t be the last time in the working state. If the inactive flow
over [t′, t] equals ωm, then wake up to the working state.

When we analyze the multi-level algorithm, the definition of W (total wake-
up cost) and Fi (total inactive flow) remain the same, but Eis and Eiw have to be
generalized. Below we refer a maximal interval during which the processor is in a
particular sleep-j state, where 0 ≤ j ≤ m, as a sleep interval or more specifically,
a sleep-j interval. Note that all sleep intervals, except sleep-m intervals, demand
idling (static) energy. We denote Eiw as the idling energy for all sleep intervals
that end with a wake-up transition, and Eis the idling energy of all sleep intervals
ending with a (deeper) sleep transition.

IdleLonger imposes a rigid structure of sleep intervals. Define `j = (ωj+1 −
ωj)/σj . A sleep-j interval can appear only after a sequence of lower level sleep
intervals, which starts with an sleep-0 interval of length `0, followed by a sleep-
1 interval of length `1, . . . , and finally a sleep-(j − 1) interval of length `j−1.
Consider a maximum sequence of such sleep intervals that ends with a transition
to the working state. We call the entire time interval enclosed by this sequence an
ISw[j]-interval for some 0 ≤ j ≤ m if the deepest (also the last) sleep subinterval
is of level j. It is useful to observe the following lemma about an ISw[j]-interval.
Its proof is left in the full paper.

Lemma 1. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m. Assume that
the last sleep-j (sub)interval is of length `. Then, ωj + `σj ≤ ωk +(t2− t1)σk for
any 0 ≤ k ≤ m.

It is not hard to see that the rigid sleeping structure of IdleLonger allows us
to maintain Property 1 as before. That is, (i) Fi ≤ W + Eiw, and (ii) Eis = W .
Thus, the inactive cost, which is equal to Fi + Eiw + Eis + W , is still at most
3W + 2Eiw. In the rest of this section, we prove that W and Eiw have the same
upper bound as before.

Theorem 2. In the setting of m ≥ 2 sleep states, W + Eiw ≤ C∗ + 2W ∗.
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To account for W and Eiw, it suffices to look at all ISw[j]-intervals, where
0 ≤ j ≤ m. For each ISw[j]-interval, we show how to charge OPT a cost ωj +`σj ,
where ` is length of the deepest sleep subinterval (it is useful to recall that ω0 = 0
and σm = 0). Then we argue that the total cost charged is at least W +Eiw and
at most C∗ + 2W ∗.

Without loss of generality, we can assume that in a maximal interval [r1, r2]
that OPT is not working, if OPT has ever slept (in sleep-1 or deeper sleep
state), then [r1, r2] contains only one sleep transition, which occurs at r1, and
the processor remains in the same sleep state until r2.

Charging scheme. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m.
Let ` be the length of the sleep-j (sub)interval in this interval.

Case 1. If OPT has ever switched from or to the sleep-1 or deeper sleep state
in [t1, t2], let k ≥ 1 be the deepest sleep level involved in the entire interval.
Note that OPT uses static energy at least (t2 − t1)σk during [t1, t2]. We
charge OPT the sum of (t2− t1)σk and ωk (in view of a wake-up from sleep-
k state inside [t1, t2] or after t2; if there is no-wake up after t2, then we charge
OPT the first wake-up). By Lemma 1, this charge is at least ωj + `σj .

Case 2. If OPT is working or idle throughout [t1, t2], we charge OPT the static
energy (t2 − t1)σ0, which, by Lemma 1, is at least ωj + `σj .

Case 3. If OPT is sleeping (at any level except zero) throughout [t1, t2], we
charge OPT the inactive flow over [t1, t2]. Note that OPT has the same
amount of inactive flow as IdleLonger. By definition of a wake-up transition
in IdleLonger, the inactive flow equals ωj + `σj .

Since ISw[j]-intervals are all disjoint, the flow and idling (static) energy
charged to OPT by Cases 1, 2 and 3 come from different parts of C∗. For Case
1, each of OPT’s wake-up from a sleep state is charged at most twice. Thus,
W + Eiw ≤ C∗ + 2W ∗, completing the proof of Theorem 2.

3 Clairvoyant and Non-clairvoyant Speed Scaling

We consider both the clairvoyant and non-clairvoyant settings; in the latter, job
size is only known when the job completes. IdleLonger can actually work in both
settings as its decision does not depend on the job size. When there is no sleep
state and the power function is in the form of sα, [15] and [9] gave respectively
a clairvoyant speed scaling algorithm AJC and a non-clairvoyant speed scaling
algorithm LAPS that are O(1)-competitive for flow plus energy. These algorithms
always run the jobs at a speed proportional to n(t)1/α, where n(t) is the number
of unfinished jobs at time t. In the sleep setting, when the processor is working, it
requires at least the static power σ; if σ is large, running at a speed comparable
to n(t)1/α would be too slow to be cost effective as the dynamic power could be
way smaller than σ. Indeed AJC and LAPS have unbounded competitive ratios
no matter what sleep management algorithm is used. This section shows how to
analyze the following simple adaptations of AJC and LAPS to the sleep setting,
and upper bound their working costs in terms of OPT’s total cost.



10

Clairvoyant algorithm SAJC. At any time t, SAJC runs the job with
the shortest remaining work at the speed (n(t) + σ)1/α.

Non-clairvoyant algorithm SLS. At any time t, SLS runs at speed
(1 + 3

α )(n(t) + σ)1/α, and runs the
⌈
( 1
2α )n(t)

⌉
unfinished jobs with the

latest release times by splitting the speed equally among these jobs.

The analysis of SAJC (resp. SLS) is valid no matter what (non-clairvoyant)
sleep management algorithm Slp is being used together. Ideally we want to upper
bound the working cost of SAJC and SLS solely in terms of the total cost of
OPT, yet this is not possible as the working cost also depends on Slp. Below we
give an analysis in which the dependency on Slp is bounded by the inactive flow
incurred by Slp. More specifically, let Gw and Fi be respectively the working
cost and the inactive flow of Slp(SAJC) (resp. Slp(SLS)). Again, we use C∗ to
denote the total cost of OPT minus the wake-up energy; the latter is denoted
by W ∗. We will show that Gw = O(C∗ + Fi).

Let us look at a simple case. If Slp always switches to working state whenever
there are unfinished jobs, then Fi = 0. In this case we can easily adapt the
analysis of [15] (resp. [9]) to bound Gw in terms of C∗ only. However, the inactive
cost of Slp may be unbounded in this case. On the other hand, consider a sleep
management algorithm that prefers to wait for more jobs before waking up to
work (e.g., IdleLonger). Then SAJC (resp. SLS) would start at a higher speed
and Gw can be much larger than C∗. Roughly speaking, the excess is due to the
fact that the online algorithm is sleeping while OPT is working. Note that the
cost to catch up the work lagged behind increases at a rate depending on n(t).
This motivates us to bound the excess in terms of Fi. Based on this idea, we can
adapt the potential analyses of AJC [15] and LAPS [9] to show Theorem 3 below,
where β = 2/(1− α−1

αα/(α−1) ) and γ = (1 + (1 + 3
α )α) ≤ 1 + e3. Together with the

results on inactive cost of IdleLonger (Property 1 and Corollary 1), it implies that
the clairvoyant algorithm IdleLonger(SAJC) is (2β+2)-competitive for flow plus
energy, and the non-clairvoyant algorithm IdleLonger(SLS) is ((4α3 + α)γ + 3)-
competitive for flow plus energy. Detailed proofs will be given in the full paper.

Theorem 3. (i) With respect to Slp(SAJC), Gw ≤ βC∗ + (β − 2)Fi. (ii) With
respect to Slp(SLS), Gw ≤ (4α3 + 1)γC∗ + (α− 1)γFi.

Corollary 2. In the setting of single sleep state or multiple sleep states,
(i) the total cost of the clairvoyant algorithm IdleLonger(SAJC) is at most

(2β + 2) times of the total cost of OPT, and
(ii) the total cost of the non-clairvoyant algorithm IdleLonger(SLS) is at most

((4α3 + α)γ + 3) times of the total cost of OPT.

4 Bounded Speed Model

This section extends the sleep management algorithm IdleLonger and the clair-
voyant speed scaling algorithm SAJC to the bounded speed model. We consider
the setting where the processor speed is upper bounded by a constant T > 0, and
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there are m ≥ 1 levels of sleep states. We show that the total cost (comprising
inactive and working cost) of IdleLonger(SAJC) is O(1) times of the optimal
offline algorithm OPT.

Adaptation. In the bounded speed model, IdleLonger (see Section 2) still
works and the inactive cost is O(1) times of OPT’s total cost. However, IdleLonger
often allows a long sleep, then a speed scaling algorithm, without the capability
to speed up arbitrarily, cannot always catch up the progress of OPT and may
have unbounded working cost. Thus, we adapt IdleLonger to wake up earlier,
especially when too many new jobs have arrived. To this end, we add one more
wake-up condition to IdleLonger. Recall that σ(= σ0) is the static power in the
working state.

In the sleep-j state, where 0 ≤ j ≤ m, if the number of unfinished jobs
exceeds σ, the processor wakes up to the working state.

Recall that SAJC runs at the speed (n(t) + σ)1/α, where n(t) is the number
of unfinished jobs at time t. To adapt SAJC to the bounded speed model, we
simply cap the speed at T . I.e., at any time t, the processor runs at the speed
min{(n(t) + σ)1/α, T}.

Inactive cost of IdleLonger. The rigid structure of sleep intervals remains
the same as before, and the inactive cost is still at most 3W + 2Eiw, where W
is the wake-up energy and Eiw is the idling energy incurred in those idling or
intermediate sleep intervals that end with a wake-up transition (see Section 2 for
details). However, due to the additional wake-up rule, IdleLonger has a slightly
worse bound on W plus Eiw. Our main result is stated in Theorem 4. Again, W ∗

denotes the wake-up energy of OPT, and C∗ is the total cost of OPT minus W ∗.

Theorem 4. (i) W + Eiw ≤ C∗ + 3W ∗. (ii) The inactive cost of IdleLonger is
at most 3C∗ + 9W ∗.

To prove Theorem 4(i), we extend the charging scheme in Section 2.2 to show
that for each ISw[j]-interval, OPT can be charged with a cost at least ωj + `σj ,
where ` is the length of the deepest sleep subinterval (recall that ω0 = 0, σ0 = σ
and σm = 0). The three cases of the old charging scheme remain the same, except
that Case 3 is restricted to ISw[j]-intervals where IdleLonger wakes up at the end
due to excessive inactive flow. We supplement Case 3 with a new scheme (Case
4) to handle ISw[j]-intervals with wake-ups due to more than σ unfinished jobs.

Charging scheme – Case 4. If OPT is sleeping (at any level except zero)
throughout an ISw[j]-interval [t1, t2], and IdleLonger has accumulated more than
σ unfinished jobs at t2, we consider two scenarios to charge OPT, depending on
no(t1), the number of unfinished jobs in OPT at t1.
(a) Suppose no(t1) ≥ σ0. We charge OPT the inactive flow of these jobs over
[t1, t2], which is at least (t2− t1)σ0. By Lemma 1, this charge is at least ωj + `σj .
(b) Suppose no(t1) < σ0. Note that OPT stays in a sleep-k state, for some k ≥ 1,
in the entire interval and uses static energy (t2− t1)σk during [t1, t2]. We charge
OPT the sum of (t2 − t1)σk and ωk (in view of OPT’s first wake-up after t2,
which must exist because new jobs have arrived within [t1, t2]). By Lemma 1,
this charge is at least ωj + `σj .
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In conclusion, we are able to charge OPT, for each ISw[j]-interval, a cost
at least ωj + `σj . Therefore, the sum of the charges to all ISw[j]-intervals is at
least W + Eiw. On the other hand, recall that Case 1 has a total charge at most
2W ∗. Case 2, 3 and 4(a) have a total charge at most C∗. We can argue that
OPT is charged by Case (4b) with a cost at most W ∗; details are left in the full
paper. Then we have W +Eiw ≤ C∗+3W ∗. And Theorem 4(ii) follows directly.
In the full paper, we will adapt the potential analysis of AJC [15] and show
that the working cost of SAJC is still O( α

ln α ) times OPT’s total cost. Therefore,
IdleLonger(SAJC) remains O( α

ln α )-competitive for flow plus energy.
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