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ien
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s
.liv.a
.ukThe Constrained Multiple Sequen
e Alignment problem is to align a set of sequen
esof maximum length n subje
t to a given 
onstrained sequen
e, whi
h arises from someknowledge of the stru
ture of the sequen
es. This paper presents new algorithms for thisproblem, whi
h are more eÆ
ient in terms of time and spa
e (memory) than the previousalgorithms15, and with a worst-
ase guarantee on the quality of the alignment. Savingthe spa
e requirement by a quadrati
 fa
tor is parti
ularly signi�
ant as the previousO(n4)-spa
e algorithm has limited appli
ation due to its huge memory requirement.Experiments on real data sets 
on�rm that our new algorithms show improvements inboth alignment quality and resour
e requirements.Keywords: Multiple Sequen
e Alignment; Approximation algorithm.1. Introdu
tionMultiple sequen
e alignment (MSA) is one of the problems in 
omputational bi-ology that have been studied extensively2;6;10;8;3;13;14. Roughly speaking, given aset of k � 2 sequen
es, the MSA problem is to align similar subsequen
es in thesame region. From the 
omputational point of view, the optimal alignment of twosequen
es 
an be found in O(n2) time, where n is the length of the longer sequen
e.Yet, for three or more sequen
es, it has been proved that �nding the optimal align-ment is NP-hard2;17, i.e., intra
tablea. In the literature, there are a number of MSAalgorithms that attempt to approximate the optimal alignments, some of them
an provide a worst-
ase approximation ratio1;5;12, while some others work wellin pra
ti
e11;16. Noti
e that with all these algorithms, users (biologists) 
an only
ontrol the alignment results by adjusting parameters like the s
oring fun
tion andgap penalty. In other words, users 
ould not in
orporate their knowledge of thefun
tionalities or stru
tures of the input sequen
es, whi
h is indeed very useful fora

urate and biologi
ally meaningful alignment. This naturally triggers the studiesof sequen
e alignment that allows users to provide additional 
onstraints.Tang et al. 15 were the �rst to investigate the MSA problem with an additionalinput of a 
onstrained sequen
e, whi
h imposes a stru
ture on the alignment byrequiring every 
hara
ter in the 
onstrained sequen
e to appear in an entire 
olumn�This resear
h was support in part by Hong Kong RGC Grant HKU-7135/04E.yThis resear
h was support in part by Hong Kong RGC Grant HKU-7042/02E.zPart of this resear
h was performed while the author was at The University of Hong Kong.aThere are several possible ways to de�ne the optimal alignment. In this paper we adopt thewidely-used Sum-of-Pair (SP) s
ore, whi
h asks for an alignment that minimizes the sum of thealignment 
ost of all pairs of sequen
es. 1
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2 Chin, Ho, Lam, Wongin the alignment of the multiple sequen
es. As an example, Tang et al. 
onsideredthe alignment of RNase sequen
es. Su
h sequen
es are all known to 
ontain threea
tive-site residues His(H), Lyn(K), His(H) that are essential for RNA degrading.Therefore, one would expe
t that in an alignment of RNase sequen
es, ea
h of thesethree residues should be aligned in the same 
olumn, i.e., an alignment satisfyingthe 
onstrained sequen
e \HKH".Tang et al. 15 presented the �rst algorithm for �nding an optimal 
onstrainedsequen
e alignment for two sequen
es; both the time and spa
e (memory) require-ments of the algorithm are O(�n4), where � is the length of the 
onstrained se-quen
e. For aligning k � 3 sequen
es, they gave a heuristi
 algorithm (
alled pro-gressive alignment algorithm) with time and spa
e requirements being O(�kn4)and O(�n4), respe
tively. When applied to aligning multiple RNase sequen
es, thisalgorithm produ
es satisfa
tory alignments. Yet the appli
ation of the algorithm islimited as the memory requirement is too large and it runs too long. For example, foraligning sequen
es of length 250 with a 
onstraint of length 3, the memory require-ment already ex
eeds 15 Gigabytes. Nowadays ordinary workstations are equippedwith at most 4 Gigabytes.This paper attempts to improve the results of Tang et al. from a theoreti
alas well as a pra
ti
al point of view. For pair-wise alignment, we give a new al-gorithm for �nding the optimal 
onstrained alignment that uses O(�n2) time andO(�n2) spa
e. Based on this result, we 
an immediately improve the time and spa
e
omplexities of the progressive alignment algorithm by a quadrati
 fa
tor. Further-more, we give an algorithm, 
alled 
enter-star, for 
onstrained multiple sequen
ealignment with worst-
ase performan
e guarantee; more pre
isely, for aligning ksequen
es, the new algorithm 
an produ
e an alignment that approximates the op-timal alignment within a fa
tor of (2� 2k ). This algorithm adopts the framework ofGus�eld's (un
onstrained) multiple sequen
e alignment algorithm5. The time andspa
e 
omplexities of the new algorithm are respe
tively O(Ckn2) and O(n2), whereC is the total number of o

urren
es of the 
onstrained sequen
e in all sequen
es.The improved memory requirement allows us to handle sequen
es with thousandsof 
hara
ters on ordinary workstations. See Table 1 for a summary of these results.We have implemented all the algorithms mentioned above and tested them withseveral real data sets. In all data sets, the 
enter-star algorithm shows improvementin all aspe
ts. In parti
ular, the quality of the alignment is 13% to 30% better, whilethe memory requirement is at most one-per
ent of Tang et al's algorithm. ResultsTime Spa
e Approximation
omplexity 
omplexity RatioTang et al.'s algorithm15 O(�kn4) O(�n4) {Improved Tang et al.'salgorithm (this paper) O(�k2n2) O(�n2) {Center-star (this paper) O(Ckn2) O(n2) 2� 2kTable 1. Performan
e of 
onstrained multiple sequen
e alignment approximation algorithms on ksequen
es of maximum length n, with a 
onstrained sequen
e P of length �. C is the total numberof o

urren
es of the 
onstrained sequen
e P in all sequen
es.
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Constrained Multiple Sequen
e Alignment 3Tang's Algorithm Center-star AlgorithmS
ore Time Spa
e S
ore Time Spa
e(se
ond) (MB ) (se
ond) (MB)7 sequen
esmax length 125 46319 127 425 40051 12 1.9� = 36 sequen
esmax length 185 71208 381 1192 49875 46 2.0� = 36 sequen
esmax length 186 63315 254 654 45241 54 2.0� = 45 sequen
esmax length 327 | Memory exhausted | 57325 208 2.3� = 3 Table 2. Alignment s
ores of CMSA algorithmsare brie
y summarized in Table 2. More details will be given in Se
tion 6.The rest of this paper is organized as follows. Se
tion 2 de�nes the 
onstrainedsequen
e alignment problem, and Se
tion 3 presents a new algorithm that 
omputesthe optimal 
onstrained pair-wise sequen
e alignment. Se
tion 4 presents algorithmsfor 
onstrained multiple sequen
e alignment (CMSA). In Se
tion 5, an approxima-tion algorithm is given with an approximation ratio (2 � 2k ). We report empiri
alresults of our developed CMSA tools in Se
tion 6. Finally, in Se
tion 7, we 
on
ludethis paper by giving some further resear
h dire
tions in CMSA.2. PreliminariesLet � be the set of 
hara
ters (residues), S = fS1; S2; : : : ; Skg be a set of k se-quen
es, with maximum length n, over �. Let Si[x::y℄ denote the substring of Sifrom the x-th 
hara
ter to the y-th 
hara
ter of Si, where 1 � x � y � n. Inparti
ular, let Si[x℄ denote the x-th 
hara
ter in the sequen
e Si.We de�ne the pair-wise sequen
e alignment of two sequen
es S1 and S2 as twoequal-length sequen
es S01 and S02 su
h that jS01j = jS02j = n0, and removing allspa
e 
hara
ters \�" from S01 and S02 gives S1 and S2, respe
tively. For a givendistan
e fun
tion Æ(x; y) whi
h measures the mutation distan
e between two 
har-a
ters, where x; y 2 �[ f�g, the pair-wise s
ore of two length-n0 sequen
es S01 andS02 is de�ned asP1�x�n0 Æ(S01[x℄; S02[x℄). In the multiple sequen
e alignment (MSA)problem, we are given k sequen
es S = fS1; S2; : : : ; Skg, an MSA is an alignmentmatrix A, with k rows and n0(� n) 
olumns, su
h that removing spa
e 
hara
-ters from the i-th row of A gives Si for 1 � i � k. We denote by A[x; y℄ the
hara
ter at the x-th row and y-th 
olumn of A. The sum-of-pair (SP) s
ore of anMSA A is de�ned as the sum of the pair-wise s
ores of all pairs of the sequen
es, i.e.,P1�p<q�kP1�y�n0 Æ(A[p; y℄; A[q; y℄). It has been shown that �nding the alignment
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4 Chin, Ho, Lam, Wongmatrix with the minimum sum-of-pair alignment s
ore is NP-
omplete17;2.In the 
onstrained multiple sequen
e alignment problem (CMSA), we are given,in addition to the inputs of the MSA problem, a 
onstrained sequen
e P =(P [1℄; P [2℄; : : : ; P [�℄), where P is a 
ommon subsequen
e of all Si 2 fS1; S2; : : : ; Skg.The solution of a CMSA problem is a 
onstrained alignment matrix A whi
h is analignment matrix su
h that ea
h 
hara
ter in P appears in an entire 
olumn of Aand also in the same order, i.e., there exists a list of integers fr1; r2; : : : ; r�g where1 � r1 < r2 < : : : < r� � n0, su
h that for all 1 � i � k and all 1 � 
 � �, we haveA[i; r
 ℄ = P [
℄.Consider a 
onstrained alignment matrix A for S = fS1; S2; : : : ; Skg and the
onstrained sequen
e P . Denote by sp s
ore(A) the SP s
ore of the 
onstrainedalignment matrix A. Let A�S be the optimal 
onstrained alignment matrix for Sand A0S be the 
onstrained alignment matrix derived by some approximation al-gorithm. The approximation algorithm is said to have an approximation ratio � ifsp s
ore(A0S)sp s
ore(A�S) � � for all S and P .3. Constrained Pair-wise Sequen
e Alignment (CPSA)3.1. Problem de�nitionThe 
onstrained pair-wise sequen
e alignment (CPSA) problem is a spe
ial 
asefor CMSA problem with k = 2. Given two sequen
es S1 and S2, a 
onstrainedsequen
e P (with length �) and a distan
e fun
tion Æ, the problem is to 
omputean optimal CPSA, (S01S02 ), su
h that jS01j = jS02j = jn0j, and P1�i�n0 Æ(S01[i℄; S02[i℄)is minimized subje
t to P [
℄ = S01[r
 ℄ = S02[r
 ℄ for some r
 ; 1 � 
 � � and1 � r1 < r2 < : : : < r� � n0. Note that removing all spa
es in S01 and S02 gives S1and S2 respe
tively.3.2. Optimal Constrained Pair-wise Sequen
e AlignmentTang et al. 15 presented an algorithm to 
ompute the optimal 
onstrained pair-wisealignment with time and spa
e 
omplexities O(�n4) and O(�n4), respe
tively. Thisalgorithm �rst 
omputes the O(n4) pair-wise alignment s
ores of all substrings inS1 and all substrings in S2 and then further determines the best positions su
h thatthe 
onstrained 
hara
ters are aligned. The overall time 
omplexity is O(�n4). Toimprove the time 
omplexity, our algorithm takes into 
onsideration the 
onstrainedalignment as we 
ompute the alignment s
ore. This approa
h makes it not ne
essaryto 
onsider all the pair-wise alignments between every pair of substrings of S1and S2, and thus, fa
ilitates the redu
tion in the time 
omplexity.Below we show how to 
ompute the sum-of-pair s
ore of the optimal CPSA bydynami
 programming and how to obtain the alignment by ba
ktra
king throughthe path of 
omputation of the s
ore. Re
all that for any sequen
e S, S[x::y℄ denotesthe substring of S starting at the x-th 
hara
ter and ending at the y-th 
hara
terof S. The dynami
 programming 
omputes the optimal CPSA in
rementally by 
on-
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Constrained Multiple Sequen
e Alignment 5sidering the pair-wise alignments of S1[1::1℄ with S2[1::1℄, : : :, S1[1::i℄ with S2[1::j℄and so on, for 1 � i � jS1j and 1 � j � jS2j.We denote by D(i; j; 
) the optimal 
onstrained pair-wise sequen
e alignments
ore of sequen
es S1[1::i℄ and S2[1::j℄ with 
onstrained 
hara
ters P [1::
℄ mat
hed.In parti
ular, D(n1; n2; �) is the optimal CPSA s
ore of S1 and S2 with respe
t tothe 
onstrained sequen
e P , where jS1j = n1, jS2j = n2 and jP j = �. Thefollowing theorem gives a re
urren
e formula for D(i; j; 
) in terms of D(i0; j0; 
0)where i0 � i, j0 � j, and 
0 � 
.Theorem 1. For any 0 � i � n1; 0 � j � n2 and 0 � 
 � �,D(i; j; 
) = min8>><>>:D(i� 1; j � 1; 
 � 1) + Æ(S1[i℄; S2[j℄) if S1[i℄ = S2[j℄ = P [
℄,D(i� 1; j � 1; 
) + Æ(S1[i℄; S2[j℄) if i; j > 0,D(i� 1; j; 
) + Æ(S1[i℄;�) if i > 0,D(i; j � 1; 
) + Æ(�; S2[j℄) if j > 0,with boundary 
onditions D(0; 0; 0) = 0, D(i; 0; 
) =1 for 
 � 1, 0 � i � n1, andD(0; j; 
) =1 for 
 � 1, 0 � j � n2.Proof. There are four 
ases to align fS1[1::i℄; S2[1::j℄g with respe
t to P [1::
℄,� If S1[i℄ = S2[j℄ = P [
℄, we 
an align S1[i℄ and S2[j℄ while aligning fS1[1::(i�1)℄; S2[1::(j�1)℄g with P [1::(
�1)℄ mat
hed. Then, the s
ore is D(i�1; j�1; 
 � 1) + Æ(S[i℄; S[j℄).� If i; j > 0, we 
an align S1[i℄ and S2[j℄ while aligning fS1[1::(i�1)℄; S2[1::(j�1)℄g with P [1::
℄ mat
hed. Then the s
ore is D(i�1; j�1; 
)+Æ(S[i℄; S[j℄).� If i > 0, we 
an align S1[i℄ with a spa
e while aligning fS1[1::(i�1)℄; S2[1::j℄gwith P [1::
℄ mat
hed. Then the s
ore is D(i� 1; j; 
) + Æ(S[i℄;�).� If j > 0, we 
an align S2[j℄ with a spa
e while aligning fS1[1::i℄; S2[1::(j �1)℄g with P [1::
℄ mat
hed. Then the s
ore is D(i; j � 1; 
) + Æ(�; S[j℄).The alignment to be 
hosen is the one su
h that the new s
ore is minimum. There-fore, D(i; j; 
) 
an be 
omputed by taking the minimum of the above four values.Based on Theorem 1, we 
an 
ompute the sum-of-pair s
ore of the optimal CPSAusing dynami
 programming (see Algorithm 1). After �lling in the three dimensionaltable D(i; j; 
), we 
an obtain the CPSA by ba
ktra
king through the 
omputationpath from D(n1; n2; �) to D(0; 0; 0). Let S01 and S02 be the aligned sequen
e forS1 and S2, respe
tively. Initially, set S01 and S02 to two empty strings, and startba
ktra
king from D(n1; n2; �). If D(i; j; 
) is 
omputed from D(i � 1; j � 1; 
) orD(i�1; j�1; 
�1), prepend S1[i℄ and S2[j℄ to S01 and S02, respe
tively. If D(i; j; 
) is
omputed from D(i� 1; j; 
), prepend S1[i℄ and a spa
e to S01 and S02, respe
tively;similarly, if D(i; j; 
) is 
omputed from D(i; j � 1; 
), prepend a spa
e and S2[j℄ toS01 and S02, respe
tively. Repeat ba
ktra
king until rea
hing D(0; 0; 0), and (S01S02 ) isthe optimal 
onstrained sequen
e alignment of fS1; S2g with P mat
hed.Theorem 2. The optimal 
onstrained pair-wise alignment 
an be 
omputed in bothO(�n1n2) time and spa
e, where jS1j = n1, jS2j = n2 and jP j = �.Proof. The 3-dimensional table D is of size � (n1 + 1)� (n2 + 1)� (�+ 1) �. The
omputation of ea
h entry D(i; j; 
) needs only the values of D(i� 1; j � 1; 
 � 1),
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 programming algorithm for the optimal CPSA s
orebegin// Initialization:Initialize D(0; 0; 0), D(i; 0; 
), and D(0; j; 
), for 0 � i � n1, 0 � j � n2,and 1 � 
 � �, a

ording to Theorem 1.// Dynami
 Programming:for 
 = 0 to � dofor i = 0 to n1 dofor j = 0 to n2 doIf D(i; j; 
) is not initialized, 
ompute D(i; j; 
) a

ording toTheorem 1 in terms of D(i� 1; j � 1; 
 � 1), D(i� 1; j� 1; 
),D(i� 1; j; 
) and D(i; j � 1; 
).endD(i�1; j�1; 
),D(i�1; j; 
) andD(i; j�1; 
), thus, ea
hD(i; j; 
) 
an be 
omputedin 
onstant time. Therefore, the optimal CPSA s
ore of two sequen
es of lengthsn1 and n2 and 
onstrained sequen
e P of length � 
an be 
omputed in O(�n1n2)time. On the other hand, in ea
h step of the ba
ktra
king from D(n1; n2; �) toD(0; 0; 0), at least one of the indi
es i, j or 
 is de
reased by one. Thus, there are atmost (�+n1+n2) steps. Noti
e that ea
h step takes 
onstant time. Therefore, theba
ktra
king takes O(�+n1+n2) time. Thus, the whole algorithm takes O(�n1n2)time. Table D has O(�n1n2) entries; ea
h entry D(i; j; 
) requires 
onstant amountof spa
e (for storing the alignment s
ore and the dire
tion of the 
omputation path).Therefore, the algorithm requires O(�n1n2) spa
e. Thus, the theorem follows.Remarks: It is easy to see that 
omputation of s
ores for row i (
olumn j,resp.) only depends on that for row i � 1 (
olumn j � 1, resp.), hen
e, the opti-mal s
ore 
an be 
omputed in O(�min (n1; n2)) spa
e. By exploiting the idea ofHirs
hberg's algorithm7, we 
an re
over the alignment in O(�min (n1; n2)) spa
ewhile maintaining the time 
omplexity.4. Constrained Multiple Sequen
e Alignment (CMSA)In this se
tion, we study the 
onstrained multiple sequen
e alignment problem. InSe
tion 4.1, we redu
e the time and spa
e 
omplexities of the progressive CMSAheuristi
 algorithm15 presented by Tang et al. from O(�kn4) to O(�k2n2). In Se
-tion 4.2, we show an algorithm that 
omputes the optimal CMSA in O(�nk) timeusing the sum-of-pair s
ore.4.1. Improved progressive CMSA algorithmTang et al. 15 presented an O(�kn4) time and O(�n4) spa
e progressive heuristi
algorithm for the CMSA problem for a set of k sequen
es of length at most nand a 
onstrained sequen
e P of length �. In Tang et al.'s algorithm, a k � kdistan
e matrix of the k sequen
es is 
onstru
ted, where the (i; j) entry represents
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e Alignment 7the pair-wise sequen
e alignment s
ore of Si and Sj (note that this alignment s
oredoes not 
onsider the 
onstrained sequen
e P ). A minimum spanning tree (MST)is then 
onstru
ted using the Kruskal algorithm4 based on the distan
e matrix ofthese sequen
es. Sequen
es are then progressively aligned using the CPSA algorithmin the order of the 
onstru
tion of MST. This algorithm performs exa
tly (k �1) 
onstrained pair-wise sequen
e alignments. By using the 
onstrained pair-wisealignment algorithm des
ribed in Se
tion 3.2, the time and spa
e 
omplexities 
anbe improved from O(�kn4) and O(�n4) to O(�k2n2) and O(�n2), respe
tively.4.2. An algorithm for the optimal CMSAIn this se
tion, we extend the optimal CPSA algorithm des
ribed in Se
tion 3.2to k sequen
es. This involves the 
onstru
tion of a (k + 1)-dimensional ma-trix D, whi
h takes O(�nk) time and spa
e. More pre
isely, let the multi-dimensional array D(i1; i2; : : : ; ik; 
) be the optimal CMSA s
ore matrix forfS1[1::i1℄; S2[1::i2℄; : : : ; Sk[1::ik℄g with P [1::
℄ aligned in 
 
olumns. Then the opti-mal alignment s
ore for fS1 : : : Skg with respe
t to the 
onstrained sequen
e P isgiven by D(n1; n2; : : : ; nk;�), where ni = jSij for 1 � i � k. D(i1; i2; : : : ; ik; 
) 
anbe 
omputed by the following re
urren
e,(i) D(f0gk; 0) = 0, D(i1; i2; : : : ; ik; 
) = 1 if 
 � 1 and some but not all of ij 'sequal zero;(ii) D(i1; i2; : : : ; ik; 
) =min8>><>>:D(i1 � 1; i2 � 1; : : : ; ik � 1; 
 � 1) + Æ(S1[i1℄; S2[i2℄; : : : ; Sk[ik℄)if S1[i1℄ = S2[i2℄ = : : : = Sk[ik℄ = P [
℄;min�2f0;1gk�f0gk �D(i1 � �1; i2 � �2; : : : ; ik � �k; 
)+ Æ(�1S1[i1℄; �2S2[i2℄; : : : ; �kSk[ik℄)�where �j = 0 or 1, �jSj [ij ℄ with �j = 0 representing a spa
e 
hara
ter, andÆ(x1; : : : ; xk) =P1�i<j�k Æ(xi; xj).Based on the above re
urren
e, we have a dynami
 programming formulationthat 
omputes the optimal CMSA for multiple sequen
es, whi
h is a generalizationof the dynami
 programming formulation for the CPSA problem. Pra
ti
ally, Lip-man et al. 9 noted that the optimal CMSA 
an be 
omputed for less than 6 shortsequen
es of length at most 200. In the following se
tion, we present an approxima-tion algorithm for the CMSA problem.5. An Approximation Algorithm for CMSAGus�eld5 showed that the 
enter-star algorithm (the idea of 
enter-star originatesfrom Wong18) has an approximation ratio (2 � 2k ) for the un
onstrained multiplesequen
e alignment problem. Based on the 
enter-star approximation algorithm,we derive an approximation algorithm for CMSA that yields an approximationratio (2 � 2k ). This algorithm runs in O(Ckn2) time, where C is the total numberof o

urren
es of the 
onstrained sequen
e P in all sequen
es. Throughout thisse
tion, we assume that the distan
e fun
tion Æ(x; y) follows the triangle inequality,i.e., Æ(x; y) � Æ(x; z) + Æ(z; y), for any x; y; z 2 �Sf�g, and Æ(�;�) = 0.
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enter-star alignment approximation for CMSAFor a set of k sequen
es S = fS1 : : : Skg, the 
enter sequen
e S
 2 S is the sequen
esu
h that the sum of 
onstrained pair-wise alignment s
ores to the other (k � 1)sequen
es is minimized, with the additional 
onstraint that P must appear in thesame list of positions of S
 in every 
onstrained pair-wise alignment of S
 with Sj ,where j 6= 
. The star-sum s
ore of a CMSA with respe
t to a 
enter sequen
eS
 is the sum of pair-wise s
ore of S
 with all Sj 2 S � fS
g. The 
onstrained
enter-star approximation algorithm is to �nd the CMSA and its 
enter sequen
eS
 su
h that the star-sum s
ore with respe
t to S
 is minimized. The algorithm 
anbe summarized below,(i) For ea
h Si in S, treat Si as the 
enter sequen
e and for ea
h list of positions(r1; r2; : : : ; r�) that Si is aligned with P , i.e., P [
℄ = Si[r
 ℄ 8 1 � 
 � �, alignall other Sj with Si at the positions spe
i�ed by (r1; r2; : : : ; r�).(ii) Find the S
 and (r1; r2; : : : ; r�) with the minimum star-sum s
ore.(iii) Merge the (k � 1) 
onstrained pair-wise sequen
e alignments between S
 andother Sj under the positions (r1; : : : ; r�) into a 
onstrained alignment matrix.We elaborate on Steps (i) to (iii) of the above algorithm in the dis
ussion below.(i) Aligning a 
andidate 
enter sequen
e with another sequen
e under a listof 
onstrained positions (r1; : : : ; r�) | WLOG, assume that the 
andidate 
entersequen
e is S1. Given r1; r2; : : : ; r�, we perform the CPSA algorithm on S1 withS2 : : : Sk under (r1; r2; : : : ; r�), using a slightly modi�ed re
urren
e in Theorem 1,treating S
 as S1 and Sp as S2 (2 � p � k). Below, D(i; j; 
) denotes the optimal
onstrained pair-wise sequen
e alignment s
ore of sequen
es S1[1::i℄ and S2[1::j℄with 
onstrained 
hara
ters P [1::
℄ mat
hed in positions r1; : : : ; r
 , respe
tively.D(i; j; 
) = min8>>>><>>>>:D(i� 1; j � 1; 
 � 1) + Æ(S1[i℄; S2[j℄)if r
 = i, S1[i℄ = S2[j℄ = P [
℄,D(i� 1; j � 1; 
) + Æ(S1[i℄; S2[j℄) if i; j > 0,D(i� 1; j; 
) + Æ(S1[i℄;�) if i > 0,D(i; j � 1; 
) + Æ(�; S2[j℄) if j > 0, (1)with boundary 
onditions D(0; 0; 0) = 0, D(i; 0; 
) =1 for 
 � 1, 0 � i � n1, andD(0; j; 
) =1 for 
 � 1, 0 � j � n2.Suppose n1 = jS1j and n2 = jS2j. Noti
e that using the above re
urren
e, forany 1 � 
 � �, the 
omputation path from D(n1; n2; �) to D(0; 0; 0) must passthrough some points D(r
 ; j; 
) with 1 � j � n2. This implies that the alignmento

urs in S1 at the positions (r1; r2; : : : ; r�).(ii) Finding the optimal 
enter sequen
e and the 
onstrained positions | Con-sider ea
h sequen
e Si and a list of positions of o

urren
e (r1; r2; : : : ; r�) of P in Siwhere 1 � i � k. The 
ombination (Si; r1; r2; : : : ; r�) that gives the minimum sumof 
onstrained pair-wise alignment s
ores with other sequen
es under the positions(r1; r2; : : : ; r�) is sele
ted as the 
enter sequen
e S
 and the list of positions to bealigned with P .(iii) Merging the (k � 1) 
onstrained pair-wise alignments | Based on the op-timal 
enter sequen
e, we 
onstru
t a CMSA, denoted by A. Suppose the 
enter



September 23, 2004 14:43 DRAFT VERSION jb
b-revise
Constrained Multiple Sequen
e Alignment 9sequen
e of S is S1 under a list of positions (r1; r2; : : : ; r�). There are (k � 1) 
on-strained pair-wise alignments, one for S1 aligning with ea
h Sj , for 2 � j � k.Suppose jS1j = n, and let Aj be the optimal 
onstrained pair-wise alignmentof S1 and Sj under (r1; r2; : : : ; r�). De�ne s0 and sn be the longest sequen
esof spa
es inserted before S1[1℄ and after S1[n℄ in all (k � 1) Aj 's, respe
tively.Similarly for 1 � i � n � 1, let si be the longest sequen
e of spa
es betweenS1[i℄ and S1[i + 1℄ in all (k � 1) Aj 's. Initially, set A to 
ontain a single rowS01 = [s0�S1[1℄�s1�S1[2℄�: : :�si�1�S1[i℄�si�: : :�S1[n℄�sn℄, where the � oper-ator denotes the string 
on
atenation operation. Note that jS01j = jS1j+P0�i�n jsij.For ea
h Sj with 2 � j � k, add Sj to A a

ording to the optimal 
onstrainedpair-wise sequen
e alignment ( �S1�Sj ) of S1 and Sj , i.e., insert 
olumns of spa
es to( �S1�Sj ) until �S1 is identi
al to S01.Noti
e that the insertion of spa
es during the 
onstru
tion of A does not 
hangethe pair-wise alignment s
ore of S1 with ea
h of the other sequen
es with respe
tto P under the positions (r1; r2; : : : ; r�). Therefore, A is the 
onstrained multiplesequen
e alignment for S = fS1; : : : ; Skg and P with the minimum star-sum s
ore.5.2. Complexities of the 
enter-star algorithm for CMSABased on the re
urren
e equation presented in Equation 1, the optimal 
onstrainedpair-wise alignment of S1 with S2, under a set of � positions fr1; : : : ; r�gmat
hing Ptakes time and spa
e O(�n2). This 
an be further redu
ed to O(n2) time and spa
e.Lemma 1. Consider two sequen
es S1 and S2, and a 
onstrained sequen
e P withjS1j = n1, jS2j = n2 and jP j = �. Given a list of positions r = (r1; : : : ; r�) su
hthat S1[r
 ℄ is to mat
h P [
℄, for all 1 � 
 � �, it suÆ
es to 
ompute only O(n1n2)entries in the matrix D(i; j; 
) to obtain D(n1; n2; �).Proof. Based on Equation 1, we have the following three observations about the
omputation of D(i; j; 
). Consider any 0 � 
 � �, and any 1 � j � n2. (i) Wheni < r
 , D(i; j; 
) = 1. (ii) When i = r
 , D(i; j; 
) is 
omputed from D(i � 1; j �1; 
 � 1). (iii) When i > r
 , D(i; j; 
) is 
omputed from D(i0; j0; 
) for some i0 � iand j0 � j. As a result, we 
an see that for any 0 � 
 � �, we only need to 
omputethe entries D(i; j; 
) for all r
 � i � r
+1 � 1 and all 1 � j � n2. (We set r0 = 0and r�+1 = n1 + 1 for the boundary 
ase.) Therefore, the total number of entriesthat we need to 
ompute equals to P0�
��+1(r
+1 � r
)n2 = O(n1n2).Based on Lemma 1, we 
an 
ompute the optimal 
onstrained alignment for S1and S2 with P mat
hed in a parti
ular sequen
e of positions as shown in Algo-rithm 2. In Step (i), we need to 
ompute (k� 1) pair-wise alignments for ea
h 
om-bination (S; r1; : : : ; r�) and there are C su
h 
ombinations. Therefore, by Lemma 1,Step (i) 
an be 
omputed in O(Ckn2) time. To �nd the best 
ombination, we onlyneed to keep tra
k of the 
urrent best one as we 
onsider a new 
ombination. There-fore, Steps (i) and (ii) together takes O(Ckn2) time and O(n2) spa
e. For Step (iii),
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 programming of Center-star alignment (Step (i))begin// Initialization:Initialize D(0; 0; 0), D(i; 0; 
), and D(0; j; 
), for 0 � i � n1, 0 � j � n2,and 1 � 
 � �, a

ording to Equation 1.// Dynami
 Programming: set r0 = 0; r�+1 = n1for 
 = 0 to � dofor i = r
 to r
+1 dofor j = 0 to n2 doIf D(i; j; 
) is not initialized, 
ompute D(i; j; 
) a

ording toEquation 1 in terms of D(i� 1; j� 1; 
� 1), D(i� 1; j� 1; 
),D(i� 1; j; 
) and D(i; j � 1; 
).endnoti
e that the resulting sequen
e S01 has length at most kn. If we store the wholeresulting alignment matrix, we need O(k2n) spa
e and the merging would takeO(k2n) time. However, we 
an simply store the lo
ations of the non-spa
e 
har-a
ters of the sequen
es in the alignment matrix. Then the merging 
an be donein
rementally by adding ea
h sequen
e in turn using O(n) time, i.e., in total themerging takes O(kn) time. The spa
e requirement 
an also be redu
ed to O(kn).As a result, the overall time and spa
e 
omplexities of the 
enter-star algorithm isO(Ckn2) and O(n2), respe
tively.5.3. Performan
e of the 
enter-star algorithm for CMSAThe following theorem shows that the 
enter-star approximation algorithm forCMSA has an approximation ratio (2 � 2k ). De�ne the distan
e �(S0i; S0j) of twoaligned sequen
es S0i and S0j as the sum of pair-wise distan
es between the two 
har-a
ters at the same positions in S0i and S0j , i.e., �(S0i; S0j) =P1�p�jS0ij Æ(S0i[p℄; S0j [p℄).Theorem 3. Given S = fS1; : : : ; Skg and a 
onstrained sequen
e P . Suppose As isthe alignment output by the 
onstrained 
enter-star algorithm, and A� be the optimal
onstrained alignment with respe
tive to P . Then, sp s
ore(As)sp s
ore(A�) � 2� 2k .Proof. For any alignment matrix A, let Ai be the i-th row of A, for 1 � i � k, andss s
orei(A) be the star-sum s
ore of A with Ai as the 
enter sequen
e. Let A
 bethe optimal 
enter sequen
e of A. Sin
e A� is a CMSA for S and P , sp s
ore(A�) =P1�i<j�k �(A�i ; A�j ). Then,sp s
ore(A�) = 12P1�i;j�k;i 6=j �(A�i ; A�j )= 12P1�i�k (P1�j�k;i 6=j �(A�i ; A�j ))= 12P1�i�k (ss s
orei(A�))� k2 min1�i�k (ss s
orei(A�))� k2 (ss s
ore
(As)).On the other hand,
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e Alignment 11Data Set 0 Data Set 1 Data Set 2 Data Set 3Num Seq 7 6 6 5Max seq len 125 185 186 328ConstrainedSequen
e HKH HKH HKSH HKHSequen
e ID H-RNase3H-RNase2BP-RNaseABS-RNaseH-RNaseAH-RNase4RC-RNase

gi|119124|sp|P12724|e
p humangi|2500564|sp|P70709|e
p ratgi|13400006|pdb|ldyt|gi|20930966|ref|xp 142859.1|gi|20873960|ref|xp 127690.1|gi|20930966|ref|xp 142859.1|
gi|20930966|ref|XP 142859.1|gi|119124|sp|P12724|ECP HUMANgi|2500564|sp|P70709|ECP RATgi|13400006|pdbgi|20930966|ref|XP 142859.1|gi|20873960|ref|XP 127690.1|

gi|10068295|gb|AAE40716.1|gi|17549935|ref|NP 510780.1|gi|28509297|ref|XP 282983.1|gi|28499937|ref|XP 204162.2|gi|4902995|dbj|BAA77929.1|Table 3. Sequen
es used in data sets 0 to 3sp s
ore(As) = 12P1�i;j�k;i 6=j �(Asi ; Asj)� 12P1�i;j�k;i 6=j;i6=
;j 6=
 (�(Asi ; As
) + �(As
; Asj))+ 12 (P1�j�k;j 6=
�(As
; Asj) +P1�i�k;i 6=
�(Asi ; As
))= 2(k�1)2 P1�i�k;i 6=
�(Asi ; As
)= (k � 1)(ss s
ore
(As)).Note that the inequality above (i.e., lines 1 and 2) is due to the triangle inequality.Therefore, sp s
ore(As)sp s
ore(A�) � 2(k�1)k = 2� 2k , and the theorem follows.6. Empiri
al ResultsIn Se
tion 6.1, we evaluate the performan
e of our CPSA and CMSA algorithmsusing four data sets of RNase sequen
es taken from the NCBIb. In Se
tion 6.2,we show that, in pra
ti
e, C, the total number of o

urren
es of the 
onstrainedsequen
e as a subsequen
e in all sequen
es, is mu
h smaller than n2.6.1. Experiments on CPSA and CMSA algorithmsAll our experiments are 
ondu
ted on an Intel workstation with 2.0 GHz CPUand 4GB main memory. First, we use CPSA to align two RNase sequen
es (withlengths about 150) with three 
onstrained 
hara
ters (� = 3), using our CPSAalgorithm (Se
tion 3) and Tang et al.'s 
onstrained pair-wise sequen
e algorithm15.Tang et al.'s CPSA algorithm took 127 se
onds and 400 MB memory. For the sameproblem instan
e, our CPSA algorithm ran within a fra
tion of se
ond with only 1.5MB of memory spa
e. This shows the pra
ti
ality of our CPSA algorithm espe
iallyfor long sequen
es and long 
onstrained sequen
e.To evaluate the performan
e of di�erent CMSA algorithms, we implementedthe original Tang et al.'s progressive CMSA algorithm15, the improved progressiveCMSA algorithm, and the 
onstrained 
enter-star algorithm. We ran these CMSAalgorithms on four sets of RNase sequen
es, summarized in Table 3. In data set 0, webNational Center of Biote
hnology Information, URL: http://www.n
bi.nlm.nih.gov.
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12 Chin, Ho, Lam, WongTang's Alg. Improved Tang's Alg. Center-star Alg.Time Spa
e S
ore Time Spa
e S
ore Time Spa
e s
ore(se
) (MB) (se
) (MB) (se
) (MB)Data set 0 127 425 46319 < 1 2.0 46319 12 1.9 40051Data set 1 381 1192 71208 < 1 2.6 71208 46 2.0 49875Data set 2 254 654 63315 < 1 2.7 63315 54 2.0 45241Data set 3 | memory exhausted | < 2 6.2 60849 208s 2.3 57325Table 4. Alignment s
ores of CMSA algorithmsTang's Algorithm Center-star AlgorithmData set 0 38668 38668Data set 1 69368 47216Data set 2 63315 31776Data set 3 62966 59021Table 5. Alignment s
ores of the two algorithms after the re�nement by ClustalWused the same set of 7 RNase sequen
es used by Tang et al. 15 We obtained 3 otherdata sets of RNase sequen
es from the NCBI; data sets 1 and 2 
ontain 6 RNase se-quen
es of lengths about 180, and data set 3 
ontains 5 long RNase sequen
es (withmaximum length 327). Sin
e we 
ast the CMSA as a minimization problem, weused a modi�ed s
oring fun
tion based on Pam70. These four data sets were alignedusing the CMSA algorithms, measuring the running time, memory requirementand the modi�ed minimizing-Pam70 alignment s
ore. These alignments were thenpost-pro
essed using the web-tool ClustalW
 as des
ribed by Tang et al.15.Table 4 summarizes the performan
e of the three di�erent CMSA algorithmson these data sets; while the performan
e of the algorithms after the ClustalWre�nement on these data sets is presented in Table 5. The alignments of data sets0 to 3, using the 
onstrained 
enter-star algorithm, are shown in Figure 1. Due tothe page limit, the alignment matri
es are divided into blo
ks of 90 
hara
ters, the�rst 90 
hara
ters of ea
h sequen
e are listed �rst before the subsequent blo
ks.Columns that mat
h the 
onstrained 
hara
ters are marked by an asterisk (*).Comparing the alignment matri
es produ
ed by 
enter-star approximation al-gorithm and Tang et al.'s progressive CMSA algorithm15 in data sets 1, 2 and 3, wenote that the 
onstrained 
hara
ters P [1℄::P [�℄ are aligned at di�erent 
olumns ofthe alignment matri
es. Computationally, the 
enter-star approximation algorithmfor CMSA produ
es alignments with better SP alignment s
ores (see Table 4).6.2. Number of 
onstraint O

urren
esWe refer to the paper by Tang et al. 15 for an appli
ation used for CMSA. Intheir experiments, seven RNase sequen
es were aligned so that the three a
tive-siteresidues, \HKH", were in the same 
olumns in the alignment matrix. This motivatesthe CMSA problem as all RNase sequen
es 
ontain the a
tive-site residues \HKH"that are essential for the main fun
tionality of the RNase degrading to RNA. In
The ClustalW web tool is provided by European Bioinformati
s Institute, URL:http://www.ebi.a
.uk/
lustalw/.
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e Alignment 13No. of samples 1954 2351Per
entage 83.11% 100.0 %Max sequen
e length 500 3989Median O

urren
es 42 56Average O

urren
es 105 46480 Per
entile 124 41390 Per
entile 241 1248Table 6. O

urren
es of 
onstraint \HKH" in RNase sequen
es from NCBIour experiment, we show that C, the total number of o

urren
es of the 
onstraint\HKH" in ea
h sequen
e is reasonably small. Sin
e the value of C is relatively small,the running time of our 
enter-star algorithm is more eÆ
ient than the O(�kn4)-time algorithm des
ribed by Tang et al. 15 There are totally 2351 sequen
es from theNCBI. In these 2351 RNase sequen
es, a total of 1954 sequen
es, or 83%, 
ontainless than 500 residues. For ea
h RNase, we measured the mean, mode and averagenumber of o

urren
es of the 
onstraint \HKH" and the result is reported in Table 6.CMSA is usually done for a set of sequen
es of approximately the same length.As shown in Table 6, for CMSA of k sequen
es with lengths below 500, we haveC � 105k on average and C � 241k for 90% of these RNase sequen
es. Even amongthe longer RNase sequen
es, the average number of o

urren
es is only about 464.Thus, the running time of our 
enter-star algorithm is O((500k)kn2) on averagewhi
h is mu
h shorter than the running time O(�kn4) of Tang et al.'s algorithm15.7. Con
lusionUsing traditional MSA tools, biologists have limited 
ontrol over the output of thesequen
e alignment. They 
an only 
hoose high level alignment parameters su
h asgap penalty, s
oring fun
tion, et
. As su
h, they are unable to in
orporate theirknowledge about the sequen
es, su
h as known fun
tionalities and stru
tures of theinput sequen
es for use by the sequen
e alignment tool. This information is essentialfor a

urate and biologi
ally meaningful sequen
e alignment. Constrained sequen
ealignment provides users with the ability to di�erentiate important residues thatneed to be aligned together over other residues. This problem was �rst studied byTang et al. 15 However, many existing te
hniques developed for MSA in the liter-ature do not work for the CMSA problem due to the time and spa
e 
omplexitiesof O(�n4). In this paper, we redu
e the time and spa
e 
omplexities of solving theoptimal pair-wise 
onstrained alignment from O(�n4) to O(�n2). With this im-provement, existing te
hniques for MSA 
an now be modi�ed to solve the CMSAproblem. We have demonstrated how the 
enter-star sequen
e approximation al-gorithm 
an be applied to solve the CMSA problem. With the redu
tion in timeand spa
e 
omplexities, it is hoped that the improved quality of sequen
e alignment
an help biologists. It is worth-mentioning that the 
onstrained 
enter-star align-ment problem 
an be shown to be NP-hard, exploiting approximation algorithmsof this problem for the 
onstrained multiple sequen
e alignment problem would beof theoreti
 and pra
ti
al interest.
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e Alignment 15Data set 0 * *Seq1: -K--E-TA-A-AK-FERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCSQKNVAC-KN-GQT-N-CYQSYSTMSeq2: -RPPQFTR-A-QW-FAIQHI-S-LNPPR----CTIAMRAINNYRWRCKNQNTFLRTTFANVVNVCGNQSIRC-PH-NRTLNNCHRSRFRVSeq3: MK--P-PQFTWAQWFETQHINM-TSQQCN-N-AMQVI-N-NFQR-RCKNQNTFLRTTFANVVNVCGNPNITCPSNRSRN-N-CHHSGVQVSeq4: -K--E-SA-A-AK-FERQHIDSSTSSVSSSNYCNEMMTSRNLTQDRCKPVNTFVHESLADVQAVCSQKNVAC-KN-GQT-N-CYQSYSAMSeq5: -K--E-SR-A-KK-FQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQNVCFQEKVTC-KN-GQG-N-CYKSNSSMSeq6: -M--Q-DG-MYQR-FLRQHVHPEETGGSDR-YCNLMMQRRKMTLYHCKRFNTFIHEDIWNIRSICSTTNIQC-KN-GKM-N-CHEG--VVSeq7: ----Q-NW-A-T--FQQKHI-INTPIINC-N--TIMDNNIYIVGGQCKRVNTFIISSATTVKAICT--GVIN-MN-VLS-T--TR-FQ-L*Seq1: SITDC--R-ETGSSKY-PNCAYKTTQANKHIIVACEG-NP------Y-V-PVHFDA-S--VSeq2: PLLHCDLI-NPGAQNI-SNCRYADRPGRRFYVVACDNRDPRDSPR-YPVVPVHLDT-T--ISeq3: PLIHC--NLTTPSPQNISNCRYAQTPANMFYIVACDNRDPRRDPPQYPVVPVHLD--R--ISeq4: SITDC--R-ETGNSKY-PNCAYQTTQAEKHIIVACEG-NP------Y-V-PVHYDA-S--VSeq5: HITDC--R-LTNGSRY-PNCAYRTSPKERHIIVACEG-SP------Y-V-PVHFDA-S--VSeq6: KVTDC--R-DTGSSRA-PNCRYRAIASTRRVVIACEG-NP------Q-V-PVHFDG-----Seq7: N-T-C--T-RTSITPR-P-CPYSSRTETNYICVKCE--NQ------Y---PVHFAGIGRCPData set 1Seq1: ------------------MVIS---PGSLLLVFLLS--LDV--IPP-TLAQDNYRYKNFL---N---QH-YDAKP-TGRDYRYCESMMKKSeq2: --------------------------------------------------KET-AAAKFE---R---QH-MDSSTSAASSSNYCNQMMKSSeq3: ------------------MTMS---PCPLLLVFVLG--LVV--IPP-TLAQNE-RYEKFL---R---QH-YDAKP-NGRDDRYCESMMKESeq4: ------------------MVVD---LPRYLPLLLL---LEL--WEP-MYLLCS-QPKGLS---R---AHWFEIQH-VQTSRQPCNTAMRGSeq5: ---------------MKPLVIKFAWPLPLLLLLLLPPKLQGNYWDFGEYELNP-EVRDFI---R---EYESTGPTKPPTVKRIIEMITIGSeq6: MDDEWERPEQATSAAEHPHTAA---QAAYNLADKLG--LEVPSWNPTTSSLRQ-KDRKLESNPRPAPSQKFYTEPIHNSTYPRCDDPMLV*Seq1: -RKLT--SPCK-EVNT-FIH-------------DTKNNIKAICGENGRPYGVNLRI-SNSRFQ---ITTCKHKG-GSPKPPCQYKAF---Seq2: -RNLTK-DRCK-PVNT-FVH-------------ESLADVQAVCSQKNVACKNGQTN-CYQSYSTMSITDCRETG-SSKYPNCAYKTTQANSeq3: -RKLT--SPCK-DVNT-FIH-------------GTKKNIRAICGKKGSPYGENFRI-SNSPFQ---ITTCTHSG-ASPRPPCGYRAF---Seq4: VNNYT--QHCK-QINT-FLH-------------ESFQNVAATCSLHNITCKNGRKN-CHESAEPVKMTDCSHTG-GA-YPNCRYSSD---Seq5: DQPFNDYDYCNTELRTKQIHYKGRCYPEHYIAGVPYGELVKACDGEEVQCKNGVKS-CRRSMNLIEGVRCVLET-GQQMTNCTY------Seq6: VNRYR--PRCK-DIDT-FLH-------------TSFANV-GVCGHPSGFCKEHKSANCHNSSSQVPIIVCNLTTPGRTYTQCRYQM----* *Seq1: K-DFR--YIVIACE-----DG--W---PVHFDESFISMSeq2: K------HIIVACE-----GNP-Y--VPVHFDAS-V--Seq3: K-DFR--YIVIACE-----DG--W---PVHFDESFISPSeq4: K-QYK--FFIVACEH-PKKEDPPYQLVPVHLDKI-V--Seq5: KTILMIGYPVVSCQW--DEETKIF--IPDHIYNMSLPKSeq6: KGSVE--YYTVACKPRTPWDSPIYPVVPVHLHGT-F--Data set 2 * *Seq1: MVPKLFTSQICLLLLLGLMGVEGSLHARPPQFTRAQWFAIQHISLNP-PRCTIAMRAINNYR--W--RC-KNQNTFLRTTFANVVNVCGNSeq2: MGLKLLESRLCLLLSLGLVLMLAS--CQPP--TPSQWFEIQHIYNRAYPRCNDAMRHRNRFT--G--HC-KDINTFLHTSFASVVGVCGNSeq3: ---------------------------RPPQFTRAQWFAIQHISLNP-PRCTIAMRAINNYR--W--RC-KNQNTFLRTTFANVVNVCGNSeq4: MGSKTLKSQLCLLLLLGLLLMLVSCQAQTP--S--QWFEIQHIYNSAYPRCDDAMRVIHGYSGVYLQRQEK----Y-K---------C--Seq5: MVVDL-PRYLPLLLLLELWEPMYLLCSQPKGLSRAHWFEIQHVQTSR-QPCNTAMRGVNNYT--Q--HC-KQINTFLHESFQNVATCSLHSeq6: MGSKTLKSQLCLLLLLGLLLMLVSCQAQTP--S--QWFEIQHIYNSAYPRCDDAMRVIHGYSGVYLQRQEK----Y-K---------C--* *Seq1: QSIRCPHNRTLNNCHRSRFRVPLLHCDLINPGAQNISNCRYADRPGRRFYVVACDNRDPRDSPRYPVVPVHLDTTISeq2: RNIPCG-NRTYRNCHNSRYRVSITFCNLTTP-ARIYTQCRYQTTRSRKFYTVGCDPRTPRDSPMYPVVPVHLDRIFSeq3: QSIRCPHNRTLNNCHRSRFRVPLLHCDLINPGAQNISNCRYADRPGRRFYVVACDNRDPRDSPRYPVVPVHLDTTISeq4: ------HD-S-S----SK--IPVIICDLITWSNQH-THCRYKTTVAMKSYTVACNPRTPRNSPRYPFVPCHLDGTISeq5: N-ITCKNGR--KNCHESAEPVKMTDCSHTG-GA--YPNCRYSSDKQYKFFIVACEHPKKEDPP-YQLVPVHLDKIVSeq6: ------HD-S-S----SK--IPVIICDLITWSNQH-THCRYKTTVAMKSYTVACNPRTPRNSPRYPFVPCHLDGTIData set 3Seq1: -MP--INIISDSVYVVNAVLALETAGNFKQSSPVSEILMKIQNCILMREHPFYIQHIRAHTSLPGPMVKGNAIADSATRDM---VFL---Seq2: MLRWLVALLSHSCFVSKGGGMFYAVRKGRQTGVYRTWAE-CQQ-QVNRFPSASFKKFAT--EKEAWAFVGAGPPDGQQSAP---AET--HSeq3: -MR--VNGRNLTNLRFADDIVLIANHPNTASKMLQELVQKCSE-VGLEINTGKTKVLRNRFADPSKVYFGSPSPTTQLDDVDEYIYLGRQSeq4: -MP--INIISDSVYVVNAVLALETAGNFKQSSPVSEILMKIQNCILMHEHPFYIQHIRAHTSLPGPMVKGNAIADSATRDM---VFL---Seq5: -M---V-LIS----LLNPETQ-NRSQNMSQNNPLRALLDK-QD-ILL------LDGAMA-TELEA---RGCNLAD-SLWS--AWAA----* *Seq1: SQSSIESAKKFH-QLYYVPASTL--RQ-KFKLTRK--EARDIVLQCG-----KCVE--------FVNA-PSVG-VNPRG-LRPLD-VWQMSeq2: GASAVAQENASH-RE-EPETDVLCCNACKRRYEQS--TNEEHTVRRA-----KHDE--------EQST-PVVS-EAKFSYMGEFAVVYTDSeq3: INAQNNLMPEIH-R--RRRAA----WA-AFNGIKN--TTDSITDK-------K----------------IRAN-LFDSI-VLPAL-TYGSSeq4: SQSSIESAKNFH-QLYHVPASTL--RQ-KFKLTRK--EARNIVLQCG-----KCVE--------FVNA-PSVG-VNPRG-LRPLD-VWQMSeq5: VENP-ELIREVHLDYYRAGAQCA--ITASYQATPAGFAARGLDEAQSKALIGKSVELARKAREAYLAENPQAGTLLVAGSVRPYG-AYLT*Seq1: D--GMHIP-SFG-KLQ-YV---H-----------------------VSIDTSSGVLHASPLTGEKAVH-VIS-HCLE-----AWAA----Seq2: GCCSGNGRNRARAGIGVYWGPGH------------------------------------PLN-------ISE-R-LP-----GRQT----Seq3: E--AWTFTKALSERVR-IT---H-ASLERRLVG--ITLTQQRERDLHREDIRTMSLVRDPLN-----F-VKK-RKLGWAGHVARRK----Seq4: D--VTHIP-SFG-KLQ-YV---H-----------------------VSIDTSSGVLHASPLTGEKAVH-VIS-HCLE-----AWAA----Seq5: D--GSEYRGDYHCTVEAFQAF-HRPRVEALLVAGADLLACETLPNFSEIEALAELLTAYPRARAWFSFTLRDSEHLS-DGTPLRDVVALLSeq1: WGKPLVLKTDNGPAYTSSKFSQFCKQMQVKHITGLPYNPQG---QGIIERAHHT------LKQYL-QKQKGGIEAMTPKMALSLTIFTLNF---Seq2: -N--------------------------------------------------------------------------------------------Seq3: DGRWTTLMTEWRPYGWKRPVGRPPMRWTDSLRKEITTRDAD---GEVITPWSTI------AKDRK-EWLAVIRRNTTNS---------------Seq4: WGKPLVLKTDNGPAYTSSKFSQFCKQM-------------------------------------------------------------------Seq5: AGYPQVVALGINCIALENTTAALQHLHGLTVLPLVVYPNSGEHYDAVSKTWHHHGEHCAQLADYLPQWQAAGARLIGGCCRTTPADIAALKARSFig. 1. Alignments of data sets 0 to 3


