
Lightweight Framework for Reliable Job
Scheduling in Heterogeneous Clouds

Muhammed Abdulazeez∗, Pawel Garncarek†, Prudence W.H. Wong∗
∗Department of Computer Science, University of Liverpool, UK, Email:[m.abdulazeez,pwong]@liverpool.ac.uk

†Department of Computer Science, University of Wroclaw, Poland, Email:pgarn@cs.uni.wroc.pl

Abstract—It is crucial to ensure reliability, security and stabil-
ity of cloud services without sacrificing too much resources in the
area of workload management in clouds. The paper evaluates and
compares lightweight decentralized algorithms, recently proposed
in [1], for scheduling a workload part of which could be
unreliable, in the context of heterogeneous cloud data centers.
This unreliability could be caused by various types of failures
or attacks. The framework for robust workload scheduling
efficiently combines classic fault tolerant and security tools, such
as packet/job scanning, with workload scheduling, and it does not
use any heavy resource consuming tools, e.g., cryptography or
non-linear optimization. More specically, the framework uses a
novel objective function to allocate jobs to servers and constantly
decides which job to scan based on a formula associated with the
objective function. In previous work it was shown how to set up
the objective function and the corresponding scanning procedure
of the central job scheduler to make the system provably
stable, provided a specific capacity condition is satisfied. As a
result, it was shown that the framework assures cloud stability
even though naive scanning-all and scanning-none strategies are
not stable for both centralized and decentralized scheduling in
homogeneous data centers. In this work we extend the work to
heterogeneous data centers, for which we show that decentralized
algorithms based on Join Shortest Queue and Join Shortest Work
policies are stable for every workload within the system capacity,
while the algorithms based on popular Power of Two Choices,
Round Robin and Uniform Random policies are not stable for a
substantial amount of workloads even within the system capacity.

I. INTRODUCTION

Cloud computing [2] enables ubiquitous, convenient, on-
demand network access to a shared pool of configurable com-
puting resources, these resources can be rapidly provisioned
and released with minimal management effort.

While there is a growth in the use of cloud services, many
potential users are still reluctant to rely on cloud computing
resources for their businesses. Major concerns are its relia-
bility, security and stability [3]. There are different reliability
and security issues depending on the delivery models of cloud
services, including Software as Service (SaS), Platform as
Service (PaS) and Infrastructure as Service (IaS). In this work
we focus on the IaS model. This technology makes the users
and provider reside at different locations and virtually access
the resources over the Internet, therefore any security concerns
threatening the Internet also threaten the cloud. In particular,
we consider the scenarios when part of the workload is
unreliable, e.g., fault-prone or generated by malicious sources,
and build on [1], a lightweight framework that combines load
management and detection of unreliable traffic. The authors

investigate how to strike a balance between efficient workload
scheduling and packet/job scanning to maintain stability (as a
guarantee of bounded buffers at machines) without sacrificing
too much resources to filter out the unreliable part of the
workload. The work done in [1] considered data centers with
homogeneous servers. In this paper, we extend the work in [1]
to consider heterogeneous servers.

IaS provides users with computing infrastructure in the
form of Virtual Machines (VM). Following [4], we assume
that the users request resources such as memory, CPU and
storage, for a certain amount of time in the form of VMs;
this corresponds to a job to be done. Upon receiving the
requests (typically in a form of packets), the system has to
allocate the required resources by scheduling the VMs on
the server. Part of the workload is genuine and the other
unreliable. Genuine traffic comes from real users; completing
these requests counts towards system’s work done. Unreliable
traffic is subject to failures or comes from attackers, who aim
to disrupt the system by issuing requests that occupy resources;
completing these does not count as proper work done. We
adopt a classic reliability and security tool of packet scanning
to detect these malicious packets [5]. While scanning is able
to distinguish genuine from unreliable requests, it consumes
and wastes resources that would normally be used for serving
genuine workload. On the other hand, as we do not know
whether the packets are faulty/fake until we scan them, we may
also waste time and resources in scanning genuine packets.
Therefore, the scheduling algorithm needs to strike a balance
between the resources wasted by scanning and by performing
unreliable requests without scanning them.

In this work we consider heterogeneous settings where each
server has different amount of resources available. This is
because when cloud providers want to increase the capacity
of their data centers, it is natural for them to upgrade to
servers with bigger capacity. We also consider the distributed
setting in which each server has its own queues; upon arrival,
a job request is forwarded to some server and stored in the
server’s local queue corresponding to the requested type of
VMs. When the resources become available, the scheduling
algorithm determines which set of jobs is to be served within
the local queue in the server.

The system is stable if the queues do not tend to increase
without bound. In [1], it was shown that for homogeneous
servers in a data center there exists a stable algorithm given
maximal arrivals rates of genuine and unreliable requests



when proper scanning procedure is selected. In this work,
we aim to develop similar algorithms for a data center with
heterogeneous servers. In addition to guarantee quality of
service, we also measure job latency, which is defined as the
amount of time a job resides in the system since its arrival.
We present the precise model in Section II. In Section III
we describe the job scheduler RobustMaxWork which was
proposed recently in [1]. We then discuss the decentralized
implementation of RobustMaxWork in Section IV. The exper-
imental setting and the evaluation results of the performance
of these algorithms are presented in Section V. In Section VI,
we give mathematical proofs that some popularly used simple
algorithms are not stable. Finally we conclude in Section VII.

A. Related Work

Apart from maintaining stability, there are many other de-
sign issues related to workload management in cloud comput-
ing. Cloud utilization has been considered in [6]. Optimizing
other costs of running the services has been considered [7],
[8], [6]. The algorithms we propose here are inspired by
the MaxWeight algorithm analyzed in [9] in the context
of scheduling genuine workload only, and could be seen
as its efficient generalizations to unreliable environments.
The MaxWeight algorithm has been since investigated exten-
sively [10], [11], [12]. Detecting and distinguishing unreli-
able or malicious from genuine requests and a number of
approaches have been proposed [5], [13]. In this paper, we
assume that such a tool to scan a packet and detect potentially
unreliable or malicious packages is available. The authors
in [14] studied jobs with unknown duration and analyzed
several decentralized approaches and showed that some are
throughput-optimal while others are not. Several other algo-
rithms for virtual machine allocation in heterogeneous data
centers were analyzed through simulation in [15].

B. Our Contributions

We extend the study of managing workload in clouds under
unreliable workload scenarios from homogenous servers set-
ting [1] to heterogeneous servers setting. Extending the model
in [4], [9], we detect unreliable part of the traffic by scanning
only some specifically selected jobs without sacrificing too
much resources.
• We extend the theoretical model [1] of capturing the

essence of this conditional scanning to the heterogeneous
server setting.

• We propose several decentralized versions of the algo-
rithm RobustMaxWork on the heterogeneous setting.

• We evaluate the algorithms by extensive simulations,
with respect to the maximum and average latency over
time. The experiments illustrate that under a certain
system capacity region and stochastic arrival pattern of
genuine and unreliable jobs, coupling RobustMaxWork
with server dispatching (routing) policies Shortest Queue
First and Shortest Work First are stable while other
routing policies Power of Two Choices, Round Robin and
Uniform Random are unstable.

• We further support our experimental results by proving
mathematically that Power of Two Choices, Round Robin
and Uniform Random are unstable for a substantial
amount of workloads even within the system capacity.

II. MODEL

The cloud model we consider is the one from previous
works on multi-resource cloud scheduling, cf., [4], [10], en-
hanced by arrival of unreliable jobs and scanning capability
as in [1].

We consider a cloud system modeled by a network of
physical machines that have limited available resources (for
instance, CPU, memory, storage, . . . ) and is supposed to be
able to process an ongoing stream of jobs.

Servers. The system consists of n networked servers (phys-
ical machines), each having its own resources that can be used
for processing jobs. Each resource has a fixed capacity, and
the vector of resource capacities is called a server capacity.
The whole system capacity is a linear sum of the capacities
of all the servers.

Virtual Machines (VMs). When a job is processed on a
server, a Virtual Machine must be created on the server. The
Virtual Machine reserves specific amount of each resource
defined by its type until the job is fully processed. The system
has predefined all available Virtual Machine types. Let us
denote the number of Virtual Machine types by J .

Jobs. A job has resource requirements and time requirement
(length). For each job a specific Virtual Machine must be
created on the server such that this virtual machine reserves
enough resources to process the job. Therefore for a given job
we reserve the resources required by a Virtual Machine rather
than exact amount of resources required by the job. So we
can define a job by the type of Virtual Machine that will be
created for it and its length. This way the number of job types
is limited by J . The system accepts only I different lengths
of jobs: L1, . . . , LI , for better control of queues and system
stability. There are two classes of jobs: genuine (generated
correctly by users) and unreliable (generated incorrectly or
by malicious users/bots). We model job arrivals by an online
random process, where new jobs arrive independently of each
other and are identically distributed across all time slots, and
the variance of arrival length is finite. We denote by λi,j the
expected sum of lengths of genuine (i.e., user-generated) type-
j jobs of length Li that arrive per time slot, for any positive
integers j ≤ J and i ≤ I .

Processing jobs and feasible configurations. Processing
jobs is done in synchronous time steps, also called rounds.
Each server can process a set of jobs simultaneously in
any round, provided the cumulative amount of each resource
used by these jobs does not exceed the corresponding server
capacity. Given job types and server capacities, one can
compute the set S of all feasible configurations, where feasible
configuration denotes a vector N = (N1, . . . , NJ) such that
the system can process simultaneously Nj type-j jobs.

Unreliable jobs and reliability scanning. Let κi,j denote
the expected sum of lengths of unreliable jobs of type-j of



length Li that arrive per time slot. Similarly as genuine jobs,
unreliable jobs arrive independently of each other and are
identically distributed across all time slots, and the variance
is finite. We assume that we have a reliability scanning tool,
which can detect whether a given job is genuine (also called
a good job) or unreliable. Each scanning takes 1 time slot per
job and requires the same resources (i.e., same type of VM)
as the original job.

Capacity region. A set of arrival rates (λ, κ) such that there
exists an algorithm that is stable for (λ, κ) (such algorithm
may be adjusted to be stable only under (λ, κ) arrival rate) is
called the capacity region of the system. Note that given two
systems with same total amount of resources, the system with
multiple small servers may have smaller capacity region that a
system with one large server. This is because the servers may
be unable to utilize all of their resources, leaving too little
unused resources for any additional job to fit in – such effect
is more prevalent in the systems with many servers.

Job scheduler. The scheduler decides which servers process
which jobs for the next time slot. After this time slot, all
unfinished jobs return to the scheduler with saved progress
and can be processed further at a later time and by a different
server. This property of a system is called preemptiveness.
However, as we will discuss in Section VII, all conclusions
obtained in this work apply also to the non-preemptive setting,
in which a job cannot be stopped or delayed while executing
on a Virtual Machine. We consider a job scheduler introduced
in [1], called RobustMaxWork; it will be described in details
in Section III.

Distributed schedulers. In distributed (also called decen-
tralized) approach all servers maintain separate queues for jobs
of each type j. Upon job arrival, a decision is made as to which
server to route the job; it is called a routing or forwarding
protocol. Each server runs locally a job scheduler with respect
to its local queues. The distributed implementations of Robust-
MaxWork with different routing protocols will be presented in
Section IV.

Stability. We say that, given arrival rates λ and κ, the
algorithm is stable if the expected queue size at any fixed
time is bounded, i.e., lim sup

t→∞
E[

∑
j Qj(t)] <∞.

III. JOB SCHEDULER ROBUSTMAXWORK

In this section we describe job scheduler RobustMaxWork,
proposed recently in [1] (see Algorithm 1). It is parametrized
by: scanning vector α = (αi,j)i≤I,j≤J ∈ [0, 1]I×J , vector of
arrival rates of genuine jobs λ = (λi,j)i≤I,j≤J , and vector of
arrival rates of unreliable jobs κ = (κi,j)i≤I,j≤J .

Upon arrival of type-j job of length Li, RobustMaxWork
decides to scan it with probability αi,j (c.f., the first for all
loop in Algorithm 1). The key idea of RobustMaxWork is to
measure the expected time required to process all jobs of each
type and prioritize the type which accumulated the most. The
expected time (also called expected work) required to process
all jobs of type j accumulated in queue at time t is denoted
by Zj(t).

Algorithm 1 RobustMaxWork(λ, κ, α)

X ← ~0 // jobs that will not be scanned
Y ← ~0 // jobs that will be scanned
Q← ~0 // all jobs
loop

new time slot begins
for all new type-j job τi,j of length Li do

r ← random value from [0; 1]
if r < αi,j then // τi,j to be scanned

Yj ← Yj + Li
Qj ← Qj + Li

else // τi,j not to be scanned
Xj ← Xj + Li
Qj ← Qj + Li

end if
end for
for all j do

Zj ← Xj + Yj(λj/(λj + κj) + E(1/`j))
end for
N ′ ← argmaxN∈S

∑
j Nj · Zj

for all j do
for k ≤ N ′j do

Process job(j)
end for

end for
end loop

It takes Xj time to process jobs that will not be scanned.
Jobs contributing to Yj will need to be scanned, which requires
Yj · E(1/`j) expected time steps. λj/(λj + κj) fraction of
scanned jobs are genuine, in expectation, thus after scanning,
they still must be processed, taking in total Yj · λj/(λj + κj)
time. κj/(λj + κj) fraction of the scanned jobs are fake and
after scanning they take no more processing time. Hence,
Zj(t) = Xj(t) + Yj(t) · (λj/(λj + κj) + E(1/`j)). In each
time slot t, the algorithm computes Zj in the second for all
loop in Algorithm 1, and finds configuration N from the set of
feasible server configurations S that maximizes the objective
sum

∑J
j=0 Zj(t)Nj . This configuration is denoted by N ′.

Intuitively, the more jobs of a given type is accumulated,
the more weight should be put to scheduling this job type
to prevent further accumulation. Zj can be understood as the
weight given to jobs of type j.

In the last for all loop, the algorithm processes N ′j jobs of
type j, for each 1 ≤ j ≤ J ; i.e., from each job processed
it executes a unit of it and the total size of Qj decreases by
N ′j at the end of time slot t. It is done by calling procedure
Process job(j). If N ′j is larger than the number of different
type-j jobs in the queues, RobustMaxWork processes as many
type-j jobs as possible instead, each time processing a unit of
each such job. If N ′j is smaller than the number of different
type-j jobs in the queues, RobustMaxWork has to decide
which type-j jobs to process. It repeats N ′j times:

• with probability Xj/(Xj+Yj) it processes a job that will



not be scanned (i.e., a job that contributes to Xj),
• with probability Yj/(Xj +Yj) it scans a job pending for

scanning (i.e., a job that contributes to Yj).
If there are not enough jobs contributing to Xj , it processes
all jobs contributing to Xj and as many jobs contributing to
Yj as possible, so that altogether it processes Nj type-j jobs
(and vice versa for Yj).

IV. DECENTRALIZATION

In decentralized approach each server maintains its own
queues for jobs of each type-j, therefore, when a job arrives a
decision has to be made as to which server to route the job. In
this section we specify and analyze six different decentralized,
also called parallel or distributed, implementations of the
main job scheduler RobustMaxWork from Section III with
different routing procedures. RobustMaxWork scheduler is
used at each server to make scheduling decision wrt the queues
and resources available at this server.

Below we describe six specification of the decentralized
RobustMaxWork based on different routing policies. Algo-
rithms A and C were analyzed in [14], [1] and Algorithm
D was analyzed in [4], [1], all in the context of MaxWeight
scheduling. Algorithms B, E, and F were proposed in [1] in
the context of reliable cloud scheduling.

Algorithm A: RobustMaxWork JSQ. Join Shortest Queue
(JSQ) paradigm is used to route a newly arrived job to the
server with the queue with the smallest number of jobs of
type-j, where j denotes the type of the arrived job.

Algorithm B: RobustMaxWork JSW. Join Shortest Work
(JSW) is used for routing a newly arrived job to the server
with the minimum workload of type-j, where the workload is
the sum of lengths of jobs in the local queue of type-j.

Algorithm C: RobustMaxWork UR. Uniformly Random
(UR) routing is used for forwarding newly arrived job to a
server chosen uniformly at random.

Algorithm D: RobustMaxWork RR. Round Robin (RR) rou-
tine is used for allocating newly arrived jobs to the servers,
where RR is used separately for each type.

Algorithm E: RobustMaxWork P2Q. Power of two Choices
combined with selection of the Shortest Queue (P2Q) is used
for routing a newly arrived job of a type-j: two servers are
sampled uniformly at random, and the job is routed to the
server with the shorter type-j queue.

Algorithm F: RobustMaxWork P2W. Power of two Choices
combined with selection of the Shortest Workload (P2W) is
used for routing a newly arrived job of a type-j: two servers
are sampled uniformly at random, and the job is routed to
the server with the smaller workload of type-j (i.e., where the
total length of type-j jobs in the local queue is shorter).

V. SIMULATIONS

A. Experiment Setting

The setup for simulations, described in this section, is based
on the one in Maguluri et al. [4].

Table I
REPRESENTATION OF INSTANCES IN AMAZON EC2

Instance type Memory (GB) vCPU Storage (GB)
Standard 15 8 1,690

High-Memory 17.1 6.5 420
High-CPU 7 20 1,690

Servers and VMs. We consider two types of servers in
the data center, the first with the following configuration: 30
GB memory, 30 EC2 computing units and 4096 GB (4TB)
storage space. Arriving jobs are served in the cloud based on
three types of Virtual Machines described in Table I. This gives
three maximal configurations available at each server: (2, 0, 0),
(1, 0, 1) and (0, 1, 1). The second server has 68GB Memory,
80 EC2 computing units and 7168GB (7TB) of storage, based
on the virtual machine configuration in Table I, this gives
us maximal configuration (4, 0, 0), (2, 2, 0), (0, 0, 4), (3, 1, 0),
(3, 0, 1), (1, 3, 0), (0, 3, 2), (1, 0, 3), (0, 2, 3), (2, 1, 1), (2, 0, 2)
and (1, 2, 2).

Job arrivals. We use the generic arrival vector λ∗ =
0.99 · (1, 1/3, 2/3) for genuine users’ workload, which is
located close to the border of server one capacity area taking
all three maximal configurations and also close to the server
two capacity area taking three of its maximal configurations
(4, 0, 0), (2, 2, 0), (0, 0, 4) (observe that λ∗ is a normalized
linear combination of the six configurations mentioned, ad-
ditionally re-scaled by factor 0.99). In each time step a job
of type j = 1, 2, 3 is selected with probability

λ∗
j

130.5 , and its
length is chosen according to the length distribution described
below with mean length 130.5 (calculation shown later).

Similarly as above, we define an ureliable workload using a
generic arrival vector κ∗ = (0.7, 0.01, 0.01), and the procedure
of generating an unreliable traffic is analogous as above for
generating the genuine users’ one. Note that each of the arrival
rates λ∗ and κ∗ is within the capacity range of a server,
whereas the combined workflow rate λ∗ + κ∗ is not.

Job size distribution. When a new job is generated, with
probability of 0.7 it is an integer uniformly distributed in
the interval [1, 50], with probability of 0.15 it is an integer
uniformly distributed in [251, 300], and with probability of
0.15 it is an integer uniformly distributed in [451, 500]. Note
that there are 150 possible job lengths, and the mean length
is 130.5, as assumed in the definition of arrival rates.

Set up of simulations. In the homogenous setting we use
100 servers of type one. In the heterogenous setting we use
80 servers of type one and 10 of type two. We therefore get
the maximal feasible arrival rates in heterogenous setting to
be:
• 80 · 1

3 · (3, 1, 2) = (80, 80/3, 160/3) for type one;
• 10 · 1

3 · (6, 2, 4) = (20, 20/3, 40/3) for type two
which in total is the same arrival rate as for the homogenous
setting 100 · 1

3 ·(3, 1, 2) = (100, 100/3, 200/3). Based on
these the overall arrival rates are: λ = 100 · λ∗ = (99, 33, 66)
for genuine workload, and κ = 100 · κ∗ = (70, 1, 1) for
unreliable workload – they are inside the capacity regions
for both homogenous and heterogenous settings (note that the
capacity region of homogenous setting is slightly smaller than



that of heterogeouns). The job size distribution is as specified
above, same for each job type. We computed the following
optimal scanning vector α∗ for this setting, more precisely,
the vector minimizing the expected arriving weight:
• α∗i,1 = 0 for Li ≤ 2; α∗i,2 = 0 for Li ≤ 34;
• α∗i,3 = 0 for Li ≤ 50; α∗i,j = 1 otherwise.

Each execution includes 4, 000, 000 time steps. We compute
average latency and maximum latency at every time step and
record the results every 200,000 steps. We ran the experiments
10 times and took the averages of the results for each recorded
time step. We output the results of the above measurements
of RobustMaxWork applied on simultaneous genuine and
malicious flows, with scanning defined by vector α∗ (we
call this scanning ScanOPT). We study how different routing
protocols influence stability, when applied to the RobustMax-
Work with the optimally selected scanning vector α∗. We
compare the six decentralized implementations of RobustMax-
Work: namely, ScanOPT JSQ, ScanOPT JSW, ScanOPT UR,
ScanOPT RR, ScanOPT P2Q, and ScanOPT P2W.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

0

0.5

1

1.5

2x 10
5

Rounds

A
ve

ra
ge

 L
at

en
cy

 

 

ScanOPT_JSQ
ScanOPT_P2Q
ScanOPT_P2W
ScanOPT_JSW
ScanOPT_UR
ScanOPT_RR

Figure 1. Comparison of average latency using ScanOPT JSQ,
ScanOPT JSW, ScanOPT P2Q, ScanOPT P2W, ScanOPT UR and
ScanOPT RR.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

500

1000

1500

2000

2500

3000

3500

4000

Rounds

A
ve

ra
ge

 L
at

en
cy

 

 ScanOPT_JSQ
ScanOPT_P2Q
ScanOPT_P2W
ScanOPT_JSW

Figure 2. Comparison of average latency using ScanOPT JSQ,
ScanOPT JSW, ScanOPT P2Q and ScanOPT P2W (zoom of figure 1).

B. Results

Figure 1 compares average latency of the six decentralized
algorithms using ScanOPT strategy. Figure 2 zooms in on the
four better algorithms. The best performing algorithms are the
ones based on JSW and JSQ followed by the two algorithms
based on the power of choices P2W and P2Q respectively.
The worst performing algorithms are based on round robin and

uniform random selection, which grow rapidly. JSW and JSQ
is the best in terms of average latency performance, although
the other two reasonable policies(P2W and P2Q) also show
some stability trends. It was expected that the two algorithms
based on power of two choices will not perform as well as
the JSQ and JSW algorithms because they are random and
majority of the selection will be from the small set of servers
i.e. server one. Therefore, work will not be evenly distributed.

We also compared the heterogeneous servers with homoge-
neous servers in the data center using 100 of servers one and
similar arrival vectors for both genuine and malicious traffic:
the same setup as [1]. Figure 4 and 3 compared the difference
in both average and maximum latencies between homogeneous
and heterogeneous data centers. The general trend is that all
algorithms perform better in homogeneous setting. The worst
performing algorithms i.e. uniform random and round robin
are getting worse with time for both maximum and minimum
latency.

The interesting result is that for average latency (see Fig-
ure 4) the algorithm with the least difference is JSQ though
it did not perform as well as the second performing algorithm
JSW for both heterogeneous and homogeneous servers. This
is similar with algorithms based on power of two choices with
the one based on queue doing better than the one based on
work.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

0

0.5

1

1.5

2x 10
5

Rounds

D
iff

er
en

ce
 in

 A
ve

ra
ge

 L
at

en
cy

 

 

ScanOPT_JSQ
ScanOPT_P2Q
ScanOPT_P2W
ScanOPT_JSW
ScanOPT_UR
ScanOPT_RR

Figure 3. Comparison of difference in average latency between heterogeneous
and homogeneous servers for all the algorithms.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

0

500

1000

1500

2000

2500

Rounds

D
iff

er
en

ce
 in

 A
ve

ra
ge

 L
at

en
cy

 

 ScanOPT_JSQ
ScanOPT_P2Q
ScanOPT_P2W
ScanOPT_JSW

Figure 4. Comparison of difference in average latency between heterogeneous
and homogeneous servers for ScanOPT JSQ, ScanOPT JSW, ScanOPT P2Q
and ScanOPT P2W (zoom of figure 3).



VI. INSTABILITY OF POWER OF TWO CHOICES, ROUND
ROBIN AND UNIFORM RANDOM ROUTING POLICIES

In this section we present theoretical results that explain
some of the results obtained from the experiments.

Theorem 1: No job scheduler is stable for all arrival vectors
inside the capacity region when combined with Power of two
Choices routing policy.

Proof: Consider our system of 80 small servers and 10
large servers as in Section V-A. With probability (80/90)2,
Power of two Choices randomly picks two small servers and
chooses one of them as destination for a considered job. This
means that there are only 80 small servers that will receive at
least (8/9)2 of all the jobs.

Consider arrival rate of genuine jobs of c·[80·(1, 1/3, 2/3)+
10 · (0, 2, 3)] for some c < 1. This arrival rate lies inside
the capacity region of the system. Let x, y, z be the average
number of small servers that chose configuration (2, 0, 0),
(1, 0, 1) and (0, 1, 1), respectively, per time slot. Note that for
the system to be stable, the following must hold:

x+ y + z = 80 (there are 80 small servers)

and type-j jobs must be processed at least as frequently as
they arrive:

2x+ y ≥ (8/9)2c · (80 · 1 + 10 · 0) (type-1 jobs)
z ≥ (8/9)2c · (80 · 1/3 + 10 · 2) (type-2 jobs)

y + z ≥ (8/9)2c · (80 · 2/3 + 10 · 3) (type-3 jobs)

If we sum up the above three inequalities we get 81/84 ≥ c.
Hence, for c = 0, 97 no job scheduler can process jobs in small
servers as fast as Power of two Choices injects them, despite
the arrival rates being inside the capacity region.

Note that in the scenario described in the proof of Theo-
rem 1, Round Robin and Uniform Random routing policies
would direct 8/9 jobs to the small servers instead of (8/9)2,
which makes the overload of the small servers even bigger
than in case of Power of two Choices. Therefore, we get the
following conclusion.

Corollary 1: No job scheduler is stable for all arrival vectors
inside the capacity region when combined with Round Robin
or Uniform Random routing policy.

VII. CONCLUSIONS, EXTENSIONS AND OPEN PROBLEMS

The centralized algorithm can be extended to JSW, an
interesting open problem is more detailed analysis of other
decentralized approaches. Another interesting open problem is
Non-preemptiveness: we assumed that in regular time intervals
all machines can be reconfigured — all jobs could be resched-
uled and redistributed among the machines for further process.
In some systems, interrupting execution of some jobs may be
very costly. It is known how to transform such preemptive
algorithms into ones with no reconfigurations, within (roughly)
the same stability region, c.f., [4].
arrival rates, without influencing stability and asymptotic per-
formance. One is to start RobustMaxWork using the naive

We also assumed that system has knowledge of arrival rates:
there are many ways of removing the assumption of known

scanning-all-jobs strategy for a fixed but sufficiently long pe-
riod, during which the scheduler learns the genuine/unreliable
status of jobs (due to the scan-all strategy) and therefore it
will be able to estimate user-generated and unreliable jobs
arrival rates. It can then compute scanning frequencies that
are optimal for the estimated arrival rates. The model can also
be enhanced with the possibility of wrong result of scanning,
which may fail with some probability p, i.e., an unreliable
job may be scanned but still not discovered as a faulty one.
The analysis of stability of RobustMaxWork job scheduler and
its distributed implementations continue to hold, with a slight
modification of the formula for job weights Zj .

ACKNOWLEDGMENT

The authors would like to thank Dariusz R. Kowalski for
helpful discussion.

This work was supported by the Polish National Science
Centre grant DEC-2012/06/M/ST6/00459.

REFERENCES

[1] M. Abdulazeez, P. Garncarek, and P. W. Wong, “Lightweight robust
framework for workload scheduling in clouds,” in Proceedings of IEEE
EDGE 2017, to appear. [Online]. Available: https://www.dropbox.com/
s/uvh2jdul7ri0xtv/main.pdf

[2] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, 2011.

[3] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” J. Network and Computer Appli-
cations, vol. 34, no. 1, pp. 1–11, 2011.

[4] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in INFOCOM,
2012, pp. 702–710.

[5] C. Modi, D. R. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan,
“A survey of intrusion detection techniques in cloud,” J. Network and
Computer Applications, vol. 36, no. 1, pp. 42–57, 2013.

[6] R. Xie, X. Jia, K. Yang, and B. Zhang, “Energy saving virtual machine
allocation in cloud computing,” in 33rd IEEE Int. Conf. on Distributed
Computing Systems Workshops, 2013, pp. 132–137.

[7] A. Stolyar and Y. Zhong, “A service system with packing constraints:
Greedy randomized algorithm achieving sublinear in scale optimality
gap,” arXiv preprint arXiv:1511.03241, 2015.

[8] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in INFOCOM, 2011, pp.
71–75.

[9] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. on Automatic Control, vol. 37,
no. 12, pp. 1936–1948, 1992.

[10] M. G. Markakis, E. Modiano, and J. N. Tsitsiklis, “Delay analysis of the
max-weight policy under heavy-tailed traffic via fluid approximations,”
in 51st Allerton Conf. on Comm., Contr., and Comp., 2013, pp. 436–444.

[11] W. Sun, N. Zhang, H. Wang, W. Yin, and T. Qiu, “Paco: A period aco
based scheduling algorithm in cloud computing,” in Int. Conf. on Cloud
Computing and Big Data (CloudCom-Asia), 2013, pp. 482–486.

[12] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource
allocation algorithms for cloud computing clusters,” Performance Eval-
uation, vol. 81, pp. 20–39, 2014.

[13] A. Bakshi and Y. B. Dujodwala, “Securing cloud from ddos attacks using
intrusion detection system in virtual machine,” in Intl. IEEE Conf. on
Comm. Software and Networks 2010, 2010, pp. 260–264.

[14] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” IEEE Trans. on Net., vol. 22, no. 6, pp. 1938–1951, 2014.

[15] M. Stillwell, F. Vivien, and H. Casanova, “Virtual machine resource
allocation for service hosting on heterogeneous distributed platforms,”
in IPDPS. IEEE, 2012, pp. 786–797.


