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EFFICIENT CONSTRAINED MULTIPLE SEQUENCEALIGNMENT WITH PERFORMANCE GUARANTEEFRANCIS Y.L. CHIN�, N.L. HO, T.W. LAMyDepartment of Computer Siene, The University of Hong Kong,Pokfulum Road, Hong Kongfhin,nlho,twlamg�s.hku.hkPRUDENCE W.H WONGzDepartment of Computer Siene, The University of Liverpool,Liverpool L69 7ZF, United Kingdompwong�s.liv.a.ukThe Constrained Multiple Sequene Alignment problem is to align a set of sequenesof maximum length n subjet to a given onstrained sequene, whih arises from someknowledge of the struture of the sequenes. This paper presents new algorithms for thisproblem, whih are more eÆient in terms of time and spae (memory) than the previousalgorithms15, and with a worst-ase guarantee on the quality of the alignment. Savingthe spae requirement by a quadrati fator is partiularly signi�ant as the previousO(n4)-spae algorithm has limited appliation due to its huge memory requirement.Experiments on real data sets on�rm that our new algorithms show improvements inboth alignment quality and resoure requirements.Keywords: Multiple Sequene Alignment; Approximation algorithm.1. IntrodutionMultiple sequene alignment (MSA) is one of the problems in omputational bi-ology that have been studied extensively2;6;10;8;3;13;14. Roughly speaking, given aset of k � 2 sequenes, the MSA problem is to align similar subsequenes in thesame region. From the omputational point of view, the optimal alignment of twosequenes an be found in O(n2) time, where n is the length of the longer sequene.Yet, for three or more sequenes, it has been proved that �nding the optimal align-ment is NP-hard2;17, i.e., intratablea. In the literature, there are a number of MSAalgorithms that attempt to approximate the optimal alignments, some of theman provide a worst-ase approximation ratio1;5;12, while some others work wellin pratie11;16. Notie that with all these algorithms, users (biologists) an onlyontrol the alignment results by adjusting parameters like the soring funtion andgap penalty. In other words, users ould not inorporate their knowledge of thefuntionalities or strutures of the input sequenes, whih is indeed very useful foraurate and biologially meaningful alignment. This naturally triggers the studiesof sequene alignment that allows users to provide additional onstraints.Tang et al. 15 were the �rst to investigate the MSA problem with an additionalinput of a onstrained sequene, whih imposes a struture on the alignment byrequiring every harater in the onstrained sequene to appear in an entire olumn�This researh was support in part by Hong Kong RGC Grant HKU-7135/04E.yThis researh was support in part by Hong Kong RGC Grant HKU-7042/02E.zPart of this researh was performed while the author was at The University of Hong Kong.aThere are several possible ways to de�ne the optimal alignment. In this paper we adopt thewidely-used Sum-of-Pair (SP) sore, whih asks for an alignment that minimizes the sum of thealignment ost of all pairs of sequenes. 1
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2 Chin, Ho, Lam, Wongin the alignment of the multiple sequenes. As an example, Tang et al. onsideredthe alignment of RNase sequenes. Suh sequenes are all known to ontain threeative-site residues His(H), Lyn(K), His(H) that are essential for RNA degrading.Therefore, one would expet that in an alignment of RNase sequenes, eah of thesethree residues should be aligned in the same olumn, i.e., an alignment satisfyingthe onstrained sequene \HKH".Tang et al. 15 presented the �rst algorithm for �nding an optimal onstrainedsequene alignment for two sequenes; both the time and spae (memory) require-ments of the algorithm are O(�n4), where � is the length of the onstrained se-quene. For aligning k � 3 sequenes, they gave a heuristi algorithm (alled pro-gressive alignment algorithm) with time and spae requirements being O(�kn4)and O(�n4), respetively. When applied to aligning multiple RNase sequenes, thisalgorithm produes satisfatory alignments. Yet the appliation of the algorithm islimited as the memory requirement is too large and it runs too long. For example, foraligning sequenes of length 250 with a onstraint of length 3, the memory require-ment already exeeds 15 Gigabytes. Nowadays ordinary workstations are equippedwith at most 4 Gigabytes.This paper attempts to improve the results of Tang et al. from a theoretialas well as a pratial point of view. For pair-wise alignment, we give a new al-gorithm for �nding the optimal onstrained alignment that uses O(�n2) time andO(�n2) spae. Based on this result, we an immediately improve the time and spaeomplexities of the progressive alignment algorithm by a quadrati fator. Further-more, we give an algorithm, alled enter-star, for onstrained multiple sequenealignment with worst-ase performane guarantee; more preisely, for aligning ksequenes, the new algorithm an produe an alignment that approximates the op-timal alignment within a fator of (2� 2k ). This algorithm adopts the framework ofGus�eld's (unonstrained) multiple sequene alignment algorithm5. The time andspae omplexities of the new algorithm are respetively O(Ckn2) and O(n2), whereC is the total number of ourrenes of the onstrained sequene in all sequenes.The improved memory requirement allows us to handle sequenes with thousandsof haraters on ordinary workstations. See Table 1 for a summary of these results.We have implemented all the algorithms mentioned above and tested them withseveral real data sets. In all data sets, the enter-star algorithm shows improvementin all aspets. In partiular, the quality of the alignment is 13% to 30% better, whilethe memory requirement is at most one-perent of Tang et al's algorithm. ResultsTime Spae Approximationomplexity omplexity RatioTang et al.'s algorithm15 O(�kn4) O(�n4) {Improved Tang et al.'salgorithm (this paper) O(�k2n2) O(�n2) {Center-star (this paper) O(Ckn2) O(n2) 2� 2kTable 1. Performane of onstrained multiple sequene alignment approximation algorithms on ksequenes of maximum length n, with a onstrained sequene P of length �. C is the total numberof ourrenes of the onstrained sequene P in all sequenes.
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Constrained Multiple Sequene Alignment 3Tang's Algorithm Center-star AlgorithmSore Time Spae Sore Time Spae(seond) (MB ) (seond) (MB)7 sequenesmax length 125 46319 127 425 40051 12 1.9� = 36 sequenesmax length 185 71208 381 1192 49875 46 2.0� = 36 sequenesmax length 186 63315 254 654 45241 54 2.0� = 45 sequenesmax length 327 | Memory exhausted | 57325 208 2.3� = 3 Table 2. Alignment sores of CMSA algorithmsare briey summarized in Table 2. More details will be given in Setion 6.The rest of this paper is organized as follows. Setion 2 de�nes the onstrainedsequene alignment problem, and Setion 3 presents a new algorithm that omputesthe optimal onstrained pair-wise sequene alignment. Setion 4 presents algorithmsfor onstrained multiple sequene alignment (CMSA). In Setion 5, an approxima-tion algorithm is given with an approximation ratio (2 � 2k ). We report empirialresults of our developed CMSA tools in Setion 6. Finally, in Setion 7, we onludethis paper by giving some further researh diretions in CMSA.2. PreliminariesLet � be the set of haraters (residues), S = fS1; S2; : : : ; Skg be a set of k se-quenes, with maximum length n, over �. Let Si[x::y℄ denote the substring of Sifrom the x-th harater to the y-th harater of Si, where 1 � x � y � n. Inpartiular, let Si[x℄ denote the x-th harater in the sequene Si.We de�ne the pair-wise sequene alignment of two sequenes S1 and S2 as twoequal-length sequenes S01 and S02 suh that jS01j = jS02j = n0, and removing allspae haraters \�" from S01 and S02 gives S1 and S2, respetively. For a givendistane funtion Æ(x; y) whih measures the mutation distane between two har-aters, where x; y 2 �[ f�g, the pair-wise sore of two length-n0 sequenes S01 andS02 is de�ned asP1�x�n0 Æ(S01[x℄; S02[x℄). In the multiple sequene alignment (MSA)problem, we are given k sequenes S = fS1; S2; : : : ; Skg, an MSA is an alignmentmatrix A, with k rows and n0(� n) olumns, suh that removing spae hara-ters from the i-th row of A gives Si for 1 � i � k. We denote by A[x; y℄ theharater at the x-th row and y-th olumn of A. The sum-of-pair (SP) sore of anMSA A is de�ned as the sum of the pair-wise sores of all pairs of the sequenes, i.e.,P1�p<q�kP1�y�n0 Æ(A[p; y℄; A[q; y℄). It has been shown that �nding the alignment
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4 Chin, Ho, Lam, Wongmatrix with the minimum sum-of-pair alignment sore is NP-omplete17;2.In the onstrained multiple sequene alignment problem (CMSA), we are given,in addition to the inputs of the MSA problem, a onstrained sequene P =(P [1℄; P [2℄; : : : ; P [�℄), where P is a ommon subsequene of all Si 2 fS1; S2; : : : ; Skg.The solution of a CMSA problem is a onstrained alignment matrix A whih is analignment matrix suh that eah harater in P appears in an entire olumn of Aand also in the same order, i.e., there exists a list of integers fr1; r2; : : : ; r�g where1 � r1 < r2 < : : : < r� � n0, suh that for all 1 � i � k and all 1 �  � �, we haveA[i; r ℄ = P [℄.Consider a onstrained alignment matrix A for S = fS1; S2; : : : ; Skg and theonstrained sequene P . Denote by sp sore(A) the SP sore of the onstrainedalignment matrix A. Let A�S be the optimal onstrained alignment matrix for Sand A0S be the onstrained alignment matrix derived by some approximation al-gorithm. The approximation algorithm is said to have an approximation ratio � ifsp sore(A0S)sp sore(A�S) � � for all S and P .3. Constrained Pair-wise Sequene Alignment (CPSA)3.1. Problem de�nitionThe onstrained pair-wise sequene alignment (CPSA) problem is a speial asefor CMSA problem with k = 2. Given two sequenes S1 and S2, a onstrainedsequene P (with length �) and a distane funtion Æ, the problem is to omputean optimal CPSA, (S01S02 ), suh that jS01j = jS02j = jn0j, and P1�i�n0 Æ(S01[i℄; S02[i℄)is minimized subjet to P [℄ = S01[r ℄ = S02[r ℄ for some r ; 1 �  � � and1 � r1 < r2 < : : : < r� � n0. Note that removing all spaes in S01 and S02 gives S1and S2 respetively.3.2. Optimal Constrained Pair-wise Sequene AlignmentTang et al. 15 presented an algorithm to ompute the optimal onstrained pair-wisealignment with time and spae omplexities O(�n4) and O(�n4), respetively. Thisalgorithm �rst omputes the O(n4) pair-wise alignment sores of all substrings inS1 and all substrings in S2 and then further determines the best positions suh thatthe onstrained haraters are aligned. The overall time omplexity is O(�n4). Toimprove the time omplexity, our algorithm takes into onsideration the onstrainedalignment as we ompute the alignment sore. This approah makes it not neessaryto onsider all the pair-wise alignments between every pair of substrings of S1and S2, and thus, failitates the redution in the time omplexity.Below we show how to ompute the sum-of-pair sore of the optimal CPSA bydynami programming and how to obtain the alignment by baktraking throughthe path of omputation of the sore. Reall that for any sequene S, S[x::y℄ denotesthe substring of S starting at the x-th harater and ending at the y-th haraterof S. The dynami programming omputes the optimal CPSA inrementally by on-
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Constrained Multiple Sequene Alignment 5sidering the pair-wise alignments of S1[1::1℄ with S2[1::1℄, : : :, S1[1::i℄ with S2[1::j℄and so on, for 1 � i � jS1j and 1 � j � jS2j.We denote by D(i; j; ) the optimal onstrained pair-wise sequene alignmentsore of sequenes S1[1::i℄ and S2[1::j℄ with onstrained haraters P [1::℄ mathed.In partiular, D(n1; n2; �) is the optimal CPSA sore of S1 and S2 with respet tothe onstrained sequene P , where jS1j = n1, jS2j = n2 and jP j = �. Thefollowing theorem gives a reurrene formula for D(i; j; ) in terms of D(i0; j0; 0)where i0 � i, j0 � j, and 0 � .Theorem 1. For any 0 � i � n1; 0 � j � n2 and 0 �  � �,D(i; j; ) = min8>><>>:D(i� 1; j � 1;  � 1) + Æ(S1[i℄; S2[j℄) if S1[i℄ = S2[j℄ = P [℄,D(i� 1; j � 1; ) + Æ(S1[i℄; S2[j℄) if i; j > 0,D(i� 1; j; ) + Æ(S1[i℄;�) if i > 0,D(i; j � 1; ) + Æ(�; S2[j℄) if j > 0,with boundary onditions D(0; 0; 0) = 0, D(i; 0; ) =1 for  � 1, 0 � i � n1, andD(0; j; ) =1 for  � 1, 0 � j � n2.Proof. There are four ases to align fS1[1::i℄; S2[1::j℄g with respet to P [1::℄,� If S1[i℄ = S2[j℄ = P [℄, we an align S1[i℄ and S2[j℄ while aligning fS1[1::(i�1)℄; S2[1::(j�1)℄g with P [1::(�1)℄ mathed. Then, the sore is D(i�1; j�1;  � 1) + Æ(S[i℄; S[j℄).� If i; j > 0, we an align S1[i℄ and S2[j℄ while aligning fS1[1::(i�1)℄; S2[1::(j�1)℄g with P [1::℄ mathed. Then the sore is D(i�1; j�1; )+Æ(S[i℄; S[j℄).� If i > 0, we an align S1[i℄ with a spae while aligning fS1[1::(i�1)℄; S2[1::j℄gwith P [1::℄ mathed. Then the sore is D(i� 1; j; ) + Æ(S[i℄;�).� If j > 0, we an align S2[j℄ with a spae while aligning fS1[1::i℄; S2[1::(j �1)℄g with P [1::℄ mathed. Then the sore is D(i; j � 1; ) + Æ(�; S[j℄).The alignment to be hosen is the one suh that the new sore is minimum. There-fore, D(i; j; ) an be omputed by taking the minimum of the above four values.Based on Theorem 1, we an ompute the sum-of-pair sore of the optimal CPSAusing dynami programming (see Algorithm 1). After �lling in the three dimensionaltable D(i; j; ), we an obtain the CPSA by baktraking through the omputationpath from D(n1; n2; �) to D(0; 0; 0). Let S01 and S02 be the aligned sequene forS1 and S2, respetively. Initially, set S01 and S02 to two empty strings, and startbaktraking from D(n1; n2; �). If D(i; j; ) is omputed from D(i � 1; j � 1; ) orD(i�1; j�1; �1), prepend S1[i℄ and S2[j℄ to S01 and S02, respetively. If D(i; j; ) isomputed from D(i� 1; j; ), prepend S1[i℄ and a spae to S01 and S02, respetively;similarly, if D(i; j; ) is omputed from D(i; j � 1; ), prepend a spae and S2[j℄ toS01 and S02, respetively. Repeat baktraking until reahing D(0; 0; 0), and (S01S02 ) isthe optimal onstrained sequene alignment of fS1; S2g with P mathed.Theorem 2. The optimal onstrained pair-wise alignment an be omputed in bothO(�n1n2) time and spae, where jS1j = n1, jS2j = n2 and jP j = �.Proof. The 3-dimensional table D is of size � (n1 + 1)� (n2 + 1)� (�+ 1) �. Theomputation of eah entry D(i; j; ) needs only the values of D(i� 1; j � 1;  � 1),
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6 Chin, Ho, Lam, WongAlgorithm 1: Dynami programming algorithm for the optimal CPSA sorebegin// Initialization:Initialize D(0; 0; 0), D(i; 0; ), and D(0; j; ), for 0 � i � n1, 0 � j � n2,and 1 �  � �, aording to Theorem 1.// Dynami Programming:for  = 0 to � dofor i = 0 to n1 dofor j = 0 to n2 doIf D(i; j; ) is not initialized, ompute D(i; j; ) aording toTheorem 1 in terms of D(i� 1; j � 1;  � 1), D(i� 1; j� 1; ),D(i� 1; j; ) and D(i; j � 1; ).endD(i�1; j�1; ),D(i�1; j; ) andD(i; j�1; ), thus, eahD(i; j; ) an be omputedin onstant time. Therefore, the optimal CPSA sore of two sequenes of lengthsn1 and n2 and onstrained sequene P of length � an be omputed in O(�n1n2)time. On the other hand, in eah step of the baktraking from D(n1; n2; �) toD(0; 0; 0), at least one of the indies i, j or  is dereased by one. Thus, there are atmost (�+n1+n2) steps. Notie that eah step takes onstant time. Therefore, thebaktraking takes O(�+n1+n2) time. Thus, the whole algorithm takes O(�n1n2)time. Table D has O(�n1n2) entries; eah entry D(i; j; ) requires onstant amountof spae (for storing the alignment sore and the diretion of the omputation path).Therefore, the algorithm requires O(�n1n2) spae. Thus, the theorem follows.Remarks: It is easy to see that omputation of sores for row i (olumn j,resp.) only depends on that for row i � 1 (olumn j � 1, resp.), hene, the opti-mal sore an be omputed in O(�min (n1; n2)) spae. By exploiting the idea ofHirshberg's algorithm7, we an reover the alignment in O(�min (n1; n2)) spaewhile maintaining the time omplexity.4. Constrained Multiple Sequene Alignment (CMSA)In this setion, we study the onstrained multiple sequene alignment problem. InSetion 4.1, we redue the time and spae omplexities of the progressive CMSAheuristi algorithm15 presented by Tang et al. from O(�kn4) to O(�k2n2). In Se-tion 4.2, we show an algorithm that omputes the optimal CMSA in O(�nk) timeusing the sum-of-pair sore.4.1. Improved progressive CMSA algorithmTang et al. 15 presented an O(�kn4) time and O(�n4) spae progressive heuristialgorithm for the CMSA problem for a set of k sequenes of length at most nand a onstrained sequene P of length �. In Tang et al.'s algorithm, a k � kdistane matrix of the k sequenes is onstruted, where the (i; j) entry represents



September 23, 2004 14:43 DRAFT VERSION jbb-revise
Constrained Multiple Sequene Alignment 7the pair-wise sequene alignment sore of Si and Sj (note that this alignment soredoes not onsider the onstrained sequene P ). A minimum spanning tree (MST)is then onstruted using the Kruskal algorithm4 based on the distane matrix ofthese sequenes. Sequenes are then progressively aligned using the CPSA algorithmin the order of the onstrution of MST. This algorithm performs exatly (k �1) onstrained pair-wise sequene alignments. By using the onstrained pair-wisealignment algorithm desribed in Setion 3.2, the time and spae omplexities anbe improved from O(�kn4) and O(�n4) to O(�k2n2) and O(�n2), respetively.4.2. An algorithm for the optimal CMSAIn this setion, we extend the optimal CPSA algorithm desribed in Setion 3.2to k sequenes. This involves the onstrution of a (k + 1)-dimensional ma-trix D, whih takes O(�nk) time and spae. More preisely, let the multi-dimensional array D(i1; i2; : : : ; ik; ) be the optimal CMSA sore matrix forfS1[1::i1℄; S2[1::i2℄; : : : ; Sk[1::ik℄g with P [1::℄ aligned in  olumns. Then the opti-mal alignment sore for fS1 : : : Skg with respet to the onstrained sequene P isgiven by D(n1; n2; : : : ; nk;�), where ni = jSij for 1 � i � k. D(i1; i2; : : : ; ik; ) anbe omputed by the following reurrene,(i) D(f0gk; 0) = 0, D(i1; i2; : : : ; ik; ) = 1 if  � 1 and some but not all of ij 'sequal zero;(ii) D(i1; i2; : : : ; ik; ) =min8>><>>:D(i1 � 1; i2 � 1; : : : ; ik � 1;  � 1) + Æ(S1[i1℄; S2[i2℄; : : : ; Sk[ik℄)if S1[i1℄ = S2[i2℄ = : : : = Sk[ik℄ = P [℄;min�2f0;1gk�f0gk �D(i1 � �1; i2 � �2; : : : ; ik � �k; )+ Æ(�1S1[i1℄; �2S2[i2℄; : : : ; �kSk[ik℄)�where �j = 0 or 1, �jSj [ij ℄ with �j = 0 representing a spae harater, andÆ(x1; : : : ; xk) =P1�i<j�k Æ(xi; xj).Based on the above reurrene, we have a dynami programming formulationthat omputes the optimal CMSA for multiple sequenes, whih is a generalizationof the dynami programming formulation for the CPSA problem. Pratially, Lip-man et al. 9 noted that the optimal CMSA an be omputed for less than 6 shortsequenes of length at most 200. In the following setion, we present an approxima-tion algorithm for the CMSA problem.5. An Approximation Algorithm for CMSAGus�eld5 showed that the enter-star algorithm (the idea of enter-star originatesfrom Wong18) has an approximation ratio (2 � 2k ) for the unonstrained multiplesequene alignment problem. Based on the enter-star approximation algorithm,we derive an approximation algorithm for CMSA that yields an approximationratio (2 � 2k ). This algorithm runs in O(Ckn2) time, where C is the total numberof ourrenes of the onstrained sequene P in all sequenes. Throughout thissetion, we assume that the distane funtion Æ(x; y) follows the triangle inequality,i.e., Æ(x; y) � Æ(x; z) + Æ(z; y), for any x; y; z 2 �Sf�g, and Æ(�;�) = 0.
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8 Chin, Ho, Lam, Wong5.1. The enter-star alignment approximation for CMSAFor a set of k sequenes S = fS1 : : : Skg, the enter sequene S 2 S is the sequenesuh that the sum of onstrained pair-wise alignment sores to the other (k � 1)sequenes is minimized, with the additional onstraint that P must appear in thesame list of positions of S in every onstrained pair-wise alignment of S with Sj ,where j 6= . The star-sum sore of a CMSA with respet to a enter sequeneS is the sum of pair-wise sore of S with all Sj 2 S � fSg. The onstrainedenter-star approximation algorithm is to �nd the CMSA and its enter sequeneS suh that the star-sum sore with respet to S is minimized. The algorithm anbe summarized below,(i) For eah Si in S, treat Si as the enter sequene and for eah list of positions(r1; r2; : : : ; r�) that Si is aligned with P , i.e., P [℄ = Si[r ℄ 8 1 �  � �, alignall other Sj with Si at the positions spei�ed by (r1; r2; : : : ; r�).(ii) Find the S and (r1; r2; : : : ; r�) with the minimum star-sum sore.(iii) Merge the (k � 1) onstrained pair-wise sequene alignments between S andother Sj under the positions (r1; : : : ; r�) into a onstrained alignment matrix.We elaborate on Steps (i) to (iii) of the above algorithm in the disussion below.(i) Aligning a andidate enter sequene with another sequene under a listof onstrained positions (r1; : : : ; r�) | WLOG, assume that the andidate entersequene is S1. Given r1; r2; : : : ; r�, we perform the CPSA algorithm on S1 withS2 : : : Sk under (r1; r2; : : : ; r�), using a slightly modi�ed reurrene in Theorem 1,treating S as S1 and Sp as S2 (2 � p � k). Below, D(i; j; ) denotes the optimalonstrained pair-wise sequene alignment sore of sequenes S1[1::i℄ and S2[1::j℄with onstrained haraters P [1::℄ mathed in positions r1; : : : ; r , respetively.D(i; j; ) = min8>>>><>>>>:D(i� 1; j � 1;  � 1) + Æ(S1[i℄; S2[j℄)if r = i, S1[i℄ = S2[j℄ = P [℄,D(i� 1; j � 1; ) + Æ(S1[i℄; S2[j℄) if i; j > 0,D(i� 1; j; ) + Æ(S1[i℄;�) if i > 0,D(i; j � 1; ) + Æ(�; S2[j℄) if j > 0, (1)with boundary onditions D(0; 0; 0) = 0, D(i; 0; ) =1 for  � 1, 0 � i � n1, andD(0; j; ) =1 for  � 1, 0 � j � n2.Suppose n1 = jS1j and n2 = jS2j. Notie that using the above reurrene, forany 1 �  � �, the omputation path from D(n1; n2; �) to D(0; 0; 0) must passthrough some points D(r ; j; ) with 1 � j � n2. This implies that the alignmentours in S1 at the positions (r1; r2; : : : ; r�).(ii) Finding the optimal enter sequene and the onstrained positions | Con-sider eah sequene Si and a list of positions of ourrene (r1; r2; : : : ; r�) of P in Siwhere 1 � i � k. The ombination (Si; r1; r2; : : : ; r�) that gives the minimum sumof onstrained pair-wise alignment sores with other sequenes under the positions(r1; r2; : : : ; r�) is seleted as the enter sequene S and the list of positions to bealigned with P .(iii) Merging the (k � 1) onstrained pair-wise alignments | Based on the op-timal enter sequene, we onstrut a CMSA, denoted by A. Suppose the enter
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Constrained Multiple Sequene Alignment 9sequene of S is S1 under a list of positions (r1; r2; : : : ; r�). There are (k � 1) on-strained pair-wise alignments, one for S1 aligning with eah Sj , for 2 � j � k.Suppose jS1j = n, and let Aj be the optimal onstrained pair-wise alignmentof S1 and Sj under (r1; r2; : : : ; r�). De�ne s0 and sn be the longest sequenesof spaes inserted before S1[1℄ and after S1[n℄ in all (k � 1) Aj 's, respetively.Similarly for 1 � i � n � 1, let si be the longest sequene of spaes betweenS1[i℄ and S1[i + 1℄ in all (k � 1) Aj 's. Initially, set A to ontain a single rowS01 = [s0�S1[1℄�s1�S1[2℄�: : :�si�1�S1[i℄�si�: : :�S1[n℄�sn℄, where the � oper-ator denotes the string onatenation operation. Note that jS01j = jS1j+P0�i�n jsij.For eah Sj with 2 � j � k, add Sj to A aording to the optimal onstrainedpair-wise sequene alignment ( �S1�Sj ) of S1 and Sj , i.e., insert olumns of spaes to( �S1�Sj ) until �S1 is idential to S01.Notie that the insertion of spaes during the onstrution of A does not hangethe pair-wise alignment sore of S1 with eah of the other sequenes with respetto P under the positions (r1; r2; : : : ; r�). Therefore, A is the onstrained multiplesequene alignment for S = fS1; : : : ; Skg and P with the minimum star-sum sore.5.2. Complexities of the enter-star algorithm for CMSABased on the reurrene equation presented in Equation 1, the optimal onstrainedpair-wise alignment of S1 with S2, under a set of � positions fr1; : : : ; r�gmathing Ptakes time and spae O(�n2). This an be further redued to O(n2) time and spae.Lemma 1. Consider two sequenes S1 and S2, and a onstrained sequene P withjS1j = n1, jS2j = n2 and jP j = �. Given a list of positions r = (r1; : : : ; r�) suhthat S1[r ℄ is to math P [℄, for all 1 �  � �, it suÆes to ompute only O(n1n2)entries in the matrix D(i; j; ) to obtain D(n1; n2; �).Proof. Based on Equation 1, we have the following three observations about theomputation of D(i; j; ). Consider any 0 �  � �, and any 1 � j � n2. (i) Wheni < r , D(i; j; ) = 1. (ii) When i = r , D(i; j; ) is omputed from D(i � 1; j �1;  � 1). (iii) When i > r , D(i; j; ) is omputed from D(i0; j0; ) for some i0 � iand j0 � j. As a result, we an see that for any 0 �  � �, we only need to omputethe entries D(i; j; ) for all r � i � r+1 � 1 and all 1 � j � n2. (We set r0 = 0and r�+1 = n1 + 1 for the boundary ase.) Therefore, the total number of entriesthat we need to ompute equals to P0���+1(r+1 � r)n2 = O(n1n2).Based on Lemma 1, we an ompute the optimal onstrained alignment for S1and S2 with P mathed in a partiular sequene of positions as shown in Algo-rithm 2. In Step (i), we need to ompute (k� 1) pair-wise alignments for eah om-bination (S; r1; : : : ; r�) and there are C suh ombinations. Therefore, by Lemma 1,Step (i) an be omputed in O(Ckn2) time. To �nd the best ombination, we onlyneed to keep trak of the urrent best one as we onsider a new ombination. There-fore, Steps (i) and (ii) together takes O(Ckn2) time and O(n2) spae. For Step (iii),
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10 Chin, Ho, Lam, WongAlgorithm 2: The dynami programming of Center-star alignment (Step (i))begin// Initialization:Initialize D(0; 0; 0), D(i; 0; ), and D(0; j; ), for 0 � i � n1, 0 � j � n2,and 1 �  � �, aording to Equation 1.// Dynami Programming: set r0 = 0; r�+1 = n1for  = 0 to � dofor i = r to r+1 dofor j = 0 to n2 doIf D(i; j; ) is not initialized, ompute D(i; j; ) aording toEquation 1 in terms of D(i� 1; j� 1; � 1), D(i� 1; j� 1; ),D(i� 1; j; ) and D(i; j � 1; ).endnotie that the resulting sequene S01 has length at most kn. If we store the wholeresulting alignment matrix, we need O(k2n) spae and the merging would takeO(k2n) time. However, we an simply store the loations of the non-spae har-aters of the sequenes in the alignment matrix. Then the merging an be doneinrementally by adding eah sequene in turn using O(n) time, i.e., in total themerging takes O(kn) time. The spae requirement an also be redued to O(kn).As a result, the overall time and spae omplexities of the enter-star algorithm isO(Ckn2) and O(n2), respetively.5.3. Performane of the enter-star algorithm for CMSAThe following theorem shows that the enter-star approximation algorithm forCMSA has an approximation ratio (2 � 2k ). De�ne the distane �(S0i; S0j) of twoaligned sequenes S0i and S0j as the sum of pair-wise distanes between the two har-aters at the same positions in S0i and S0j , i.e., �(S0i; S0j) =P1�p�jS0ij Æ(S0i[p℄; S0j [p℄).Theorem 3. Given S = fS1; : : : ; Skg and a onstrained sequene P . Suppose As isthe alignment output by the onstrained enter-star algorithm, and A� be the optimalonstrained alignment with respetive to P . Then, sp sore(As)sp sore(A�) � 2� 2k .Proof. For any alignment matrix A, let Ai be the i-th row of A, for 1 � i � k, andss sorei(A) be the star-sum sore of A with Ai as the enter sequene. Let A bethe optimal enter sequene of A. Sine A� is a CMSA for S and P , sp sore(A�) =P1�i<j�k �(A�i ; A�j ). Then,sp sore(A�) = 12P1�i;j�k;i 6=j �(A�i ; A�j )= 12P1�i�k (P1�j�k;i 6=j �(A�i ; A�j ))= 12P1�i�k (ss sorei(A�))� k2 min1�i�k (ss sorei(A�))� k2 (ss sore(As)).On the other hand,
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Constrained Multiple Sequene Alignment 11Data Set 0 Data Set 1 Data Set 2 Data Set 3Num Seq 7 6 6 5Max seq len 125 185 186 328ConstrainedSequene HKH HKH HKSH HKHSequene ID H-RNase3H-RNase2BP-RNaseABS-RNaseH-RNaseAH-RNase4RC-RNase

gi|119124|sp|P12724|ep humangi|2500564|sp|P70709|ep ratgi|13400006|pdb|ldyt|gi|20930966|ref|xp 142859.1|gi|20873960|ref|xp 127690.1|gi|20930966|ref|xp 142859.1|
gi|20930966|ref|XP 142859.1|gi|119124|sp|P12724|ECP HUMANgi|2500564|sp|P70709|ECP RATgi|13400006|pdbgi|20930966|ref|XP 142859.1|gi|20873960|ref|XP 127690.1|

gi|10068295|gb|AAE40716.1|gi|17549935|ref|NP 510780.1|gi|28509297|ref|XP 282983.1|gi|28499937|ref|XP 204162.2|gi|4902995|dbj|BAA77929.1|Table 3. Sequenes used in data sets 0 to 3sp sore(As) = 12P1�i;j�k;i 6=j �(Asi ; Asj)� 12P1�i;j�k;i 6=j;i6=;j 6= (�(Asi ; As) + �(As; Asj))+ 12 (P1�j�k;j 6=�(As; Asj) +P1�i�k;i 6=�(Asi ; As))= 2(k�1)2 P1�i�k;i 6=�(Asi ; As)= (k � 1)(ss sore(As)).Note that the inequality above (i.e., lines 1 and 2) is due to the triangle inequality.Therefore, sp sore(As)sp sore(A�) � 2(k�1)k = 2� 2k , and the theorem follows.6. Empirial ResultsIn Setion 6.1, we evaluate the performane of our CPSA and CMSA algorithmsusing four data sets of RNase sequenes taken from the NCBIb. In Setion 6.2,we show that, in pratie, C, the total number of ourrenes of the onstrainedsequene as a subsequene in all sequenes, is muh smaller than n2.6.1. Experiments on CPSA and CMSA algorithmsAll our experiments are onduted on an Intel workstation with 2.0 GHz CPUand 4GB main memory. First, we use CPSA to align two RNase sequenes (withlengths about 150) with three onstrained haraters (� = 3), using our CPSAalgorithm (Setion 3) and Tang et al.'s onstrained pair-wise sequene algorithm15.Tang et al.'s CPSA algorithm took 127 seonds and 400 MB memory. For the sameproblem instane, our CPSA algorithm ran within a fration of seond with only 1.5MB of memory spae. This shows the pratiality of our CPSA algorithm espeiallyfor long sequenes and long onstrained sequene.To evaluate the performane of di�erent CMSA algorithms, we implementedthe original Tang et al.'s progressive CMSA algorithm15, the improved progressiveCMSA algorithm, and the onstrained enter-star algorithm. We ran these CMSAalgorithms on four sets of RNase sequenes, summarized in Table 3. In data set 0, webNational Center of Biotehnology Information, URL: http://www.nbi.nlm.nih.gov.
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12 Chin, Ho, Lam, WongTang's Alg. Improved Tang's Alg. Center-star Alg.Time Spae Sore Time Spae Sore Time Spae sore(se) (MB) (se) (MB) (se) (MB)Data set 0 127 425 46319 < 1 2.0 46319 12 1.9 40051Data set 1 381 1192 71208 < 1 2.6 71208 46 2.0 49875Data set 2 254 654 63315 < 1 2.7 63315 54 2.0 45241Data set 3 | memory exhausted | < 2 6.2 60849 208s 2.3 57325Table 4. Alignment sores of CMSA algorithmsTang's Algorithm Center-star AlgorithmData set 0 38668 38668Data set 1 69368 47216Data set 2 63315 31776Data set 3 62966 59021Table 5. Alignment sores of the two algorithms after the re�nement by ClustalWused the same set of 7 RNase sequenes used by Tang et al. 15 We obtained 3 otherdata sets of RNase sequenes from the NCBI; data sets 1 and 2 ontain 6 RNase se-quenes of lengths about 180, and data set 3 ontains 5 long RNase sequenes (withmaximum length 327). Sine we ast the CMSA as a minimization problem, weused a modi�ed soring funtion based on Pam70. These four data sets were alignedusing the CMSA algorithms, measuring the running time, memory requirementand the modi�ed minimizing-Pam70 alignment sore. These alignments were thenpost-proessed using the web-tool ClustalW as desribed by Tang et al.15.Table 4 summarizes the performane of the three di�erent CMSA algorithmson these data sets; while the performane of the algorithms after the ClustalWre�nement on these data sets is presented in Table 5. The alignments of data sets0 to 3, using the onstrained enter-star algorithm, are shown in Figure 1. Due tothe page limit, the alignment matries are divided into bloks of 90 haraters, the�rst 90 haraters of eah sequene are listed �rst before the subsequent bloks.Columns that math the onstrained haraters are marked by an asterisk (*).Comparing the alignment matries produed by enter-star approximation al-gorithm and Tang et al.'s progressive CMSA algorithm15 in data sets 1, 2 and 3, wenote that the onstrained haraters P [1℄::P [�℄ are aligned at di�erent olumns ofthe alignment matries. Computationally, the enter-star approximation algorithmfor CMSA produes alignments with better SP alignment sores (see Table 4).6.2. Number of onstraint OurrenesWe refer to the paper by Tang et al. 15 for an appliation used for CMSA. Intheir experiments, seven RNase sequenes were aligned so that the three ative-siteresidues, \HKH", were in the same olumns in the alignment matrix. This motivatesthe CMSA problem as all RNase sequenes ontain the ative-site residues \HKH"that are essential for the main funtionality of the RNase degrading to RNA. InThe ClustalW web tool is provided by European Bioinformatis Institute, URL:http://www.ebi.a.uk/lustalw/.
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Constrained Multiple Sequene Alignment 13No. of samples 1954 2351Perentage 83.11% 100.0 %Max sequene length 500 3989Median Ourrenes 42 56Average Ourrenes 105 46480 Perentile 124 41390 Perentile 241 1248Table 6. Ourrenes of onstraint \HKH" in RNase sequenes from NCBIour experiment, we show that C, the total number of ourrenes of the onstraint\HKH" in eah sequene is reasonably small. Sine the value of C is relatively small,the running time of our enter-star algorithm is more eÆient than the O(�kn4)-time algorithm desribed by Tang et al. 15 There are totally 2351 sequenes from theNCBI. In these 2351 RNase sequenes, a total of 1954 sequenes, or 83%, ontainless than 500 residues. For eah RNase, we measured the mean, mode and averagenumber of ourrenes of the onstraint \HKH" and the result is reported in Table 6.CMSA is usually done for a set of sequenes of approximately the same length.As shown in Table 6, for CMSA of k sequenes with lengths below 500, we haveC � 105k on average and C � 241k for 90% of these RNase sequenes. Even amongthe longer RNase sequenes, the average number of ourrenes is only about 464.Thus, the running time of our enter-star algorithm is O((500k)kn2) on averagewhih is muh shorter than the running time O(�kn4) of Tang et al.'s algorithm15.7. ConlusionUsing traditional MSA tools, biologists have limited ontrol over the output of thesequene alignment. They an only hoose high level alignment parameters suh asgap penalty, soring funtion, et. As suh, they are unable to inorporate theirknowledge about the sequenes, suh as known funtionalities and strutures of theinput sequenes for use by the sequene alignment tool. This information is essentialfor aurate and biologially meaningful sequene alignment. Constrained sequenealignment provides users with the ability to di�erentiate important residues thatneed to be aligned together over other residues. This problem was �rst studied byTang et al. 15 However, many existing tehniques developed for MSA in the liter-ature do not work for the CMSA problem due to the time and spae omplexitiesof O(�n4). In this paper, we redue the time and spae omplexities of solving theoptimal pair-wise onstrained alignment from O(�n4) to O(�n2). With this im-provement, existing tehniques for MSA an now be modi�ed to solve the CMSAproblem. We have demonstrated how the enter-star sequene approximation al-gorithm an be applied to solve the CMSA problem. With the redution in timeand spae omplexities, it is hoped that the improved quality of sequene alignmentan help biologists. It is worth-mentioning that the onstrained enter-star align-ment problem an be shown to be NP-hard, exploiting approximation algorithmsof this problem for the onstrained multiple sequene alignment problem would beof theoreti and pratial interest.
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Constrained Multiple Sequene Alignment 15Data set 0 * *Seq1: -K--E-TA-A-AK-FERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCSQKNVAC-KN-GQT-N-CYQSYSTMSeq2: -RPPQFTR-A-QW-FAIQHI-S-LNPPR----CTIAMRAINNYRWRCKNQNTFLRTTFANVVNVCGNQSIRC-PH-NRTLNNCHRSRFRVSeq3: MK--P-PQFTWAQWFETQHINM-TSQQCN-N-AMQVI-N-NFQR-RCKNQNTFLRTTFANVVNVCGNPNITCPSNRSRN-N-CHHSGVQVSeq4: -K--E-SA-A-AK-FERQHIDSSTSSVSSSNYCNEMMTSRNLTQDRCKPVNTFVHESLADVQAVCSQKNVAC-KN-GQT-N-CYQSYSAMSeq5: -K--E-SR-A-KK-FQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQNVCFQEKVTC-KN-GQG-N-CYKSNSSMSeq6: -M--Q-DG-MYQR-FLRQHVHPEETGGSDR-YCNLMMQRRKMTLYHCKRFNTFIHEDIWNIRSICSTTNIQC-KN-GKM-N-CHEG--VVSeq7: ----Q-NW-A-T--FQQKHI-INTPIINC-N--TIMDNNIYIVGGQCKRVNTFIISSATTVKAICT--GVIN-MN-VLS-T--TR-FQ-L*Seq1: SITDC--R-ETGSSKY-PNCAYKTTQANKHIIVACEG-NP------Y-V-PVHFDA-S--VSeq2: PLLHCDLI-NPGAQNI-SNCRYADRPGRRFYVVACDNRDPRDSPR-YPVVPVHLDT-T--ISeq3: PLIHC--NLTTPSPQNISNCRYAQTPANMFYIVACDNRDPRRDPPQYPVVPVHLD--R--ISeq4: SITDC--R-ETGNSKY-PNCAYQTTQAEKHIIVACEG-NP------Y-V-PVHYDA-S--VSeq5: HITDC--R-LTNGSRY-PNCAYRTSPKERHIIVACEG-SP------Y-V-PVHFDA-S--VSeq6: KVTDC--R-DTGSSRA-PNCRYRAIASTRRVVIACEG-NP------Q-V-PVHFDG-----Seq7: N-T-C--T-RTSITPR-P-CPYSSRTETNYICVKCE--NQ------Y---PVHFAGIGRCPData set 1Seq1: ------------------MVIS---PGSLLLVFLLS--LDV--IPP-TLAQDNYRYKNFL---N---QH-YDAKP-TGRDYRYCESMMKKSeq2: --------------------------------------------------KET-AAAKFE---R---QH-MDSSTSAASSSNYCNQMMKSSeq3: ------------------MTMS---PCPLLLVFVLG--LVV--IPP-TLAQNE-RYEKFL---R---QH-YDAKP-NGRDDRYCESMMKESeq4: ------------------MVVD---LPRYLPLLLL---LEL--WEP-MYLLCS-QPKGLS---R---AHWFEIQH-VQTSRQPCNTAMRGSeq5: ---------------MKPLVIKFAWPLPLLLLLLLPPKLQGNYWDFGEYELNP-EVRDFI---R---EYESTGPTKPPTVKRIIEMITIGSeq6: MDDEWERPEQATSAAEHPHTAA---QAAYNLADKLG--LEVPSWNPTTSSLRQ-KDRKLESNPRPAPSQKFYTEPIHNSTYPRCDDPMLV*Seq1: -RKLT--SPCK-EVNT-FIH-------------DTKNNIKAICGENGRPYGVNLRI-SNSRFQ---ITTCKHKG-GSPKPPCQYKAF---Seq2: -RNLTK-DRCK-PVNT-FVH-------------ESLADVQAVCSQKNVACKNGQTN-CYQSYSTMSITDCRETG-SSKYPNCAYKTTQANSeq3: -RKLT--SPCK-DVNT-FIH-------------GTKKNIRAICGKKGSPYGENFRI-SNSPFQ---ITTCTHSG-ASPRPPCGYRAF---Seq4: VNNYT--QHCK-QINT-FLH-------------ESFQNVAATCSLHNITCKNGRKN-CHESAEPVKMTDCSHTG-GA-YPNCRYSSD---Seq5: DQPFNDYDYCNTELRTKQIHYKGRCYPEHYIAGVPYGELVKACDGEEVQCKNGVKS-CRRSMNLIEGVRCVLET-GQQMTNCTY------Seq6: VNRYR--PRCK-DIDT-FLH-------------TSFANV-GVCGHPSGFCKEHKSANCHNSSSQVPIIVCNLTTPGRTYTQCRYQM----* *Seq1: K-DFR--YIVIACE-----DG--W---PVHFDESFISMSeq2: K------HIIVACE-----GNP-Y--VPVHFDAS-V--Seq3: K-DFR--YIVIACE-----DG--W---PVHFDESFISPSeq4: K-QYK--FFIVACEH-PKKEDPPYQLVPVHLDKI-V--Seq5: KTILMIGYPVVSCQW--DEETKIF--IPDHIYNMSLPKSeq6: KGSVE--YYTVACKPRTPWDSPIYPVVPVHLHGT-F--Data set 2 * *Seq1: MVPKLFTSQICLLLLLGLMGVEGSLHARPPQFTRAQWFAIQHISLNP-PRCTIAMRAINNYR--W--RC-KNQNTFLRTTFANVVNVCGNSeq2: MGLKLLESRLCLLLSLGLVLMLAS--CQPP--TPSQWFEIQHIYNRAYPRCNDAMRHRNRFT--G--HC-KDINTFLHTSFASVVGVCGNSeq3: ---------------------------RPPQFTRAQWFAIQHISLNP-PRCTIAMRAINNYR--W--RC-KNQNTFLRTTFANVVNVCGNSeq4: MGSKTLKSQLCLLLLLGLLLMLVSCQAQTP--S--QWFEIQHIYNSAYPRCDDAMRVIHGYSGVYLQRQEK----Y-K---------C--Seq5: MVVDL-PRYLPLLLLLELWEPMYLLCSQPKGLSRAHWFEIQHVQTSR-QPCNTAMRGVNNYT--Q--HC-KQINTFLHESFQNVATCSLHSeq6: MGSKTLKSQLCLLLLLGLLLMLVSCQAQTP--S--QWFEIQHIYNSAYPRCDDAMRVIHGYSGVYLQRQEK----Y-K---------C--* *Seq1: QSIRCPHNRTLNNCHRSRFRVPLLHCDLINPGAQNISNCRYADRPGRRFYVVACDNRDPRDSPRYPVVPVHLDTTISeq2: RNIPCG-NRTYRNCHNSRYRVSITFCNLTTP-ARIYTQCRYQTTRSRKFYTVGCDPRTPRDSPMYPVVPVHLDRIFSeq3: QSIRCPHNRTLNNCHRSRFRVPLLHCDLINPGAQNISNCRYADRPGRRFYVVACDNRDPRDSPRYPVVPVHLDTTISeq4: ------HD-S-S----SK--IPVIICDLITWSNQH-THCRYKTTVAMKSYTVACNPRTPRNSPRYPFVPCHLDGTISeq5: N-ITCKNGR--KNCHESAEPVKMTDCSHTG-GA--YPNCRYSSDKQYKFFIVACEHPKKEDPP-YQLVPVHLDKIVSeq6: ------HD-S-S----SK--IPVIICDLITWSNQH-THCRYKTTVAMKSYTVACNPRTPRNSPRYPFVPCHLDGTIData set 3Seq1: -MP--INIISDSVYVVNAVLALETAGNFKQSSPVSEILMKIQNCILMREHPFYIQHIRAHTSLPGPMVKGNAIADSATRDM---VFL---Seq2: MLRWLVALLSHSCFVSKGGGMFYAVRKGRQTGVYRTWAE-CQQ-QVNRFPSASFKKFAT--EKEAWAFVGAGPPDGQQSAP---AET--HSeq3: -MR--VNGRNLTNLRFADDIVLIANHPNTASKMLQELVQKCSE-VGLEINTGKTKVLRNRFADPSKVYFGSPSPTTQLDDVDEYIYLGRQSeq4: -MP--INIISDSVYVVNAVLALETAGNFKQSSPVSEILMKIQNCILMHEHPFYIQHIRAHTSLPGPMVKGNAIADSATRDM---VFL---Seq5: -M---V-LIS----LLNPETQ-NRSQNMSQNNPLRALLDK-QD-ILL------LDGAMA-TELEA---RGCNLAD-SLWS--AWAA----* *Seq1: SQSSIESAKKFH-QLYYVPASTL--RQ-KFKLTRK--EARDIVLQCG-----KCVE--------FVNA-PSVG-VNPRG-LRPLD-VWQMSeq2: GASAVAQENASH-RE-EPETDVLCCNACKRRYEQS--TNEEHTVRRA-----KHDE--------EQST-PVVS-EAKFSYMGEFAVVYTDSeq3: INAQNNLMPEIH-R--RRRAA----WA-AFNGIKN--TTDSITDK-------K----------------IRAN-LFDSI-VLPAL-TYGSSeq4: SQSSIESAKNFH-QLYHVPASTL--RQ-KFKLTRK--EARNIVLQCG-----KCVE--------FVNA-PSVG-VNPRG-LRPLD-VWQMSeq5: VENP-ELIREVHLDYYRAGAQCA--ITASYQATPAGFAARGLDEAQSKALIGKSVELARKAREAYLAENPQAGTLLVAGSVRPYG-AYLT*Seq1: D--GMHIP-SFG-KLQ-YV---H-----------------------VSIDTSSGVLHASPLTGEKAVH-VIS-HCLE-----AWAA----Seq2: GCCSGNGRNRARAGIGVYWGPGH------------------------------------PLN-------ISE-R-LP-----GRQT----Seq3: E--AWTFTKALSERVR-IT---H-ASLERRLVG--ITLTQQRERDLHREDIRTMSLVRDPLN-----F-VKK-RKLGWAGHVARRK----Seq4: D--VTHIP-SFG-KLQ-YV---H-----------------------VSIDTSSGVLHASPLTGEKAVH-VIS-HCLE-----AWAA----Seq5: D--GSEYRGDYHCTVEAFQAF-HRPRVEALLVAGADLLACETLPNFSEIEALAELLTAYPRARAWFSFTLRDSEHLS-DGTPLRDVVALLSeq1: WGKPLVLKTDNGPAYTSSKFSQFCKQMQVKHITGLPYNPQG---QGIIERAHHT------LKQYL-QKQKGGIEAMTPKMALSLTIFTLNF---Seq2: -N--------------------------------------------------------------------------------------------Seq3: DGRWTTLMTEWRPYGWKRPVGRPPMRWTDSLRKEITTRDAD---GEVITPWSTI------AKDRK-EWLAVIRRNTTNS---------------Seq4: WGKPLVLKTDNGPAYTSSKFSQFCKQM-------------------------------------------------------------------Seq5: AGYPQVVALGINCIALENTTAALQHLHGLTVLPLVVYPNSGEHYDAVSKTWHHHGEHCAQLADYLPQWQAAGARLIGGCCRTTPADIAALKARSFig. 1. Alignments of data sets 0 to 3


