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ABSTRACT
Climate change is a global threat to species, and their capability

to invade and colonise new landscapes could be limited by the

habitat fragmentation. Improving landscapes by adding additional

resources to landscapes is an important initiative to restore habi-

tats. Such improvements will be particularly important to promote

species recovery in fragmented landscapes and to understand as

well as facilitate range-shifting for species (also called an inva-

sion). We use a recent method to approximate the time taken by

species to invade landscapes and reach the new areas of suitable

environment, which based on network flow theory. Based on this,

we propose and test a new method that can help to compute the

best locations in landscapes in order to restore habitat which leads

to minimising the expected time taken by species to invade and

reach targets. The new optimisation method has been compared

with other two baseline methods. The evaluation conducted using

real heterogeneous landscapes shows that the proposed method

outperforms the competitive baseline methods in terms of propos-

ing landscape modifications that minimise the expected time of the

invasion process.
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1 INTRODUCTION
Climate change is a growing threat to species throughout the world

and interacts with the major threats to biodiversity, which are

habitat loss and fragmentation [3, 14]. It has been observed that

species can respond to these threats by shifting (invading) their

geographic ranges [4, 16], however in order to do so, they need

sufficient habitat in the range where they exist, in the range where

they are going to be as well as any intermediate areas in between to

enable species population survival and colonisation [5, 6, 9]. This

means that the availability of suitable habitat is very important

to protect and conserve species [11, 15]. One of the best ways to

protect species against extinction is to prevent their deterioration

by restoring habitat. To protect and restore habitat on landscapes,

computational decision support tools are needed to find the best

locations in landscapes for habitat restoration, given that land and

funding for conservation are limited. In a changing climate, the best

locations are arguably the places that are most likely to lead to a

large decline in the expected time for species to invade landscapes

and speed up reaching the target locations.

The field of ’systematic conservation planning’ already uses

some optimisation techniques, mostly based on integer or linear

programming [12], however these have not been applied to the goal

of minimising range-shifting time (called invasion time throughout

this paper), partly because this is a more complex, likely non-linear

problem. Hodgson et al. in [10] made some progress in developing

heuristics to improve landscapes in a stepwise manner, by showing

that some network properties (based on circuit theory) can predict

the marginal change in invasion time upon adding or removing a

network node.

Recently, Aloqalaa et al. in [1] proposed a method that approxi-

mates the invasion time in real heterogeneous landscapes. Their

method is based on using graph theory to capture the characteris-

tics of landscapes and species to explain the invasion process. They

represented a given two dimensional rectangular grid landscape as

https://doi.org/10.1145/nnnnnnn.nnnnnnn


ICBBT 2019, May 29–30, 2019, Stockholm, Sweden D. Aloqalaa et al.

a directed and weighted graph G = (V , E), where each vertex rep-

resents a patch of habitat (henceforth patch) in the landscape and

each edge weight represents the probability of invading the species

in one step from the beginning to the end patch of the edge. They

distinguished two sets of patches: the source patches represent

initially populated patches in which species are located, and the

target patches represent the target locations for the invasion pro-

cess. Following this graph representation, they used network flow

approach to approximate the invasion time. In particular, for a given

landscape they constructed a family of sub-networks which rep-

resent a sequence of small and partly overlapping sub-landscapes

and computed the maximum flow for each of the sub-networks.

Then, the sum of the inverses of the computed maximum flows over

all sub-networks is used to approximate the invasion time with

constant factor.

1.1 Our results
In this paper, we aim to study how to improve the invasion process,

in particular, how to increase the speed of invasion, by modify-

ing the landscape. We consider the scenario where we are given

a certain budget that we can use to modify the landscape, e.g.,

but not restricted to, to enlarge patches that are populated or add

new patches to form stepping stones or corridors. We restrict our

attention to increase quality of some selected patches within the

given budget. This problem can be seen as an optimisation problem

in which we want to determine the best locations to make mod-

ifications (i.e., to spend budget) on landscapes to minimising the

duration of the invasion process.

Based on the developed method in [1] (mentioned above), we
propose and test a new method that determines the best locations in
the landscape to spend a bounded given budget. We model and solve

this optimisation problem, called min-invasion-time problem, as

a convex program.We also compare our optimisation method with
two baseline methods by implementing them on real landscapes to
produce improved landscapes. On these improved landscapes, we

run simulations to find out how the duration of the invasion process

is influenced by the landscapes’ modifications.

2 MODEL, NOTATIONS AND METHODS
We are given a 2-dimensional rectangular grid landscape of heightH
(rows) and widthW (columns) as an input. Each point of the grid is

called a patch, and the set of patches is denoted byV . Letq(v) denote
the quality of patch v , where the quality is a number between zero

and one given as input. Denote by Q the sum of quality over all

vertices in the landscape graph and it is defined as Q =
∑

v ∈V
q(v).

We distinguish two sets of patches, S andT , where S denotes the set

of populated source patches and T denotes the set of unpopulated

target patches.

The landscape is associated with a directed weighed graph G =
(V , E), called a landscape graph, comprising a set V of patches. In

this work we assume that for each pair of patches v,u ∈ V there

is a directed edge (v,u) ∈ E of weight p(v,u) ∈ [0, 1], called a

transition probability between vertex v and u (see the definition of

transition probability later in Section 3.3). For a given landscape

graph G, we consider W
10
− 2 sub-landscapes covering the whole

landscape such that each one of these sub-landscapes has width

of 2R with added source and target patches, where R is a sparsi-

fication parameter corresponding to the landscape G (see [1] for

more details about computing R for a given landscape). For each

of these sub-landscapes, we define a network N constructed in the

following paragraph; the family of all these sub-landscapes and

their corresponding networks is denoted by N.

Network N . The network N is the corresponding network for a

sub-landscape that belongs to the family N of sub-landscapes. We

construct the network N as follows. We denote the set of vertices

of N by VN and the set of edges by EN . We put all vertices of the

sub-landscape to set VN and distinguish two sets of vertices (each

of length 10 columns): the initial populated set SN and the target

setTN . We add a virtual source vertex s and connect it to each vertex
in the initial populated set SN by a directed edge with a weight λ,
where λ is the maximum, over all vertices, of the sum of the weight

of adjacent edges, λ = max {λv : v ∈ V }, where λv =
∑
u ∈V p(v,u).

We also add a virtual target vertex t and connect each vertex in

the target set TN to the additional target vertex t by a directed

edge with weight λ. Each intermediate vertex (except the source

vertex s and the target vertex t ) is connecting to all other vertices

by directed edges and given weights that equal to the transition
probabilities p(v,u) between the patches. We compute the network

flow of this constructed network N with the weight as the capacity

(see [1] for more details).

2.1 The solutions to the min-invasion-time
problem

In the min-invasion-time problem, the goal is to find the best loca-

tions (i.e., vertices or patches) to increase their qualities by bounded

weights, where the overall of the added weights is restricted to a

limited budget, such that the invasion time is minimised. We first

introduce two baseline optimisation approaches, called random
allocation approach and heuristic approach, that we use to evalu-

ate the quality of the new optimisation approach, called Convex
Programming for the Inverse of Maximum Flow, to the problem.

2.1.1 Random allocation approach. The random allocation approach

is a very simple and natural approach in which for a given land-

scape graph, distinguished source and target patches, we choose

a patch v randomly that does not belong to the source and target

patches and its quality value q(v) is less than one. Then, we increase
the quality value of the chosen patchv by a weightw(v), which is a

generated random number between zero and 1−q(v). This scenario
is repeated many times until there is no more budget to be spent.

We repeat the whole process four times to produce four different

random solutions. For each random solution, we run simulations 100

times, independently, to estimate the expected invasion time in each

of these four landscapes. Then we compute the average expected

invasion time over the four expected invasion times computed in

simulations.

2.1.2 Heuristic approach. The heuristic approach is an optimisa-

tion method developed by Hodgson et al. in [10] to manipulate

landscapes to improve the expected time of invasion. In their work,

they used the electrical circuit theory to approximate the duration

of the invasion process. In particular, they approximated the time

for the species to reach the target by the overall resistance of a
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circuit with patches as vertices (equivalent to the vertices of our

graph G), colonisation times as links (symmetric and equivalent to

our edge transition probabilities), and fixed potentials at the source

(1) and target (-1) nodes. Based on this, their optimisation method

is to compute the electrical power of every link (graph edge) as

current flow · potential difference, find the link with the highest

power and add habitat to the cell located halfway along that link

(see [10] for more details). In our implementation, we increase the

quality q(v) of the patch v , which is located halfway along the link

with the highest power between two patches by a weight w(v),
which is equal to 1 − q(v). We repeat this scenario until we spend

the whole budget. Both the heuristic approach and the random

approach are applied to the entire graphG, rather than to the sub-

networks N . Addition of habitat to the source and target sets S and

T is not allowed.

2.1.3 Convex Programming for the Inverse of Maximum Flow (CP-
IMF). This approach is the main contribution of this paper – a

new optimisation method based on convex programming. Consider

a directed network N ∈ N with a set of vertices VN and set of

edges EN . Recall that each vertex v ∈ VN \ {s, t} ⊆ V is associated

with a quality q(v). In a min-invasion-time problem, each edge e =
(v,u) ∈ EN has a nonnegative capacity c(v,u), which represents

the maximum flow that can pass through the edge and equal to the

transition probability p(v,u) between the vertices (see the definition

of transition probability later in Section 3.3) plus an additional

weightw(v). Let B denote the budget to be distributed and added

to the landscape graph, where the budget is a number given as

input such that, 0 < B ≤ n −Q . There are three decision variables.

The first decision variable is w(v) per vertex v ∈ V . Each w(v)
represents a weight of vertex v to be added to the quality q(v) of
vertex v and satisfies the following allocation restrictions:

(1) Weight constraint:

0 ≤ w(v) ≤ 1 − q(v), for each vertex v ∈ V .

(2) Budget and weight constraint:∑
v ∈V

w(v) ≤ B.

The second decision variable is a function fN assigning each edge e =
(v,u) ∈ EN a value fN (e) in [0, 1]. Each fN (e) represents a flow
from vertex v to vertex u in a network N . Function fN satisfies the

following constraints:

(1) Capacity constraints:

0 ≤ fN (e) ≤ λ, for each edge e from s to v ∈ SN

0 ≤ fN (e) ≤ λ, for each edge e from v ∈ TN to t

0 ≤ fN (e) ≤
[
q(v) +w(v)

]
·
exp (−αd(v,u))(

2π
α 2

)
− 1

,

for each edge e from v to u, where v,u ∈ VN \ {s, t}

(α is a parameter of the transition probability p(v,u) between
vertices v and u, which is defined later in Section 3.3; d(v,u)
is the Euclidean distance between vertices v and u).

(2) Flow conservation constraint:∑
e→v

fN (e) =
∑
e←v

fN (e), for each vertex v ∈ VN \ {s, t}.

The third decision variable is MN per network N ∈ N. Each MN
represents the value of a maximumflow in a networkN and satisfies

the following constraint:∑
e←s

fN (e) ≥ MN , for each network N ∈ N.

For each network N ∈ N, CN denotes a constant, which is the

average of the total number of vertices in network N that have

non-zero quality and the total number of all vertices in network N .

The min-invasion-time problem is to find the best allocation of

a given budget B in a given landscape graph that minimises the

total cost (i.e., the expected time of invasion) subject to the budget

allocation restrictions as well as the capacity and flow conservation

constraints. It can be written as a convex program, c.f., Figure 1.

minimise

∑
N ∈N

CN
MN

subject to:

0 ≤ w(v) ≤ 1 − q(v), ∀v ∈ V∑
v ∈V

w(v) ≤ B

0 ≤ fN (e) ≤ λ, ∀N ∈ N ∀e = (s,v) ∈ EN v ∈ SN
0 ≤ fN (e) ≤ λ, ∀N ∈ N ∀e = (v, t) ∈ EN v ∈ TN

0 ≤ fN (e) ≤
[
q(v) +w(v)

]
·
exp (−αd(v,u))(

2π
α 2

)
− 1

,

∀N ∈ N ∀e = (v,u) ∈ EN v,u ∈ VN \ {s, t}∑
e→v

fN (e) =
∑
e←v

fN (e), ∀N ∈ N ∀v,u ∈ VN \ {s, t}∑
e←s

fN (e) ≥ MN , ∀N ∈ N.

Figure 1: The convex program for the min-invasion-time
problem.

We formulate and solve this convex program using IPOPT (Inte-

rior Point OPTimizer) package in Python programming language,

which is a software package designed to find (local) solutions of

nonlinear optimisation problems.

3 EVALUATING THE QUALITY OF THE
CP-IMF METHOD

In this section we describe how we evaluate the quality of our new

optimisation method (CP-IMF), landscapes, simulations method

that we used for evaluation, and present the results of evaluation.

3.1 Evaluation methodology
In order to evaluate the quality of the CP-IMF method, we first

extract two real landscapes (see the landscapes later in Section 3.2).

Then, we do the following for each extracted landscape:

(1) Implement the three optimisation methods (i.e., random al-
location method, heuristic method, and CP-IMF method) on
the selected landscapes within several values of the budget

which are equal to 1-5%(n −Q). The results from implement-

ing each method are new improved/modified landscapes.

(2) For each modified landscape, enhanced by the budget and

returned by each method/solver, we do the following. As-

sume that the source area is the first ten columns and the
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target area is the last ten columns. Then, run the full simu-

lations (see the full simulations method later in Section 3.3)

100 times independently to compute the average number of

rounds for the invasion process (invasion time) over the 100

independent repetitions.

(3) Following that, we compare the computed invasion times in

point (2) to evaluate the quality of the CP-IMF method with

respect to the two baseline methods.

The above three steps are done for different values of the dispersal

coefficient α : 0.25, 0.5, 1 and 2.

3.2 The landscapes
In this section, we give details of the landscapes used. The land-

scapes were of size 5 rows/height (pixels) and 49 columns/width

(pixels) extracted fromGreat Britain LandcoverMap 2007 (LCM2007)

data [13] and gridded at 1km resolution (see Figure 2). Each patch

(pixel) in each extracted landscape provides the percentage cover of

semi-natural grassland aggregate class across GB [13]. The percent-

age cover at each patch is considered as the quality of the patch. For

examination purposes, three groups of landscape qualities namely:

low quality, medium quality, and high quality have been formu-

lated to represent the quality of each extracted landscape. In such

an extracted landscape, if the average of all patches’ qualities is

between 0% and 5%, 5% and 25%, 25% and 100%, then the landscape

is of low, medium, and high quality, respectively.

In this paper, we aim to minimise the invasion time in low and

medium quality landscapes only (in high quality landscapes there is

no need for big improvement as the invasion time is already short).

Figure 2: Two landscapes of size 5 × 49 of low and
mediumquality extracted from semi-natural grasslandmap
(LCM2007 GB maps). The colour in each landscape grada-
tions from dark blue to light blue corresponds to the grada-
tions of the quality from the smallest to largest quality, zero,
low (0.01-0.05),medium (0.05-0.25), andhigh quality (0.25-1).

It has been assumed that all patches at the first 10 columns of

each landscape are occupied by species and the goal is to compute

the average number of rounds (i.e., the expected time of invasion)

for populating any of patches at the target area, which is the last 10

columns. Since our new optimisation method (CP-IMF) to minimise

the invasion time is based on the developed method in [1], which de-

fines the invasion time as the sum of estimates of the invasion times

over a sequence of small and partly overlapping sub-landscapes,

we do the following. We number columns starting from 0, therefore

the area between column 0 and 9 is populated (source patches).

We consider columns number 19, 29, and 39 as the first column of

the target areas, which are of 10 columns length, for the occupied

patches at the first 10 columns. Therefore, each landscape used in

simulations has been extracted according to the following criteria.

At least one of the patches at each target area (i.e., 19-28, 29-38,

39-48) has non-zero quality.

3.3 The full simulations method
In this sectionwe describe the simulationmethodwe use to compute

the expected number of rounds for the invasion process (i.e., the

expected time of invasion) in each modified landscape enhanced

by the budget and returned by each optimisation method.

For a landscape graph G of size H ×W , we use the formula of

colonisation probability proposed by Hodgson et al. [7] to define

the transition probability between patches v and u as

p(v,u) = q(v) ·
exp (−αd(v,u))(

2π
α 2

)
− 1

,

where α > 0 is the dispersal coefficient assumed to be the same for

all patches and d(v,u) is the Euclidean distance between patches

v and u. We simulate the behaviour of the invasion process by

building a simulator that uses the full method. In each round of the

invasion process, for every pair of patch vertices v and u such that

v is populated and u is not, we determine whether v populates u
or not by the probability p(v,u). In the full invasion method, each

populated patch vertex in the landscape tries to populate every

other unpopulated patch in the whole landscape.

More formal description of the structure of the full method is

given in Algorithm 1. The generic structure of the full method

contains input parameters, output variable (presented in Table 1),

and Count rounds function.

Table 1: Input and output parameters for Algorithm 1.

Input parameters:

1. G: 2-dimensional array stores qualities of patches in a given

real landscape

2. S : vector containing indices of initial populated patches

(source patches)

3. T : vector containing indices of unpopulated target patches

4. α : given number > 0

Output variable:

1. Number of rounds needed for successful invasion

The Count rounds function counts the number of rounds re-

quired for invasion. The function includes nested loops of three

levels. The main loop (starts at line 6) counts the number of rounds

to populate any of the target patches. The second level loop (starts

at line 8) is for all populated patches that are trying to populate

unpopulated patches. The inner level loop (starts at line 11) is for all

unpopulated patches. Each unpopulated patch becomes populated

if the transition probability between the populated and unpopulated

patches is greater than a random generated number between zero

and one (lines 14-17). We consider only populating a patch with

non-zero quality because patch has zero value means "no habitat"

and thus the species could not reproduce there. The Count rounds

function terminates when any of the non-zero target patches be-

come populated and returns the number of rounds needed for suc-

cessful invasion.
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Algorithm 1Modelling invasion process using full simulations method (G, S,T ,α )

1: function Count rounds(G, S,T ,α )
2: Create 2-dimensional array B having size equal to G ← 0

3: for each index of populated patch in vector S do
4: B(index) ← 1

5: Rounds← 0

6: while all target patch in T is unpopulated do
7: Rounds← Rounds+1

8: for i ← 0 to number of rows in G do
9: for j ← 0 to number of columns in G do
10: if patch B(i, j) is populated then
11: for z ← 0 to number of rows in G do
12: for l ← 0 to number of columns in G do
13: if patch B(z, l) is unpopulated and q(B) , 0 then
14: p← Transition probability between B(i, j) and B(z, l)
15: w ← Generate a random number between 0 and 1

16: if w < p then
17: Populate patch B(z, l)

18: return Rounds

Figure 3: The average number of rounds computed by full
simulations for 5 × 49 landscapes of low quality enhanced
by the budget and returned by random allocation, heuris-
tic, and CP-IMF optimisation methods for different values
of the dispersal coefficient α : 0.25, 0.5, 1 and 2.

3.4 Evaluation results
3.4.1 Minimising invasion time using three methods. The average
number of rounds over 100 independent repetitions (i.e., the esti-

mated time of invasion) decreases as more budget (i.e., additional

quality) is added to a landscape. This is illustrated in Figures 3

and 4, for for 5× 49 landscapes of low/medium quality enhanced by

the budget (additional quality) and returned by random allocation,

heuristic, and CP-IMF optimisation methods. In the random case,

several different random arrangements are used. The x-axis in both

figures gives the exact value of the average qualities in the land-

scape after adding budget. The first mark in each figure represents

the average number of round in the original landscape (without

modifications). The total number of modified patches is associated

Figure 4: The average number of rounds computed by full
simulations for 5 × 49 landscapes of medium quality en-
hanced by the budget and returned by random allocation,
heuristic, and CP-IMF optimisation methods. for different
values of the dispersal coefficient α : 0.25, 0.5, 1 and 2.

with each point for each method. That is done for different values

of the dispersal coefficient α : 0.25, 0.5, 1 and 2.

For different amounts of the budget, the CP-IMF method always

chooses/finds the best locations (patches) to add budget. Therefore,

the estimated time of the invasion in the improved landscapes and

produced by the CP-IMF method is the minimum among the three

methods. If the budget is added at random patches, the invasion time

tends to be reduced gradually. If the budget is added to the patch

that is located in the halfway across the highest power link between

two patches, the invasion time tends to be reduced gradually as

well. On the other hand, the invasion time tends to be reduced

significantly to be the minimum over the three methods, if the

budget is added by the CP-IMF method.
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Figure 5: Ratio of the average number of rounds on low qual-
ity landscapes produced by random allocation and heuristic
methods to the average number of rounds produced by the
CP-IMF method, for α : 0.25, 0.5, 1 and 2.

Figure 6: Ratio of the average number of rounds onmedium
quality landscapes produced by random allocation and
heuristic methods to the average number of rounds pro-
duced by the CP-IMF method, for α : 0.25, 0.5, 1 and 2.

Figures 5 and 6 show the improvement in minimising the inva-

sion time by the CP-IMF method, for α equal to 0.25, 0.5, 1, 2, and

in 5 × 49 low and medium quality landscapes, respectively. The

improvement is shown by computing the ratio of the average num-

ber of rounds on improved landscapes by the random allocation

method to the average number of rounds on improved landscapes

by the CP-IMF method. The same ratio is computed with respect

to the heuristic and CP-IMF methods. The obtained improvement

using the CP-IMF method is between 1-2.5 and 1-1.5 in low and

medium landscapes, respectively. The CP-IMF method outperforms

the others especially in the low quality landscape, and for less dis-

persive species, and these are the situations where conservation

intervention is most needed (i.e. where species would be less likely

to keep up with climate change under the status quo).

3.4.2 The spatial allocation of budgets. Allocating the budget for
low quality landscape, using CP-IMF and heuristic methods for α =
0.25, 2, is shown in Figures 7-10 (the analogous figures for other

values of α and for low/medium quality landscapes are in the Sup-

plementary materials [2]). For small values of α (i.e., α = 0.25, 0.5),

the heuristic method tends to allocate the budget close to the source

and target patches. While for the large values of α (i.e., α = 1, 2),

the heuristic method tends to allocate the budget in a way to form

corridors or paths from the source patches (the first ten columns)

to the target patches (the last ten columns). This could be because

low α implies a species that can disperse a long distance and hence

’jump’ over unsuitable areas. When α is high, the range expansion

will be more dependent on many short-distance colonisation events,

and these become more likely in a ’corridor’ of uniform quality.

It is very striking that the CP-IMF always allocates its budget

in small quotients over many of the landscapes’ cells. By contrast,

the heuristic method is restricted to improve each chosen cell to

q = 1 before selecting another cell. We can speculate that the

heuristic method might produce better results if this restriction

were relaxed. The resultant landscapes produced by the CP-IMF

method are often quite homogeneous in quality (Figures 8 and 10),

especially for landscapes of low quality, yet one could still notice

some ‘islands’ or (more or less regular) ‘corridors’ of higher quality

created automatically by the CP-IMF despite of its general tendency

of spreading the budget across the whole area. If uniform quality

was generally a pattern to maximise invasion speed, this would

be a very simple message for conservation in practice, however

we suspect that this is not a general rule: for example, Hodgson et

al. in [8] found that concentrated corridors of habitat led to faster

invasion than the same amount of habitat spread evenly across

a square landscape. Since the landscapes used here are relatively

narrow strips, it is difficult to tell whether there is some optimal

’width’ for a corridor to promote invasion. It will be valuable to test

the CP-IMF method in larger landscapes, and because it works by

analysing smaller sub-networks, we hope that this can be achieved

without too much increase in computation time.

4 CONCLUSION
This paper proposed and tested a new method that chooses the

best locations in real landscapes to spend a limited given budget, in

order to minimise the invasion time and therefore to assist decision-

making. Our new method is based on the developed method by

Aloqalaa et al. in [1], which approximates the invasion time using

the network flow approach. We show the capability of the new

method to propose landscapes’ modifications, which lead to reduce

the invasion time to the minimum. We believe that it has great

potential to be used in practical landscape restoration planning.

As for the future work, we suggest testing for larger landscapes

and analysis how to slow-down the invasion process.
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Figure 7: The results of improving 5 × 49 landscape of low quality for α equal to 2. The map at the top shows the landscape
before improvement. The maps in the left column show only the allocation of the budget B using the heuristic method. The
maps in the right column show the landscape after improvement.

Figure 8: The results of improving 5 × 49 landscape of low quality for α equal to 2. The map at the top shows the landscape
before improvement. The maps in the left column show only the allocation of the budget B using the CP-IMF method. The
maps in the right column show the landscape after improvement.
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APPENDIX - ADDITIONAL FIGURES

Figure 9: The results of improving 5 × 49 landscape of low quality for α equal to 0.25. The map at the top shows the landscape
before improvement. The maps in the left column show only the allocation of the budget B using the heuristic method. The
maps in the right column show the landscape after improvement.

Figure 10: The results of improving 5× 49 landscape of low quality for α equal to 0.25. The map at the top shows the landscape
before improvement. The maps in the left column show only the allocation of the budget B using the CP-IMF method. The
maps in the right column show the landscape after improvement.
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