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Abstract. We study the dynamic bin packing problem introduced by
Coffman, Garey and Johnson. This problem is a generalization of the bin
packing problem in which items may arrive and depart dynamically. The
objective is to minimize the maximum number of bins used over all time.
The main result is a lower bound of 8/3 ∼ 2.666 on the achievable com-
petitive ratio, improving the best known 2.5 lower bound. The previous
lower bounds were 2.388, 2.428, and 2.5. This moves a big step forward
to close the gap between the lower bound and the upper bound, which
currently stands at 2.788. The gap is reduced by about 60% from 0.288 to
0.122. The improvement stems from an adversarial sequence that forces
an online algorithm A to open 2s bins with items having a total size
of s only and this can be adapted appropriately regardless of the current
load of other bins that have already been opened by A. Comparing with
the previous 2.5 lower bound, this basic step gives a better way to derive
the complete adversary and a better use of items of slightly different
sizes leading to a tighter lower bound. Furthermore, we show that the
2.5-lower bound can be obtained using this basic step in a much simpler
way without case analysis.

1 Introduction

Bin packing is a classical combinatorial optimization problem [6, 8, 9]. The objec-
tive is to pack a set of items into a minimum number of unit-size bins such that
the total size of the items in a bin does not exceed the bin capacity. The problem
has been studied extensively both in the offline and online settings. It is well-
known that the problem is NP-hard [11]. In the online setting [14, 15], items
may arrive at arbitrary time; item arrival time and item size are only known
when an item arrives. The performance of an online algorithm is measured using
competitive analysis [3]. Consider any online algorithm A. Given an input I, let
OPT (I) and A(I) be the maximum number of bins used by the optimal offline
algorithm and A, respectively. Algorithm A is said to be c-competitive if there
exists a constant b such that A(I) ≤ cOPT (I) + b for all I.
Online dynamic bin packing. Most existing work focuses on “static” bin pack-
ing in the sense that items do not depart. In some potential applications like
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warehouse storage, a more realistic model takes into consideration of dynamic
arrival and departures of items. In this natural generalization, known as dynamic
bin packing [7], items arrive over time, reside for some period of time, and may
depart at arbitrary time. Each item has to be assigned to a bin from the time
it arrives until it departs. The objective is to minimize the maximum number
of bins used over all time. Note that migration to another bin is not allowed. In
the online setting, the size and arrival time is only known when an item arrives
and the departure time is only known when the item departs.

In this paper, we focus on online dynamic bin packing. It is shown in [7] that
First-Fit has a competitive ratio between 2.75 and 2.897, and a modified first-fit
algorithm is 2.788-competitive. A lower bound of 2.388 is given for any deter-
ministic online algorithm. This lower bound has later been improved to 2.428 [4]
and then 2.5 [5]. The problem has also been studied in two- and three-dimension
as well as higher dimension [10, 16]. Other work on dynamic bin packing con-
sidered a restricted type of items, namely unit-fraction items [2, 4, 12]. Further-
more, Ivkovic and Lloyd [13] studied the fully dynamic bin packing problem,
which allows repacking of items for each item arrival or departure and they gave
a 1.25-competitive online algorithm for this problem. Balogh et al. [1] studied
the problem when a limited amount of repacking is allowed.
Our contribution. We improve the lower bound of online dynamic bin packing
for any deterministic online algorithm from 2.5 to 8/3 ∼ 2.666. This makes a big
step forward to close the gap with the upper bound, which currently stands at
2.788 [7]. The improvement stems from an adversarial sequence that forces an
online algorithm A to open 2s bins with items having a total size of s only and
this can be adapted appropriately regardless of the load of current bins opened
by A. Comparing with the previous 2.5 lower bound, this basic step gives a
better use of items of slightly different sizes leading to a tighter lower bound.
Furthermore, we show in Section 3.3 that the 2.5-lower bound can be obtained
using this basic step in a much simpler way without case analysis. It is worth
mentioning that we consider optimal packing without migration at any time.

The adversarial sequence is composed of two operations, namely Op-Inc and
Op-Comp. Roughly speaking, Op-Inc uses a load of at most s to make A open s
bins, this is followed by some item departure such that each bin is left with only
one item and the size is increasing across the bins. Op-Comp then releases items
of complementary size such that for each item of size x, items of size 1 − x are
released. The complementary size ensures that the optimal offline algorithm O
is able to pack all these items using s bins while the sequence of arrival ensures
that A has to pack these complementary items into separate bins.

2 Preliminaries

In dynamic bin packing, items arrive and depart at arbitrary time. Each item
comes with a size. We denote by s-item an item of size s. When an item arrives,
it must be assigned to a unit-sized bin immediately without exceeding the bin
capacity. At any time, the load of a bin is the total size of items currently
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assigned to that bin that have not yet departed. We denote by ℓ-bin a bin of
load ℓ. Migration is not allowed, i.e., once an item is assigned to a bin, it cannot
be moved to another bin. This also applies to the optimal offline algorithm. The
objective is to minimize the maximum number of bins used over all time.

When we discuss how items are packed, we use the following notations:

– Item configuration ψ: y∗z describes a load y with y
z
items of size z, e.g., 1

2∗ǫ

means a load 1

2
with 1

2ǫ
items of size ǫ. We skip the subscript when y = z.

– Bin configuration π: (ψ1, ψ2, · · · ), e.g., (
1

3
, 1
2∗ǫ

) means a bin has a load of
5

6
, with a 1

3
-item and an addition load 1

2
with ǫ-items. In some cases, it is

clearer to state the bin configuration in other ways, e.g., ( 1
2
, 1
2
), instead of

1∗ 1

2

. Similarly, we will use 6× 1

6
instead of 1∗ 1

6

.

– Packing configuration ρ: {x1:π1, x2:π2, · · · } a packing where there are x1 bins
with bin configuration π1, x2 bins with π2, and so on. E.g., {2k:1∗ǫ, k:(

1

3
, 1
2∗ǫ

)}
means 2k bins are each packed with load 1 with ǫ-items and another k bins
are each packed with a 1

3
-item and an addition load 1

2
with ǫ-items.

– It is sometimes more convenient to describe a packing as x:f(i), for 1 ≤ i ≤ x,
which means that there are x bins with different load, one bin with load f(i)
for each i. E.g., k: 1

2
−iδ, for 1 ≤ i ≤ k, means that there are k bins and one

bin with load 1

2
−iδ for each i.

3 Op-Inc and Op-Comp

In this section, we discuss a process that the adversary uses to force an online
algorithm A to open new bins. The adversary releases items of slightly different
sizes in each stage and uses items of complementary sizes in different stages.
Two operations are designed, namely, Op-Inc and Op-Comp. Op-Inc forces A to
open some bins each with one item (of size < 1

2
) and the size of items is strictly

increasing. Op-Comp then bases on the bins opened by Op-Inc and releases items
of complementary size. This is to ensure that an item released in Op-Inc can be
packed with a corresponding item released in Op-Comp into the same bin by an
optimal offline algorithm. In the adversary, a stage of Op-Inc is associated with
a corresponding stage of Op-Comp, but not necessarily consecutive, e.g., in one
of the cases, Op-Inc is in Stage 1 and the corresponding Op-Comp is in Stage 4.

3.1 Operation Op-Inc

The aim of Op-Inc is to make A open at least s more bins, for some s > 0, such
that each new bin contains one item with item size increasing over the s bins.
Pre-condition. Consider any value 0 < x < 1

2
. Let h be the number of x-items

that can be packed in existing bins.
Items to be involved. The items to be released have size in the range [x, x+ ǫ],
for some small ǫ, such that x+ ǫ < 1

2
. A total of h+⌊ s

x
⌋ items are to be released.

Outcome. A opens at least s more new bins with increasing load in each new
bin and the load of current bins remains unchanged.
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Fig. 1. Op-Comp: Assuming k = 0. The s bins on the left are bins created by Op-Inc.
The s new bins on the right are due to Op-Comp. Note that each existing item has a
complementary new item such that the sum of size is 1.

The adversary. The adversary releases items of size x, x + ǫ
s
, x + 2ǫ

s
, · · · . Let

zi = x+ iǫ
s
. In each step i, the adversary releases zi-items until A opens a new

bin. We stop releasing items when h+ ⌊ s
x
⌋ items have been released in total. By

the definition of h, s and x, A would have opened at least s new bins. We then
let zi-items depart except exactly one item of size zi, for 0 ≤ i < s, in the i-th
new bin opened by A.

Using Op-Inc. When we use Op-Inc later, we simply describe it as Op-Inc
releasing h+ ⌊ s

x
⌋ items with the understanding that it works in phases and that

items depart at the end.

3.2 Operation Op-Comp

Op-Comp is designed to work with Op-Inc and assumes that there are s existing
bins each with load in the range [x, y] where x < y < 1

2
. The outcome of

Op-Comp is that A opens s more bins. Figure 1 gives an illustration.

Pre-condition. Consider two values x < y < 1

2
. Suppose A uses s bins with

load x = ℓ1 < ℓ2 < · · · < ℓs = y. Let ℓ =
∑

1≤i≤s ℓi. Furthermore, suppose
there are some additional bins with load smaller than x. Let h be the number
of (1−y)-items that can be packed in other existing bins with load less than x.

Items to be involved. The items to be released have size in the range [1−y, 1−x].
Note that 1 − x > 1 − y > 1

2
. In each step i, for 1 ≤ i ≤ s, the number of

(1− ℓs+1−i)-items released is at most h+ s+ 2− i.

Outcome. A opens s more bins, each with an item 1− ℓs+1−i, for 1 ≤ i ≤ s.

The adversary. Starting from the largest load ℓs, we release items of size 1−ℓs
until A opens a new bin. At most h + s + 1 items are needed. Then we let all
(1−ℓs)-items depart except the one packed in the new bin. In general, in Step i,
for 1 ≤ i ≤ s, we release items of size 1−ℓs+1−i until A opens a new bin. Note
that such items can only be packed in the first s + 1 − i bins and so at most
h+ s+ 2− i items are required to force A to open another bin. We then let all
(1−ℓs+1−i)-items depart except the one packed in the new bin.

Using Op-Comp. Similar to Op-Inc, when we use Op-Comp later, we describe
it as Op-Comp with h and s and the understanding is that it works in phases
and there are items released and departure in between. Note that the ℓi- and
(1− ℓi)-items are complementary and the optimal offline algorithm would pack
each pair of complementary items in the same bin.
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3.3 A 2.5 lower bound using Op-Inc and Op-Comp

We demonstrate how to use Op-Inc and Op-Comp by showing that we can obtain
a 2.5 lower bound as in [5] using the two operations in a much simpler way.

Let k be some large even integer, ǫ = 1

k
, and δ = ǫ

k+1
. The adversary works

in stages. In Stage 1, we release k
ǫ
items of size ǫ. Any online algorithm A uses at

least k bins. Let items depart until the configuration is {k:ǫ}. In Stage 2, we aim
to force A to use k

2
new bins. We use Op-Inc to release at most 2k items of size in

[ 1
2
−k

2
δ, 1

2
−δ]. For each existing ǫ-bin, at most one such new items can be packed

because 1−kδ+ǫ > 1. The parameters for Op-Inc are therefore x = 1

2
−k

2
δ, h = k

and s = k
2
. The configuration of A becomes {k:ǫ, k

2
: 1
2
−iδ}, for 1 ≤ i ≤ k

2
. In

Stage 3, we aim to force A to use k
2
new bins. We use Op-Comp to release items

of size in the range x = 1

2
+δ to y = 1

2
+k

2
δ. At most one such item can be packed

in the bins with an ǫ-item, i.e., h = k. The second k
2
bins contains items of

complementary size to the items released in Stage 3, i.e., s = k
2
. Note that at

any time during Op-Comp, at most 3k
2
+1 items are released. A needs to open

at least k
2
new bins with the configuration {k:ǫ, k

2
: 1
2
−iδ, k

2
: 1
2
+iδ}, for 1 ≤ i ≤ k

2
.

In the final stage, we release k
2
items of size 1 and A needs a new bin for each

of these items. The total number of bins used by A becomes 5k
2
.

On the other hand, the optimal algorithm O can use k + 2 bins to pack all
items as follows and hence the competitive ratio is at least 2.5. In Stage 1, all
the ǫ-items that never depart are packed in one bin and the rest in k − 1 bins.
In Stage 2, the new items are packed in k bins, with the k

2
bins with size 1

2
−iδ,

for 1 ≤ i ≤ k
2
, that never depart each packed in one bin, and the remaining 3k

2

items in the remaining space. At the end of the stage, only one item is left in
each of the first k

2
bins and the second k

2
bins are freed for Stage 3. In Stage 3,

the complementary items that do not depart are packed in the corresponding k
2

bins, and the remaining in at most k
2
+ 1 bins. Finally in Stage 4, the 1-items

are packed in the k
2
bins freed in Stage 3.

4 The 8/3 Lower Bound

We give an adversary such that at any time, the total load of items released and
not departed is at most 6k +O(1), for some large integer k. We prove that any
online algorithm A uses 16k bins, while the optimal offline algorithm O uses
at most 6k + O(1) bins. Then, the competitive ratio of A is at least 8

3
. The

adversary works in stages and uses Op-Inc and Op-Comp in pairs. Let ni be
the number of new bins used by A in Stage i. Let ǫ = 1

6k
and δ = ǫ

16k
.

In Stage 0, the adversary releases 6k
ǫ

items of size ǫ, with total load 6k. It is
clear that A needs at least 6k bins, i.e., n0 ≥ 6k. We distinguish between two
cases: n0 ≥ 8k and 8k > n0 ≥ 6k. We leave the details of the easier first case in
the full paper, and we consider only the complex second case in this paper.
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Case 2: 6k ≤ n0 < 8k.

This case involves three subcases. We make two observations about the load of
the n0 bins. If less than 4k bins have load at least 1

2
+ ǫ, then the total load of

all bins is at most (4k − 1) + 4k/2 = 6k − 1, contradicting the fact that total
load of items released is 6k. Similarly, if less than 5k bins have load at least
1

4
+ ǫ, then the total load of all bins is at most (5k − 1) + 3k/4 < 6k, leading to

a contradiction.

Observation 1 At the end of Stage 0 of Case 2, (i) at least 4k bins have load
at least 1

2
+ ǫ; (ii) at least 5k bins have load at least 1

4
+ ǫ.

Stage 1. We aim at n1 ≥ 2k. We let ǫ-items depart until the configuration of A
becomes

{4k:(
1

2
+ǫ)∗ǫ, k:(

1

4
+ǫ)∗ǫ, k:ǫ} ,

with 6k bins and a total load of 9k/4+O(1). We then use Op-Inc with x = 1

4
+δ,

h = 8k, and s = 2k. The first 4k bins can pack at most one x-item, the next
k bins at most two, and the last k bins at most three, i.e., h = 9k. Any new
bin can pack at most three items, implying that Op-Inc releases 15k = h + 3s
items of increasing sizes, from 1

4
+δ to at most 1

4
+15kδ. According to Op-Inc, A

opens at least 2k bins, i.e., n1 ≥ 2k. We consider two subcases: n1 ≥ 4k and
2k ≤ n1 < 4k.

Case 2.1: 6k ≤ n0 < 8k and n1 ≥ 4k. In this case, we have 10k ≤ n0 + n1.

Stage 2. We aim at n2 ≥ 4k. The configuration after Op-Inc becomes

{4k:(
1

4
+ǫ)∗ǫ, k:(

1

4
+ǫ)∗ǫ, k:ǫ, 4k:

1

4
+iδ} , for 1 ≤ i ≤ 4k,

with 10k bins and a total load of 9k/4+O(1). Note that in the last 4k bins, the
load increases by δ from 1

4
+δ to 1

4
+4kδ. We now use Op-Comp with x = 1

4
+δ,

y = 1

4
+4kδ, h = k, and s = 4k. I.e., Op-Comp releases items of sizes from 3

4
−4kδ

to 3

4
−δ and at any time, at most 5k + 1 items are needed. None of these items

can be packed in the first 5k bins, and only one can be packed in the next k
bins, i.e., h = k as said. According to Op-Comp, A requires 4k new bins.

Stage 3. We aim at n3 = 2k. We let items depart until the configuration becomes

{4k:ǫ, k:ǫ, k:ǫ, 4k:
1

4
+iδ, 4k:

3

4
−iδ} , for 1 ≤ i ≤ 4k,

with 14k bins and a load of 4k +O(1). We further release 2k items of size 1. A
needs to open 2k new bins. In total, A uses 6k + 4k + 4k + 2k = 16k bins.

We note that each item with size 1

4
+iδ has a corresponding item 3

4
−iδ such

that the sum of sizes is 1. This allows the optimal offline algorithm to have a
better packing. The details will be given in the full paper.

Lemma 1. If A uses [6k, 8k) bins in Stage 0 and at least 4k bins in Stage 1,
then A uses 16k bins at the end while O uses 6k + 4 bins.
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Case 2.2: 6k ≤ n0 < 8k and 2k ≤ n1 < 4k. In this case, the Op-Inc
in Stage 1 is paired with an Op-Comp in Stage 4 (not consecutively), and in
between, there is another pair of Op-Inc and Op-Comp in Stages 2 and 3, re-
spectively. Let m be the number of bins among the n1 new bins that have been
packed two items. We further distinguish two subcases: m ≥ 2k and m < 2k.

Case 2.2.1: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m ≥ 2k. In this case, we
have 8k ≤ n0 + n1 < 10k and m ≥ 2k. We make an observation about the bins
containing some ǫ-items. In particular, we claim that there are at least k bins
that are packed with

– either one ǫ-item and at least two ( 1
4
+iδ)-items,

– or one ( 1
4
+iδ)-item plus at least a load of ( 1

4
+ǫ)∗ǫ.

We note that in Stage 1, 15k items are released, at most three items can be
packed in any of the n1 < 4k new bins, i.e., at most 12k items. So, at least 3k
of them have to been packed in the first 6k bins. Let a and b be the number
of bins in the first 5k bins (with load at least 1

4
+ǫ) that are packed at least

one ( 1
4
+iδ)-item; z1, z2, z3 be the number of bins in the next k bins (with one

ǫ-item) that are packed one, two, and three ( 1
4
+iδ)-items, respectively. Note

that z1 + z2 + z3 = k. Since 3k items have to be packed in these bins, we have
a+ 2b+ z1 + 2z2 + 3z3 ≥ 3k, hence a+ 2b+ z2 + 2z3 ≥ 2k. The last inequality
implies that a+ b+ z2 + z3 ≥ k and the claim holds.

Observation 2 At the end of Stage 1 of Case 2.2.1, at least k bins are packed
with either one ǫ-item and at least two ( 1

4
+iδ)-items, or one ( 1

4
+iδ)-item plus

at least a load of ( 1
4
+ǫ)∗ǫ.

Stage 2. We aim at n2 ≥ 2k. Let z = z2 + z3. We let items depart until the
configuration becomes

{3k:(
1

2
+ǫ)∗ǫ, k−z:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), z:(ǫ,

1

4
+iδ,

1

4
+iδ), 2k:ǫ, 2k:(

1

4
+iδ,

1

4
+iδ)} ,

with 8k bins and a total load of 3k +O(1).
Let δ′ = δ

16k
. We use Op-Inc with x = 1

2
−6kδ′, h = 2k, and s = 2k. The x-

items can only be packed in the 2k bins with load ǫ, at most one item in one bin,
i.e., h = 2k. Any new bin can pack at most two, implying that Op-Inc releases
6k = h+ 2s items of increasing sizes, from 1

2
−6kδ′ to at most 1

2
−δ′. According

to Op-Inc, A has to open at least 2k new bins, i.e., n2 ≥ 2k.
Stage 3. In this stage, we aim at n3 ≥ 2k. We use Op-Comp which corresponds
to Op-Inc in Stage 2. We let items depart until the configuration becomes

{3k:( 1
2
+ǫ)∗ǫ, k−z:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), z:(ǫ, 1

4
+iδ, 1

4
+iδ), 2k:ǫ, 2k:( 1

4
+iδ, 1

4
+iδ), 2k: 1

2
−iδ′} ,

with 10k bins and a total load of 4k + O(1). We then use Op-Comp with x =
1

2
−6kδ′, y = 1

2
−5kδ′, h = 2k, and s = 2k. I.e., we release items of increasing

size from 1

2
+5kδ′ to 1

2
+6kδ′, and at any time, at most 4k + 1 items are needed.

The 2k bins of load ǫ can pack one such item. Suppose there are w, out of 2k,
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ǫ-bins that are not packed with a 1

2
+iδ′-item. According to Op-Comp, A has to

open 2k+w new bins.
Stage 4. In this stage, we aim at n4 ≥ 2k−w. We use Op-Comp which corre-
sponds to Op-Inc in Stage 1. We let items depart until the configuration is

{3k:( 1
4
+ǫ)∗ǫ, k−z:(

1

4
+ǫ)∗ǫ, z:(ǫ,

1

4
+iδ), 2k−w:(ǫ, 1

2
+iδ′), w:ǫ, 2k: 1

4
+iδ, 2k: 1

2
−iδ′, 2k+w: 1

2
+iδ′, } ,

with 12k+w bins and a total load of 9k/2 +O(1). We then use Op-Comp with
x = 1

4
+δ, y = 1

4
+2kδ, h = w, and s = 2k−w. I.e., we release items of sizes from

3

4
−2kδ to 3

4
−δ and at any time, at most 2k+1 items are needed. Only w ǫ-bins

can pack such item, i.e., h = w as said. According to Op-Comp, A has to open
2k−w new bins.
Stage 5. In this final stage, we aim at n5 = 2k. We let items depart until the
configuration is

{3k:ǫ, k−z:ǫ, z:ǫ, 2k−w:ǫ, w:ǫ, 2k:
1

4
+iδ, 2k:

1

2
−iδ′, 2k+w:

1

2
+iδ′, 2k−w:

3

4
−iδ, } ,

with 14k bins and a total load of 4k − w
4
+O(1). Finally, we release 2k items of

size 1 and A has to open 2k new bins. In total, A uses 3k + (k − z) + z + (2k −
w) + w + 2k + 2k + (2k + w) + (2k − w) + 2k = 16k. The packing of O will be
given in the full paper.

Lemma 2. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and
m ≥ 2k, then A uses 16k bins at the end while O uses 6k + 3 bins.

Case 2.2.2: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m < 2k. We recall that
in Stage 1, 15k items of size 1

4
+iδ are released and A uses [2k, 4k) new bins for

these items.

Observation 3 (i) At most 8k items of size 1

4
+iδ can be packed to the n1 new

bins. (ii) At least k of the {k: 1
4
+iδ, k:ǫ} bins have load more than 1

2
. (iii) At

least 2k of the {4k:( 1
2
+ǫ)∗ǫ} bins are packed with at least one ( 1

2
+iδ)-item.

Let z1 and z2 be the number of new bins that are packed one and at least
two, respectively, ( 1

4
+iδ)-items The following observation gives a bound on z.

Observation 4 (i) At most 9k items of size 1

4
+iδ can be packed in existing

bins. (ii) z2 ≥ k. (iii) z1 ≥ 3(2k − z2).

Stage 2. We target n2 ≥ z2. We let items depart until the configuration becomes

– 2k:( 1
2
+ǫ)∗ǫ,

– 2k:(( 1
4
+ǫ)∗ǫ,

1

4
+iδ), this is possible because of Observation 3(iii),

– x:(ǫ, 1
4
+iδ, 1

4
+iδ),

– k−x:(( 1
4
+ǫ)∗ǫ,

1

4
+iδ), this is possible because of Observation 3(ii),

– k:ǫ,
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– z2:(
1

4
+iδ, 1

4
+iδ), this is possible because of Observation 4(ii),

– 2(2k−z2):(
1

4
+iδ), this is possible because of Observation 4(iii),

with 10k − z2 bins and a total load of 7k/2 + O(1). We then use Op-Inc with
x = 1

2
−5kδ′, h = 5k − 2z2 and s = z2. The x-items can only be packed in k of

ǫ-bins and 2(2k− z2) of (
1

4
+iδ)-bins, i.e., h = k+2(2k− z2) = 5k− 2z2 as said.

Any new bin can pack at most two, implying that Op-Inc releases 5k = h + 2s
items of increasing sizes from 1

2
−5kδ′ to 1

2
−δ′. According to Op-Inc, A has to

open at least z2 bins, i.e., n2 ≥ z2.
Stage 3. We target n3 ≥ z2. We let items depart until the configuration becomes

{2k:(
1

2
+ǫ)∗ǫ, 2k:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), x:(ǫ,

1

4
+iδ,

1

4
+iδ), k−x:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), k:ǫ,

z2:(
1

4
+iδ,

1

4
+iδ), 2(2k−z2):

1

4
+iδ, z2:

1

2
−iδ′} ,

with 10k bins and a total load of 7k/2 + z2/2 + O(1). We use Op-Comp with
s = z2 to release items of increasing size from 1

2
+δ′. These items can only be

packed in ǫ-bins (k of them) and ( 1
4
+iδ)-bins (2(2k− z2) of them). At any time,

at most (5k − z2) + 1 items are needed. According to Op-Comp, A has to open
z2 bins, i.e., n3 ≥ z2.
Stage 4. We target n4 ≥ (4k − z2). We let items depart until the configuration
becomes

{4k−x:(
1

4
+ǫ)∗ǫ, k+x:(ǫ,

1

4
+iδ), k:ǫ, 4k−z2:

1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′} ,

with 10k+z2+O(1) bins and a total load of 9k/4+3z2/4. We then use Op-Comp
with s = 4k−z2 and items of increasing size 3

4
−iδ. Using similar ideas as before,

A has to open (4k − z2) new bins.
Stage 5. We target n5 = 2k. We let items depart until the configuration becomes

{4k−x:ǫ, k+x:ǫ, k:ǫ, 4k−z2:
1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′, 4k−z2:

3

4
−iδ, } ,

with 14k bins and a total load of 4k + O(1). We finally release 2k items of size
1 and A has to open 2k new bins. In total A uses 6k+8k+2k = 16k bins. The
packing of O will be given in the full paper.

Lemma 3. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and
m < 2k, then A uses 16k bins at the end while O uses 6k + 5 bins.

Theorem 5. No online algorithm can be better than 8/3-competitive.

5 Conclusion

We have derived a 8/3 ∼ 2.666 lower bound on the competitive ratio for dy-
namic bin packing, improving the best known 2.5 lower bound [5]. We designed
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two operations that release items of slightly increasing sizes and items with com-
plementary sizes. These operations make a more systematic approach to release
items: the type of item sizes used in a later case is a superset of those used in an
earlier case. This is in contrast to the previous 2.5 lower bound in [5] in which
rather different sizes are used in different cases. Furthermore, in each case, we use
one or two pairs of Op-Inc and Op-Comp, which makes the structure clearer and
the proof easier to understand. We also show that the new operations defined
lead to a much easier proof for a 2.5 lower bound. An obvious open problem is
to close the gap between the upper and lower bounds.
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