
Scheduling for Electricity Cost in Smart Grid∗

Mihai Burcea† Wing-Kai Hon‡ Hsiang-Hsuan Liu†‡

Prudence W.H. Wong† David K.Y. Yau§

July 7, 2015

Abstract

We study an offline scheduling problem arising in demand response
management in smart grid. Consumers send in power requests with a
flexible set of timeslots during which their requests can be served. For
example, a consumer may request the dishwasher to operate for one hour
during the periods 8am to 11am or 2pm to 4pm. The grid controller,
upon receiving power requests, schedules each request within the specified
duration. The electricity cost is measured by a convex function of the load
in each timeslot. The objective of the problem is to schedule all requests
with the minimum total electricity cost. As a first attempt, we consider
a special case in which the power requirement and the duration a request
needs service are both unit-size. For this problem, we present a polynomial
time offline algorithm that gives an optimal solution and show that the
time complexity can be further improved if the given set of timeslots forms
a contiguous interval.

1 Introduction

We study an offline scheduling problem arising in “demand response manage-
ment” in smart grid [11, 13, 16, 26, 41]. The electrical smart grid is one of the
major challenges in the 21st century [9, 37, 38]. The smart grid uses informa-
tion and communication technologies in an automated fashion to improve the
efficiency and reliability of production and distribution of electricity. Peak de-
mand hours happen only for a short duration, yet makes existing electrical
grid less efficient. It has been noted in [7] that in the US power grid, 10%

∗A preliminary version of this paper appeared in Proceedings of the 7th International
Conference on Combinatorial Optimization and Applications, 2013 [5] and some results are
improved in this version.
†Department of Computer Science, University of Liverpool, UK. Email:

{m.burcea,hhliu,pwong}@liverpool.ac.uk.
‡Department of Computer Science, National Tsing Hua University, Taiwan. Email:

{wkhon,hhliu}@cs.nthu.edu.tw.
§Information Systems Technology and Design, Singapore University of Technology and

Design, Singapore. Email: david yau@sutd.edu.sg.

1

of all generation assets and 25% of distribution infrastructure are required for
less than 400 hours per year, roughly 5% of the time [38]. Demand response
management attempts to overcome this problem by shifting users’ demand to
off-peak hours in order to reduce peak load [6, 19, 25, 28, 31, 33]. This is enabled
technologically by the advances in smart meters [20] and integrated communi-
cation. Research initiatives in the area include GridWise [17], the SeeLoadTM

system [24], EnviroGridTM [32], peak demand [36], etc.
Demand response management aids in smoothing the power demand profile

of the system across time by avoiding power overload periods [19]. This helps
to increase the grid sustainability by reducing the overall production cost [25].
With reduced peak demand, generation capacity can be reduced to meet the
reliability requirement. In addition, off-peak demand could be increased which
means the generation capacity will be utilized in a more efficient way [33]. De-
mand response management is not only advantageous to the supplier but also to
the consumers as well. It is common that electricity supplier charges according
to the generation cost, i.e., the higher the generation cost the higher the elec-
tricity price. Therefore, it is to the consumers’ advantage to reduce electricity
consumption at high price and hence reduce the electricity bill [33].

The smart grid operator and consumers communicate through smart me-
tering devices. We assume that time is divided into unit integral timeslots. A
consumer sends in a power request with the power requirement, required dura-
tion of service, and the time intervals that this request can be served (giving
some flexibility). For example, a consumer may want the dishwasher to operate
for one hour during the periods from 8am to 11am or 2pm to 4pm. The grid
operator upon receiving all requests has to schedule them in their respective
time intervals using the minimum energy cost. The load of the grid at each
timeslot is the sum of the power requirements of all requests allocated to that
timeslot. The energy cost is modeled by a convex function on the load. As a
first attempt to the problem, we consider in this paper the case that the power
requirement and the duration of service requested are both unit-size, a request
can specify several intervals during which the request can be served, and the
power cost function is any convex function.

Previous work. Koutsopoulos and Tassiulas [19] has formulated a simi-
lar problem to our problem where the cost function is piecewise linear. They
show that the problem is NP-hard, and their proof can be adapted to show the
NP-hardness of the general problem studied in this paper for which jobs have
arbitrary duration or arbitrary power requirement (see elaboration in Section 6).
They also presented a fractional solution and some online algorithms. Salinas et
al. [33] considered a multi-objective problem to minimize energy consumption
cost and maximize some utility. A closely related problem is to manage the
load by changing the price of electricity over time, which has been considered
in a game theoretic manner [6, 28, 31]. Heuristics have also been developed for
demand side management [25]. Other aspects of smart grid have also been con-
sidered, e.g., communication [7, 21–23], security [23, 27]. Reviews of smart grid
can be found in [11, 13, 16, 26, 41].

The combinatorial problem we defined in this paper has analogy to the tra-

2

ditional load balancing problem [2] in which the machines are like our timeslots
and the jobs are like our power requests. The main difference is that the aim of
load balancing is usually to minimize the maximum load of the machines. An-
other related problem is deadline scheduling with speed scaling [1, 3, 40] in which
the cost function is also a convex function, nevertheless a job can be served us-
ing varying speed of the processor. Two problems that are more closely related
are the minimum cost maximum flow problem [8] with convex functions [29, 35]
when we have unit power requirement and unit duration for each job1; and the
maximum-cardinality minimum-weight matching on a bipartite graph2. Yet,
existing algorithms for the problem cater for more general input [14, 18, 30, 39].
They are more powerful and have higher time complexity than necessary to
solve our problem. For example, to solve our problem, integral flow is required
for the flow version of the problem making the problem hard while the matching
problem can be solved in O(n2τ log(nτ) + n3τ) [4, 12], where n is the number
of jobs and τ is the number of timeslots. As we will see, this time complexity is
higher than the algorithm we are going to derive.

Our contributions. In this paper we study an optimization problem in
demand response management in which requests have unit power requirement,
unit duration, arbitrary timeslots that the jobs can be served, and the cost
function is a general convex function. We propose a polynomial time offline
algorithm that gives an optimal solution. We show that the time complexity of
the algorithm is O(n2τ), where n is the number of jobs and τ is the number
of timeslots. We further show that if the feasible timeslots for each job to
be served form a contiguous interval, we can improve the time complexity to
O(n log τ + min(n, τ)n log n).

Technically speaking, we use a notion of “feasible graph” to represent al-
ternative assignments. After scheduling a job, we can look for improvement
via this feasible graph. We show that we can maintain optimality each time a
job is scheduled. For the analysis, we compare our schedule with an optimal
schedule via the notion of “agreement graph”, which captures the difference of
our schedule and an optimal schedule. We then show that we can transform our
schedule stepwise to improve the agreement with the optimal schedule, without
increasing the cost, thus proving the optimality of our algorithm. Note that this
idea may be similar to finding matching as described above but in the matching
formulation, the size of graph is n times larger than the feasible graph we de-
scribe and thus our algorithm has a lower time complexity. Also the matching

1Reduction: In addition to a source and a sink, we create a vertex for each job and a
vertex for each timeslot. A job-vertex vj is connected, with capacity 1, to a timeslot-vertex
vt if timeslot t is a feasible timeslot for job j. The source is connected to each job-vertex with
capacity 1 and each timeslot-vertex is connected to the sink with capacity n, where n is the
number of jobs. The cost function of the arc from a timeslot-vertex to the sink is a convex
function of the flow on the arc. A unit flow is pushed from the source to every job-vertex vj .
The flow on the arc from a timeslot-vertex vt to the sink is the load on timeslot t.

2Reduction: Given n jobs, we can construct a bipartite graph G = (U, V,E) where each
vertex uj ∈ U represents a job j and each timeslot t is represented by n vertices vt,i in V for
1 ≤ i ≤ n. If a job j is feasible at timeslot t, we add n edges (uj , vt,i), for 1 ≤ i ≤ n, with
edge weight set to f(i)− f(i− 1), which is indepedent of the job.

3

formulation does not take advantage when the intervals are contiguous.
Organization of the paper. Section 2 gives the definition of the problem

and notions required. Section 3 describes our algorithm and its properties.
In Section 4, we prove that our algorithm gives an optimal solution, while in
Section 5 we prove its time complexity. We give some concluding remarks in
Section 6.

2 Preliminaries

We consider an offline scheduling problem where the input consists of a set of
unit-sized jobs J = {J1, J2, . . . , Jn}. The time is divided into integral timeslots
T = {1, 2, 3, . . . , τ} and each job Ji ∈ J is associated with a set of feasible
timeslots Ii ⊆ T , in which it can be scheduled. In this model, each job Ji must
be assigned to exactly one feasible timeslot from Ii. The load `(t) of a timeslot
t represents the total number of jobs assigned to the timeslot. We consider a
general convex cost function f that measures the cost used in each timeslot t
based on the load at t. The total cost used is the sum of cost over time. Over
all timeslots this is

∑
t∈T f(`(t)). The objective is to find an assignment of all

jobs in J to feasible timeslots such that the total cost is minimized. We first
describe the notions required for discussion.

Feasible graph. Given a particular job assignment A, we define a feasible
graph G which is a directed multi-graph that shows the potential allocation
of each job in alternative assignments. In G each timeslot is represented by a
vertex and the number inside the vertex denotes the load of the timeslot. If job
Ji is assigned to timeslot r in A, then for all w ∈ Ii\{r} we add a directed arc
(r, w) with Ji as its label.

Legal-path in a feasible graph. A path (t, t′) in a feasible graph G is
a legal-path if and only if the load of the starting point t is at least 2 more
than the load of the ending point t′, i.e., `(t) − `(t′) ≥ 2. Note that if there is
a legal-path in the feasible graph G, the corresponding job assignment is not
optimal.

Agreement graph. We define an agreement graph Ga(A,A∗) which is
a directed multi-graph that measures the difference between a job assignment
solution A and an optimal assignment A∗. In Ga(A,A∗) each timeslot is rep-
resented by a vertex and the number inside the vertex denotes the load of the
timeslot. For each job Ji such that Ji is assigned to different timeslots in A
and A∗, we add an arc from t to t′, where t and t′ are the timeslots that Ji is
assigned to by A and A∗, respectively. The arc (t, t′) is labelled by the tuple
(Ji, +/−/=). The second value in the tuple is “+” or “−” if moving job Ji
from timeslot t to timeslot t′ causes the total cost of assignment A to increase
or decrease, respectively. The value is “=” if moving the job does not cause any
change in the total cost of assignment A.

We now give two examples that demonstrate the use of notions introduced
in this section.

4

003

J1

J2

J2t1 t2 t3

(a) Feasible graph G for the arbitrary
job assignment A.

11 1

J1

J2

J2t1 t2 t3

(b) Feasible graph G∗ for the optimal
assignment A∗.

003

(J1,−)

(J2,−)

t1 t2 t3

(c) The agreement graph Ga(A,A∗).

Figure 1: Feasible graphs and agreement graph for Example 1.

Example 1. Let J = {J1, J2, J3}, T = {t1, t2, t3}, I1 = {t1, t2}, I2 = {t1, t2, t3},
and I3 = {t1}. Figure 1(a) shows the feasible graph G for an arbitrary job as-
signment A, where J1, J2, and J3 are all assigned to timeslot t1. Figure 1(b)
shows the feasible graph G∗ for an optimal assignment A∗, where J1, J2, and
J3 are each assigned to timeslots t2, t3, and t1, respectively. Figure 1(c) shows
the agreement graph Ga(A,A∗). In Ga(A,A∗), J1 and J2 are both assigned to
different timeslots in the optimal solution A∗ compared to A. By moving either
J1 or J2 to the their assigned timeslots in A∗, the overall cost of solution A
would decrease.

Example 2. Let J = {J1, J2, J3}, T = {t1, t2, t3}, I1 = {t1, t2}, I2 = {t1, t2},
and I3 = {t2, t3}. Figure 2(a) shows the feasible graph G for an arbitrary
job assignment A, where J1 and J3 are both assigned to timeslot t2, and J2 is
assigned to timeslot t1. Figure 2(b) shows the feasible graph G∗ for an optimal
assignment A∗, where J1, J2, and J3 are each assigned to timeslots t1, t2, and t3,
respectively. Figure 2(c) shows the agreement graph Ga(A,A∗). In Ga(A,A∗),
all jobs are assigned to different timeslots in the optimal solution A∗ compared
to A. By moving J1 from t2 to t1 the overall cost of solution A would remain the
same, by moving J2 from t1 to t2 the overall cost of solution A would increase,
and by moving J3 from t2 to t3 the overall cost of solution A would decrease.

Observation 1. By moving Ji from t1 to t2 the overall energy cost (i) decreases
if `(t1) > `(t2) + 1, (ii) remains the same if `(t1) = `(t2) + 1, and (iii) increases
if `(t1) < `(t2) + 1.

5

1 02

J1

J2 J3

t1 t2 t3

(a) Feasible graph G for the arbitrary
job assignment A.

111

J1

J2 J3t1 t2 t3

(b) Feasible graph G∗ for the optimal
assignment A∗.

1 02

(J1,=)

(J2,+) (J3,−)

t1 t2 t3

(c) The agreement graph Ga(A,A∗).

Figure 2: Feasible graphs and agreement graph for Example 2.

Shifting. By Observation 1, existence of a legal-path implies that the as-
signment is not optimal and we can execute a “shift” and decrease the total cost
of the assignment. Given a legal-path P , a shift moves each job corresponding
to an arc e along P from the original assigned timeslot to the timeslot deter-
mined by e. More precisely, if the path contains an arc (r, w) with J as its label,
then job J is moved from r to w. It is easy to see from Observation 1 that such
a shift decreases the cost, implying that the original assignment is not optimal.

On the other hand, when there is no legal-path, it is not as straightforward
to show that the assignment is optimal. Nevertheless, we will prove this is the
case in Lemma 7.

3 Our Algorithm

The algorithm. We propose a polynomial time offline algorithm that mini-
mizes the total cost (Figure 3 shows an illustration). The algorithm arranges
the jobs in J in arbitrary order, and runs in stages. At any Stage i, we have
three steps:
(1) Assign Ji to a feasible timeslot with minimum load, breaking ties arbitrarily;
(2) Suppose Ji is assigned to timeslot t. We update the feasible graph G to
reflect this assignment in the following way. If applicable, we add arcs from t
labelled by Ji to any other feasible timeslots (vertices) of Ji;
(3) If there exists any legal-path in G from t to any other vertex t′, the algorithm
executes a shift along the legal-path (see Section 2). At the end, the algorithm
updates the feasible graph G to reflect this shift.

Invariants. In the next section, we show that the algorithm maintains the
following two invariants. At the end of each stage:
(I1) There is no legal-path in the resulting feasible graph;
(I2) The assignment is optimal for the jobs considered so far.

6

1 00

J1

(J

t1 t2 t3

(a) The feasible graph G after assigning
job J1 to t1.

11 0

J1

J2

J2

(J

t1 t2 t3

(b) The feasible graph G after assigning
job J2 to t2.

1 02

J1

J2

J2

(J

t1 t2 t3

(c) The feasible graph G after assigning
job J3 to t1.

11 1

J1

J2

J2t1 t2 t3

(d) The feasible graph G after executing
the shift of the legal-path in (c).

Figure 3: Illustration of our algorithm on Example 1. Suppose the algorithm
schedules the jobs in the order of their indices. (a) – (c) Feasible graphs after
J1, J2, and J3 are assigned, respectively. (d) The path (t1, t3) is a legal-path in
(c) and we shift by moving J1 to t2 and J2 to t3.

Additional notations. To ease the discussion, in the remainder of the
paper, we use `′i(t) to represent the load of timeslot t after assigning Ji (but
before the shift), `i(t) to represent the load of timeslot t at the end of Stage i,
and `′i(s, t) and `i(s, t) to represent `′i(s)− `′i(t) and `i(s)− `i(t), respectively.

4 Correctness

Theorem 1. Our algorithm finds an optimal assignment.

Framework. Consider any stage. After Step (2), there may be a legal-path
in the resulting feasible graph G. In Lemma 2, we show that if a legal-path exists
in G after assigning Ji to timeslot r, there is at least one legal-path starting
from r. Suppose the algorithm chooses the legal-path (r, t) and executes the
shift along this path in Step (3). In Lemma 4, we show that if there is no legal-
path in the feasible graph G before assigning a job, then after assigning a job
and executing the corresponding shift by the algorithm, the resulting feasible
graph has no legal-paths. Therefore, Step (3) of the algorithm needs to be
applied only once and there will be no legal-path left, implying that Invariant
(I1) holds. In Lemma 7, we show that if there is no legal-path in a feasible graph
G, the corresponding assignment is optimal and hence Invariant (I2) holds.

4.1 Proof of Invariant (I1)

We begin by proving Lemmas 2 and 3. Lemma 3 is a technical lemma used in
the proof of Lemma 4.

7

s w
t

Ji
s w

t

(a) Case 2-1 before and after assigning
job Ji to timeslot s.

J

s

w

t

r

Ji

s

w

t

r

(b) Case 2-2 before and after assigning
job Ji to timeslot r.

Figure 4: The two sub-cases of Case 2 in the proof of Lemma 3.

Lemma 2. Suppose that before assigning job Ji to timeslot r the feasible graph
G has no legal-path. If there is any legal-path after assigning Ji, there is at least
one legal-path starting from r.

Proof. Assume that there is a legal-path (s, t) after assigning Ji to timeslot r,
so that `′i(s, t) ≥ 2. If r = s, we have obtained a desired legal-path. Otherwise,
r 6= s, there are two cases:
Case 1. G contains an (s, t) path before assigning Ji. Since r 6= s, `i−1(s) =
`′i(s) and `i−1(t) ≤ `′i(t) (the latter inequality comes from the fact that r may
be equal to t). This implies `i−1(s, t) ≥ `′i(s, t) ≥ 2, which contradicts the
precondition that there is no legal-path before assigning Ji. Thus, Case 1 cannot
occur.
Case 2. G does not contain any (s, t) path before assigning Ji. Since (s, t)
becomes a path (legal-path) after assigning Ji, it must be the case that assigning
Ji to timeslot r adds some new arc (r, w) (with Ji as its label) to G, which
connects an existing (s, r) path and an existing (w, t) path. We know that
`i−1(s) − `i−1(r) ≤ 1 because there is no legal-path before assigning Ji. Also,
`′i(s) = `i−1(s), `′i(t) = `i−1(t), and `′i(r) = `i−1(r) + 1 because the new job Ji
is assigned to r, with r 6= s. Hence, `′i(r, t) ≥ `′i(s, t), so that the (r, t) subpath
is also a legal-path.

Lemma 3. If before assigning a job the feasible graph G does not have a legal-
path, then after assigning one more job there will be no legal-paths where the
load of the starting point is at least 3 more than the load of the ending point. In
other words, the load difference corresponding to any new legal-path, if it exists,
is exactly 2.

Proof. Suppose that before assigning a job there is no legal-path in the feasible
graph G. That is, `i−1(s, t) ≤ 1 for any path (s, t) in G with starting point s
and ending point t. Now assume on the contrary that there is a legal-path (s, t)
with `′i(s, t) ≥ 3. There are two cases:
Case 1. G contains an (s, t) path before assigning job Ji. Assigning a job at
timeslot r increases by one on the load difference of any path starting from r.
On the other hand, the load difference of any path ending at r is decreased by
one. Recall that `′i(s, t) ≥ 3. There are three situations: (i) Job Ji is assigned

8

to timeslot s, implying `i−1(s, t) ≥ 2; (ii) Job Ji is assigned to timeslot t, which
implies `i−1(s, t) ≥ 4; (iii) Job Ji is not assigned to timeslot s or time t, which
implies `i−1(s, t) ≥ 3. Each of these cases contradicts the fact that G has no
legal-path before assigning Ji.
Case 2. G does not contain any (s, t) path before assigning job Ji. That is,
assigning job Ji creates a new path (legal-path) (s, t) with `′i(s, t) ≥ 3. There
are two sub-cases (see Figure 4 for an illustration):
Case 2-1. Job Ji is assigned to timeslot s. Since (s, t) becomes a new legal-
path after assigning job Ji, it must be the case that assigning Ji to timeslot s
adds some new arc (s, w) in G that connects s with an existing (w, t) path. The
arc (s, w) means that job Ji can be assigned to timeslot s or w. Then, we have
`i−1(s) = `′i(s) − 1, `i−1(t) = `′i(t), and `i−1(w) = `′i(w), and according to our
assumption, `′i(s, t) ≥ 3. Since there is no legal-path before assigning job Ji,
`i−1(w, t) ≤ 1. Hence, `i−1(s)− `i−1(w) ≥ 1, which contradicts the fact that Ji
is assigned to a feasible timeslot with minimum load.
Case 2-2. The job Ji is assigned to timeslot r with r 6= s. Since (s, t) becomes
a new legal-path after assigning job Ji, it must be the case that there is some
new arc (r, w) added in G that connects an existing (s, r) path with an existing
(w, t) path. Because there is no legal-path before assigning job Ji, `i−1(s, r) ≤ 1
and `i−1(w, t) ≤ 1. According to our assumption, `′i(s, t) ≥ 3; this implies
`i−1(s, t) ≥ 3, so that `i−1(r) − `i−1(w) ≥ 1. The latter inequality contradicts
the fact that Ji is assigned to a feasible timeslot with minimum load.

Lemma 4. Suppose that G is a feasible graph with no legal-paths. Then af-
ter assigning a job and executing the corresponding shift by the algorithm, the
resulting feasible graph has no legal-paths.

Proof. Suppose that there were no legal-paths in G after Stage i− 1, but there
is a new legal-path in G after assigning Ji. By Lemma 2, there must be one
such legal-path (s, t) where s is the timeslot assigned to Ji, and without loss
of generality, let the path be the one that is selected by our algorithm to per-
form the corresponding shift. Let the ordering of the vertices in the path be
[s, v1, v2, . . . , vk, t], and P denote the set of these vertices.

We define In(r) to be the set of vertices w such that a (w, r) path exists
before assigning Ji, and Out(r) to be the set of vertices w such that an (r, w)
path exists before assigning Ji. We assume that r ∈ In(r) and r ∈ Out(r) for
the ease of later discussion. Similarly, we define In ′′(r) to be the set of vertices w
such that a (w, r) path exists after shifting, and we define Out ′′(r) analogously.
Given a set R of vertices, let IN (R) =

⋃
r∈R In(r) and OUT (R) =

⋃
r∈R Out(r).

The notation IN ′′(R) and OUT ′′(R) are defined analogously.
Briefly speaking, we upper bound the load of a vertex in IN ′′(P), and lower

bound the load of a vertex in OUT ′′(P), as any legal-path that may exist after
the shift must start from a vertex in IN ′′(P) and end at a vertex in OUT ′′(P).
Based on the bounds, we shall argue that there are no legal-paths as the load
difference of any path after the shift will be at most 1. Note that after the
shift, only the load of t is increased by one, the load of s is decreased by one,

9

whereas the load of any other vertex remains unchanged. Now, concerning the
legal-path (s, t), there are two cases:
Case 1. There was an arc from s to v1 in the feasible graph G before assigning
Ji. In this case, it is easy to check that IN ′′(P) ⊆ IN (P),3 and OUT ′′(P) ⊆
OUT (P) ∪OUT (Ii).

4

Suppose that `i−1(s) = x. Then, `i−1(t) = x − 1 because there is no
legal-path before assigning Ji but there is one after assigning Ji. This implies
`i−1(vh) ≤ x for any h ∈ [1, k], or there was a legal-path (vh, t) before assigning
Ji. The load of any vertex in IN (P) is at most x or there was a legal-path
entering t before assigning Ji. The load of any vertex in OUT (P) is at least
x−1 or there was a legal-path leaving s before assigning Ji. For any vertex r in
Ii, `i−1(r) ≥ x, since s ∈ Ii has the minimum load. This implies that the load
for any vertex in OUT (Ii) is at least x− 1, or there was a legal-path leaving a
vertex in Ii before assigning Ji. Thus, after the shift, the load of any vertex in
IN ′′(P) is at most x, and the load of any vertex in OUT ′′(P) is at least x− 1,
so no legal-paths will exist.
Case 2. There were no arcs from s to v1 in the feasible graph G before assigning
Ji. In this case, Ji must be involved in the shift, so that the jobs assigned to s
after the shift will be the same as if Ji was not assigned. Consequently, if there
is still a legal-path after the shift, the starting vertex must be from IN ′′(P\{s}),
while the ending vertex must be from OUT ′′(P\{s}). Similar to Case 1, it is easy
to check that IN ′′(P\{s}) ⊆ IN (P\{s}) and OUT ′′(P\{s}) ⊆ OUT (P\{s}) ∪
OUT (Ii). Suppose that `i−1(s) = x, so that `′i(s) = x + 1. Because assigning
Ji creates a new legal-path (s, t), by Lemma 3, `′i(t) = `i−1(t) = x − 1. Thus,
the load of any vertex in IN (P\{s}) is at most x, since there was no legal-path
entering t before assigning Ji. On the other hand, `i−1(v1) ≥ x otherwise job Ji
would be assigned to v1. However, `i−1(v1) ≤ x or there is a legal-path (v1, t).
Hence, `i−1(v1) = x. This implies that the load of any vertex in OUT (P\{s})
is at least x−1, since there was no legal-path leaving v1 before assigning Ji. As
for the vertices in OUT (Ii), we can use a similar argument as in Case 1 to show
that their load is at least x − 1. Thus, after the shift, the load of any vertex
in IN ′′(P\{s}) is at most x, and the load of any vertex in OUT ′′(P\{s}) is at
least x− 1, so no legal-path will exist.

4.2 Proof of Invariant (I2)

We now prove in Lemma 7 (the other key lemma for the correctness) that non-
existence of legal-paths implies the assignment is optimal. The rough ideas

3Otherwise, let z be a vertex in IN ′′(P) but not in IN (P). Take the shortest path from
z to some vertex in P after the shift. Then all the intermediate vertices of such a path are
not from P . However, the jobs assigned to those intermediate vertices are unchanged, so that
such a path also exists before the shift, and z is in IN (P). A contradiction occurs.

4Otherwise, let z be a vertex in OUT ′′(P) but not in OUT (P) ∪ OUT (Ii). Take the
shortest path that goes to z starting from some vertex in P after the shift. Then all the
intermediate vertices of such a path are not from P . If such a path does not involve vertices
from Ii, then this path must exist before the shift, so that z is in OUT (P). Else, z is in
OUT (Ii). A contradiction occurs.

10

are as follows. Consider an optimal assignment A∗ (satisfying some constraints
as to be defined). In Lemma 6, we show that there is a sequence of agreement
graphsGa(A1, A

∗), Ga(A2, A
∗), . . . , Ga(Ak, A

∗) where the cost is non-increasing
every step, A1 = A is the original assignment of jobs given by our algorithm,
and Ak = A∗ is an optimal assignment. We prove Lemma 7 by contradiction,
assuming there is no legal-path in the feasible graph G but the assignment A
is not optimal. We then consider the sequence of agreement graphs given in
Lemma 6 and show that either there is no agreement graph in the sequence
involving strict decrease of overall cost (which means A is already optimal) or
that there is a legal-path in the feasible graph G, leading to a contradiction.

Note that Lemma 6 considers an optimal assignment A∗ such that Ga(A,A∗)
is acyclic. The existence of such A∗ is proved in Lemma 5.

Lemma 5. There exists an optimal assignment A∗ such that Ga(A,A∗) is
acyclic.

Proof. Consider an optimal assignment A∗∗ such that Ga(A,A∗∗) contains di-
rected cycles. We show that the assignment A∗∗ can be transformed into an
optimal assignment A∗ such that Ga(A,A∗) is acyclic. Recall that each time-
slot is represented by a vertex in Ga(A,A∗∗) and an arc from vertex s to vertex
t labelled by a tuple (Ji, +/−/=) means that Ji is assigned to timeslot s in
assignment A and timeslot t in A∗∗. For every cycle (s, t) such that s = t in
Ga(A,A∗∗), we show that the load of any vertex does not change after executing
all the moves in the cycle. This implies that the total cost of A∗∗ remains the
same after removing all cycles from Ga(A,A∗∗).

We consider a cycle that contains the vertices [s, v1, v2, . . . , vk, t], for s = t.
There are arcs from s to v1, v1 to v2, and so on, until the last arc from vk to
t = s. An arc denotes the moving of a distinct job each step. As we move one
job from s to v1, `(s) decreases by one and `(v1) increases by one. However,
`(v1) returns to the original value as we move the respective job from vertex
v1 to v2. Thus, `(vi), for 1 ≤ i < k remains unchanged. As we move the last
job from vertex vk to t = s, both `(vk) and `(s) return to their original value.
Clearly, the load of all vertices remains the same even for cycles of size 2. Thus,
the cost of A∗∗ remains the same after removing all cycles from Ga(A,A∗∗) and
we denote the corresponding agreement graph by Ga(A,A∗).

To illustrate the previous proof, we refer to Example 2 and Figure 2, and
Figure 5. In Figure 2(c), the agreement graph Ga(A,A∗) contains a cycle, yet
an alternative optimal assignment A′ exists such that Ga(A,A′) contains no
cycles, as depicted in Figure 5.

Lemma 6. Suppose A is not optimal and A∗ is an optimal assignment such
that Ga(A,A∗) is acyclic. Then we can have a sequence of agreement graphs
Ga(A1, A

∗), Ga(A2, A
∗), . . . , Ga(Ak, A

∗) such that A1 = A, Ak = A∗, and the
cost is non-increasing every step.

Proof. Consider the agreement graph Ga(Ai, A
∗), for i ≥ 1, starting from A1 =

A. In each step, from Ga(Ai, A
∗) to Ga(Ai+1, A

∗), one arc is removed. For

11

1 02

(J3,−)

t1 t2 t3

Figure 5: Let A be the arbitrary job assignment of Example 2, illustrated in
Figure 2(a). The assignment A′, where J1, J2, and J3 are each assigned to
t2, t1, and t3, respectively, is an alternative optimal assignment such that the
agreement graph Ga(A,A′) contains no cycles.

i ≥ 1, we consider in Ga(Ai, A
∗) any arc labelled with either a “−” or an “=”

and we execute the move corresponding to this arc. Through this move, we
remove one arc, and thus we do not introduce any new arcs. However, the
+/−/= label of other arcs may change. If the resulting graph Ga(Ai+1, A

∗)
does not contain any more “−” or “=” arcs, we stop. Otherwise, we repeat the
process.

Note that the cost is non-increasing in every step. By the time we stop, if
the resulting graph, say, Ga(Ah, A

∗), does not contain any more arcs, we have
obtained the desired sequence of agreement graphs. Otherwise, we are left only
with “+” labelled arcs in Ga(Ah, A

∗); however, in the following, we shall show
that such a case cannot happen, thus completing the proof of the lemma.

Firstly, cost(Ah) ≥ cost(A∗) since A∗ is an optimal assignment. Next, by
Lemma 5, Ga(A1, A

∗) is acyclic and the resulting graph Ga(Ah, A
∗) by removing

all “−” and “=” labelled arcs is also acyclic. Thus, in Ga(Ah, A
∗), there must

exist at least one vertex with in-degree 0 and one vertex with out-degree 0. We
look at all such (v1, vi) paths in Ga(Ah, A

∗), where v1 has in-degree 0, vi has
out-degree 0, and v1 6= vi. For any such (v1, vi) path, we show that by executing
all moves of the path (i) the overall cost is increasing, and (ii) the labels of all
arcs not contained in the (v1, vi) path remain “+”. After executing all moves
of the path, all arcs of the (v1, vi) path are removed.

(i) Suppose the vertices of the path are [v1, v2, . . . , vi] and `(v1) = x. As all
arcs in (v1, vi) are labelled with “+” (i.e., the cost is increasing), `(vj) ≥ x, for
j > 1. By executing all moves in the path, `(v1) = x − 1, `(vj) is unchanged,
for 1 < j < i, and `(vi) is increased by one. Thus, the overall cost is increasing.

(ii) We show that the labels of all arcs not contained in the (v1, vi) path
remain “+”. There may be out-going arcs from v1 to other vertices not in the
(v1, vi) path initially labelled by “+”. Before executing all the moves in the
(v1, vi) path, the load of all other vertices is at least x as we assume `(v1) = x.
After the move, `(v1) = x− 1 and out-going arcs from v1 point to vertices with
load at least x. Thus, an arc from v1 to any other vertex denotes a further
increase in the cost and the labels of the arcs do not change. For vertices vj ,
for 1 < j < i, the load of vj remains unchanged and thus the labels of the
arcs incoming to or outgoing from vj remain the same. For vi, there may be
incoming arcs. Suppose `(vi) = y before executing all the moves in the (v1, vi)

12

path. Then the load of all other vertices pointing to vi is at most y and the
arcs are labelled by “+”. After executing all the moves in the (v1, vi) path,
`(vi) = y+ 1, and thus any subsequent moves from vertices pointing to vi cause
further increases in the cost, i.e., the labels do not change.

Thus, the overall cost is increasing. We repeat this process until there are
no more such (v1, vi) paths. We end up with cost(Ak) > cost(A∗), which con-
tradicts the fact that cost(Ak) = cost(A∗) as Ak = A∗. Thus, the case where
we are left only with “+” labelled arcs in Ga(Ah, A

∗) cannot happen, and the
lemma follows.

Lemma 7. If there is no legal-path in the feasible graph G, the corresponding
assignment is optimal.

Proof. Suppose by contradiction there is no legal-path in the feasible graph G,
but the corresponding assignment A is not optimal. Let A∗, A1 = A,A2, . . . ,
Ak = A∗ be the assignments as defined in Lemma 6. Note that each arc in
the agreement graph Ga(A1, A

∗) corresponds to an arc in the feasible graph
G (since G captures all possible moves). Because the sequence of agreement
graphs in Lemma 6 only involves removing arcs, each arc in all of Ga(Ai, A

∗)
corresponds to an arc in G.

Suppose Ga(Aj , A
∗) is the first agreement graph in which a “−” labelled arc

is considered between some timeslots tα and tβ . If there is no such arc, then A is
already an optimal solution (since the sequence will be both non-increasing by
Lemma 6 and non-decreasing as no “−” labelled arc is involved). Otherwise, if
there is such an arc in Ga(Aj , A

∗), we show that there must have existed a legal-
path in the feasible graph G, leading to a contradiction. We denote by `(Ai, t)
the load of timeslot t in the agreement graph Ga(Ai, A

∗). Suppose `(Aj , tα) = x,
then `(Aj , tβ) ≤ x− 2 as the overall energy cost would be decreasing by moving
a job from tα to tβ . If `(A1, tα) = x and `(A1, tβ) ≤ x − 2 in the original
assignment, then there is a legal-path in G, which is a contradiction. Otherwise,
we claim that there are some timeslots uiy and vkz such that `(A1, uiy) ≥ x and
`(A1, vkz) ≤ x − 2, and there is a path from uiy to vkz in G. This forms a
legal-path in G, leading to a contradiction.

To prove the claim, we first consider finding uiy . We first set i0 = j and
ui0 = tα. If `(A1, ui0) ≥ x, we are done. Else, since `(Aj , ui0) = x and
`(A1, ui0) < x, there must be some job that is moved to ui0 before Aj . Let
i1 < i0 be the latest step such that a job is assigned to ui0 and the job is
moved from ui1 . Note that since this move corresponds to an arc with label
“=”, `(Ai1 , ui1) = x and `(Ai1 , ui0) = x − 1. If `(A1, ui1) ≥ x, we are done.
Otherwise, we can repeat the above argument to find ui2 and so on. The process
must stop at some step iy < i0 where `(A1, uiy) ≥ x. Similarly, we set k0 = j
and vk0 = tβ , so that we can find a step kz < k0 such that `(A1, vkz) ≤ x − 2.
Recall that since each arc in Ga(A1, A

∗) corresponds to an arc in the feasible
graph G and in all subsequent agreement graphs we only remove arcs, there is
a path from uiy and vkz in G. Therefore, we have found a legal-path from uiy
to vkz in G.

13

5 Time Complexity

We analyze the time complexity of our algorithm in Section 5.1 and show in
Section 5.2 that this can be improved when the feasible timeslots associated
with each job form a contiguous interval.

5.1 General Case

In this section, we consider the general case and show that the time complexity
is O(n2τ).

Theorem 8. We can find the optimal schedule in O(n2τ) time.

Proof. We assign jobs one by one. Each round when we assign the job Ji to
timeslot t, we add arcs (t, w) labelled by Ji for all vertices w that w ∈ Ii in the
feasible graph. By Lemma 2, there is a legal-path starting from t if there is a
legal-path after assigning Ji to timeslot t. When Ji is assigned to t, we start
breadth-first search (BFS) at t. By Lemma 3, if there is a node w which can be
reached by the search and the number of jobs assigned to w is two less than the
number of jobs assigned to t, it means that there is a legal-path (t, w). Then
we shift the jobs according to the (t, w) legal-path. After shifting there will be
no legal-paths anymore by Lemma 4. Finally we update the arcs of the vertices
on the legal-path in the feasible graph.

Adding Ji to the feasible graph needsO(|Ii|) time. Because |Ii| is at most the
total number of timeslots in T , |Ii| = O(τ) where τ is the number of timeslots.
The BFS takes O(τ +nτ) time because there are at most nτ arcs in the feasible
graph. If a legal-path exists after assigning Ji and its length is l, the shifting
needs O(l) time, which is O(τ) because there are at most τ vertices in the
legal-path. After the shift, the final step to update the arcs of the vertices
on the legal-path takes at most O(nτ) time because there are at most nτ arcs
in the feasible graph. The total time for assigning n jobs is thus bounded by
O(n2τ).

5.2 Contiguous Intervals

In this section, we consider the special case where each job Ji ∈ J is associ-
ated with an interval of contiguous timeslots Ii = [ai, bi], for positive integers
ai ≤ bi. We show that we can improve the time complexity to O(n log τ +
min(n, τ)n log n). Let si be the timeslot Ji is assigned to. Then we require that
ai ≤ si ≤ bi.

Framework. Recall that our algorithm first assigns a job Jp to a feasible
timeslot with minimum load and then executes a shift if there is a legal-path
in the resulting feasible graph. When the feasible timeslots of a job form a
contiguous interval, we will use several data structures to help finding a legal-
path. In particular, we first find a path from sp such that the end point has
the minimum load. If this path is a legal-path, we execute the shift, otherwise,

14

there is no legal-path from sp. To find such a path, we exploit the notion of l-
reachable intervals (to be defined). To compute reachable intervals, we maintain
two heaps for each timeslot t to store ai and bi of jobs Ji that are assigned to t.
To find the timeslot with minimum load in a reachable interval, we use a data
structure that supports dynamic range minimum query (RMQ). Before we give
the detailed analysis, we first define a few notions on a feasible graph.

Reachable interval. For every timeslot ti, the l-reachable interval of ti,

denoted by R(l)
i , is defined to be the set of timeslots t such that there is a path

from ti to t with length at most l. We define R(0)
i = {ti} and R(−1)

i = ∅. Note

that R(1)
i = ∪j:sj=tiIj . We call R(1)

i the directly reachable interval of ti. R(1)
i

is a contiguous interval containing ti because the feasible timeslots of each job
form a contiguous interval and the feasible timeslots of any job that is assigned
to ti must contain ti.

Notice that R(l+1)
i is the union of the directly reachable intervals of each

timeslot in R(l)
i . For any t ∈ R(l)

i , as observed above, the directly rearchable
interval of a timeslot t must contain t and thus is a contiguous interval over-

lapping R(l)
i . Therefore, R(l+1)

i forms a contiguous interval and R(l)
i ⊆ R

(l+1)
i

for l ≥ 0. We denote the interval R(l)
i as [α

(l)
i , β

(l)
i]. In particular, for directly

reachable intervals, α
(1)
i = minj:sj=ti aj and β

(1)
i = maxj:sj=ti bj .

Depth. We note that if R(l+1)
i is the same as R(l)

i , then for any k ≥ l,

R(k)
i is also the same as R(l)

i . We define the depth Di of ti to be the smallest

integer l such that R(l+1)
i = R(l)

i . Note that the depth Di is the longest length
of the shortest paths starting from ti to any other vertex in the feasible graph.
Furthermore, the Di-reachable interval of ti is the set of all timeslots such that
there is a path from ti.

Path-finder-job. Consider any 1 ≤ l ≤ Di. The definition of Di implies

that R(l)
i) R(l−1)

i . We define the left-path-finder-job (right-path-finder-job

resp.) of R(l)
i as the job Jp (with smallest job index) such that sp ∈ R(l−1)

i

and ap = α
(l)
i (bp = β

(l)
i resp.). We denote them by lpfj(R(l)

i) and rpfj(R(l)
i),

respectively. Then we have the following property about path-finder-jobs, which
then leads to a bound on Di in Property 10.

Property 9. For 1 ≤ l ≤ Di, lpfj(R(l)
i) or rpfj(R(l)

i) is assigned to a timeslot

in R(l−1)
i \ R(l−2)

i .

Proof. By the definition of Di, R(l)
i) R(l−1)

i , implying that α
(l)
i < α

(l−1)
i or

β
(l)
i > β

(l−1)
i . Consider the former case. Let Jp = lpfj(R(l)

i); i.e., ap = α
(l)
i . We

claim that sp ∈ R(l−1)
i \ R(l−2)

i ; otherwise, sp ∈ R(l−2)
i implying α

(l−1)
i ≤ ap,

which is contradicting to ap = α
(l)
i and α

(l)
i < α

(l−1)
i . Using a similar argument,

the latter case implies that rpfj(R(l)
i) is assigned to a timeslot in R(l−1)

i \R(l−2)
i .

Combining the two cases, the property holds.

Property 10. For every timeslot ti, (i) Di ≤ min(n, τ); (ii) the number of

timeslots in R(Di)
i that have jobs assigned to them is at most min(n, τ).

15

Proof. (i) We observe that Di ≤ τ because R(l)
i) R(l−1)

i for 1 ≤ l ≤ Di. On
the other hand, by Property 9, there is at least one job assigned to a timeslot

in R(l−1)
i \ R(l−2)

i for every 1 ≤ l ≤ Di and each job is only assigned to one
timeslot, therefore, Di ≤ n. (ii) is trivial.

Analysis. To compute reachable intervals, we have to know the minimum
of aj and maximum of bj of jobs assigned to each timeslot. We use two heaps
for each timeslot to keep this information: a min-heap (max-heap resp.) keeps
the starting timeslot aj (ending timeslot bj resp.) of all jobs assigned to the
timeslot. Using these two heaps we can compute the directly reachable interval
of any timeslot in O(1) time. When a job is assigned to or moved away from
a timeslot, the corresponding heaps have to be updated and each such update
takes O(log n) time since the size of the heap is bounded by the total number
of jobs. By Property 10 (i), the update time for each newly assigned job is
bounded by O(min(n, τ) log n).

Lemma 11. For each timeslot ti, we can compute Di-reachable intervals in
O(min(n, τ))-time.

Proof. As described above, we can compute directly reachable interval in O(1)

time. By Property 9, to compute R(l)
i , we only need to consider timeslots in

R(l−1)
i \ R(l−2)

i by checking the corresponding heaps; hence, each timeslot in
the Di-reachable interval needs to be considered in the computation of one l-
reachable interval only. The number of timeslots in the Di-reachable interval
could be τ . However, we only need to consider those “occupied” timeslots that
have jobs assigned to them. We can keep links among occupied timeslots by a
doubly linked list. Each occupied timeslot t is linked to two nearest occupied
timeslots tl < t and tr > t. In this way, we can skip non-occupied timeslots

and only check occupied timeslots in R(l−1)
i \R(l−2)

i when we compute R(l)
i . By

Property 10 (ii), the number of occupied timeslots in the Di-reachable interval
is at most min(n, τ) and the overall computation takes O(min(n, τ)) time.

Using Lemma 11, we can analyze the overall time complexity which takes
into account also the time taken to update various data structures.

Theorem 12. We can find the optimal schedule in O(n log τ+min(n, τ)n log n)-
time for the case where the feasible timeslots associated with each job form a
contiguous interval.

Proof. For each newly considered job, we first compute the Di-reachable interval

R(Di)
i in O(min(n, τ)) time. We then check the existence of a legal-path from

ti by examining the timeslot t in R(Di)
i with the minimum load. If the load

`(ti) − `(t) ≥ 2, then there is a legal-path, otherwise, there is no legal-path.
This timeslot t can be found by using a simple balanced binary tree structure
that supports dynamic range minimum query (RMQ). We store the load of
the timeslots 1, 2, · · · , τ in the leaves from left to right. Each internal node
maintains the minimum load in its subtree. Using this data structure, we can

16

return the minimum load in any time interval [x, y] in O(log τ) time. The value
from the root to a leaf needs to be modified when the load of a leaf is changed,
and such update takes O(log τ) time. When a new job is assigned and a possible
shift takes place, at most two timeslots have their load changed. Therefore, the
update of the dynamic RMQ structure takes O(log τ) time for each job assigned.

If there exists a legal-path from ti to t, we construct a legal-path with length

at most Di as follows. Suppose t ∈ R(l)
i \R

(l−1)
i for some l ≤ Di. We construct

a legal-path [ti = v0, v1, · · · , vl = t] in a bottom-up fashion. If vl is on the right

extension of R(l−1)
i , i.e., vl > β

(l−1)
i , then we set vl−1 to be the timeslot that

rpfj(R(l)
i) is assigned to; otherwise, i.e., vl < α

(l−1)
i , we set vl−1 to be the time-

slot that lpfj(R(l)
i) is assigned to. By the definition of path-finder-jobs, vl−1 has

jobs assigned to it and one of these jobs (rpfj(R(l)
i) or lpfj(R(l)

i) accordingly) has
a feasible interval covering vl, hence the arc (vl−1, vl) exists in the feasible graph

and the arc is labelled by rpfj(R(l)
i) or lpfj(R(l)

i) correspondingly. Inductively,
we can define vj−1 from vj , for j = l, l − 1, · · · , 1, until we reach ti.

Given the legal-path found, we execute a shift along the path. We need to
update the heaps of at most Di timeslots, thus taking O(min(n, τ) log n) time,
by Property 10 (i). The doubly linked list in the proof of Lemma 11 can be
updated in O(1) time when a job is added or removed from a timeslot, and
hence updating at most Di timeslots takes O(min(n, τ)) time.

In summary the time taken for assigning a new job (including update of data
structures) is bounded by O(log τ +min(n, τ) log n). Therefore, the overall time
complexity for assigning n jobs is O(n log τ + min(n, τ)n log n) and the theorem
follows.

6 Conclusion

In this paper we study an offline scheduling problem arising in demand response
management in smart grid. We focus on the particular case where requests
have unit power requirement and unit duration. We give a polynomial time
offline algorithm that gives an optimal solution. Natural generalization extends
to arbitrary power requirement and arbitrary duration. The problem where
requests have unit power requirement and arbitrary duration has been shown to
be NP-hard [19] by a reduction from the bin packing problem. Using a similar
idea, it can be shown that the problem where requests have arbitrary power
requirement and unit duration is also NP-hard.

For requests with arbitrary power requirement and unit duration, our prob-
lem has equivalence to load balancing on unrelated machines. In this setting,
the set of unit integral timeslots T = {1, 2, . . . , τ} corresponds to the set of
machines M = {M1,M2, . . .Mm}, for τ = m. In load balancing on unrelated
machines, each job Jj has a (possibly different) given processing time (length)
on each machine Mi. In our model, each job Jj with a power requirement pj has
a set of feasible timeslots Ij ∈ T in which it can be assigned. For equivalence
with load balancing on unrelated machines, this means that the processing time

17

of Jj on all machines Mi for i ∈ Ij is equal to pj , and infinity otherwise. In [34],
a (2 − 1/m)-approximation algorithm is given for load balancing on unrelated
machines, m being the number of machines, for minimizing the makespan. We
note the following remark about using the approximation algorithm in the model
with arbitrary power requirement and unit duration where the cost function is
f(x) = xα, for some α > 1.

Remark 1. The (2− 1/m)-approximation algorithm in [34] for minimizing the
makespan for the problem of load balancing on m unrelated machines results
in a ((2 − 1/τ)ατ)-approximation algorithm for minimizing the total cost of
scheduling jobs with arbitrary power requirement and unit duration in our model,
for τ being the number of timeslots and the cost function being f(`(t)) = (`(t))α,
for a timeslot t with load `(t) and some α > 1.

On the other hand, we can extend our optimal algorithm for unit power
requirement to an approximation algorithm for arbitrary power requirement by
classifying the jobs according to their power requirement into classes of ranges
in powers of two, i.e., a job is in class i if its power requirement is in the
range (2i−1, 2i]. The power requirement of the jobs in the same class i are
then rounded up to 2i. Each class can be scheduled independently of other
classes using the optimal algorithm. The final schedule is effectively obtained by
stacking up the schedules of all the classes. Using standard technique (e.g., [3]),
one can show that when the cost function is `(t)α, the approximation ratio is
O(log pmax

pmin
)α through the rounding up and classification, where pmax and pmin

are the maximum and minimum power requirement of the jobs, respectively.
While this approximation depends on the max-min ratio of power requirement,
it does not depend on the total number of timeslots.

Remark 2. For minimizing the total cost of scheduling jobs with arbitrary power
requirement and unit duration in our model where the cost function is f(`(t)) =
(`(t))α, there is an O(log pmax

pmin
)α-approximation algorithm, where pmax and pmin

are the maximum and minimum power requirement of the jobs, respectively.

An obvious research direction is to develop better approximation algorithms
for the general problem with both arbitrary power requirements and arbitrary
job duration. One approach is to consider an approximation algorithm that
uses a dual classification of jobs based on their power requirement and dura-
tion, and then schedules jobs in different classes independently of each other.
Nevertheless, this would create a non-constant gap between the maximum load
of the approximation algorithm and the optimal algorithm, and the overall im-
pact on the total electricity cost is yet to be investigated. Similar to Remark 2
we expect the gap is logarithmic in terms of the maximum and minimum power
requirements and durations of jobs.

In addition, one may consider different electricity cost function over time,
e.g., [10] considers different coefficients on the cost of electricity at different
time. We may alter our electricity cost function in a similar way. In [19], online
algorithms are considered for the general problem, where power requirements

18

and durations are stochastic, and the goal is to minimize long-term average
cost. It would be also interesting to consider competitive worst-case analysis for
online algorithms. Some preliminary work has been announced recently [15].

Acknowledgements

Mihai Burcea is supported by a studentship from the Engineering and Physical
Sciences Research Council, UK. Hsiang-Hsuan Liu is supported by the UoL-
NTHU Dual-PhD programme studentship.

References

[1] S. Albers. Energy-efficient algorithms. Communication ACM, 53(5):86–96, 2010.

[2] Y. Azar. On-line load balancing. In A. Fiat and G. J. Woeginger, editors, Online
Algorithms, volume 1442 of LNCS, pages 178–195. Springer, 1998.

[3] P. C. Bell and P. W. H. Wong. Multiprocessor speed scaling for jobs with arbitrary
sizes and deadlines. J. Comb. Optim., 29(4):739–749, 2015.

[4] P. Brucker. Scheduling algorithms (4. ed.). Springer, 2004.

[5] M. Burcea, W.-K. Hon, H.-H. Liu, P. W. H. Wong, and D. K. Y. Yau. Scheduling
for electricity cost in smart grid. In P. Widmayer, Y. Xu, and B. Zhu, editors,
Combinatorial Optimization and Applications, volume 8287 of LNCS, pages 306–
317. Springer, 2013.

[6] S. Caron and G. Kesidis. Incentive-based energy consumption scheduling algo-
rithms for the smart grid. In IEEE Smart Grid Comm., pages 391–396, 2010.

[7] C. Chen, K. G. Nagananda, G. Xiong, S. Kishore, and L. V. Snyder. A
communication-based appliance scheduling scheme for consumer-premise energy
management systems. IEEE Trans. Smart Grid, 4(1):56–65, 2013.

[8] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. J. ACM, 19(2):248–264, Apr. 1972.

[9] European Commission. Europen smartgrids technology platform. ftp://ftp.

cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf, 2006.

[10] K. Fang, N. A. Uhan, F. Zhao, and J. W. Sutherland. Scheduling on a single
machine under time-of-use electricity tariffs. In The 12th Workshop on Models
and Algorithms for Planning and Scheduling Problems (MAPSP), 2015.

[11] X. Fang, S. Misra, G. Xue, and D. Yang. Smart grid – the new and improved
power grid: A survey. Communications Surveys Tutorials, IEEE, 14(4):944–980,
2012.

[12] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[13] K. Hamilton and N. Gulhar. Taking demand response to the next level. Power
and Energy Magazine, IEEE, 8(3):60–65, 2010.

[14] D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not
much harder than linear optimization. J. ACM, 37(4):843–862, Oct. 1990.

19

[15] W.-K. Hon, H.-H. Liu, and P. W. Wong. Online nonpreemptive scheduling for
electricity cost in smart grid. In The 12th Workshop on Models and Algorithms
for Planning and Scheduling Problems (MAPSP), 2015.

[16] A. Ipakchi and F. Albuyeh. Grid of the future. IEEE Power and Energy Magazine,
7(2):52–62, 2009.

[17] L. D. Kannberg, D. P. Chassin, J. G. DeSteese, S. G. Hauser, M. C. Kintner-
Meyer, R. G. Pratt, L. A. Schienbein, and W. M. Warwick. GridWiseTM: The
benefits of a transformed energy system. CoRR, nlin/0409035, Sept. 2004.

[18] A. V. Karzanov and S. T. McCormick. Polynomial methods for separable convex
optimization in unimodular linear spaces with applications. SIAM J. Comput.,
26(4):1245–1275, Aug. 1997.

[19] I. Koutsopoulos and L. Tassiulas. Control and optimization meet the smart power
grid: Scheduling of power demands for optimal energy management. In Proc. e-
Energy, pages 41–50, 2011.

[20] R. Krishnan. Meters of tomorrow [in my view]. IEEE Power and Energy Maga-
zine, 6(2):96–94, 2008.

[21] H. Li and R. C. Qiu. Need-based communication for smart grid: When to inquire
power price? CoRR, abs/1003.2138, 2010.

[22] Z. Li and Q. Liang. Performance analysis of multiuser selection scheme in dynamic
home area networks for smart grid communications. IEEE Trans. Smart Grid,
4(1):13–20, 2013.

[23] A. Llaria, J. Jiménez, and O. Curea. Study on communication technologies for the
optimal operation of smart grids. Transactions on Emerging Telecommunications
Technologies, to appear. http://dx.doi.org/10.1002/ett.2625.

[24] Lockheed Martin. SEELoadTM Solution. http://www.lockheedmartin.co.uk/

us/products/energy-solutions/seesuite/seeload.html.

[25] T. Logenthiran, D. Srinivasan, and T. Z. Shun. Demand side management in
smart grid using heuristic optimization. IEEE Trans. Smart Grid, 3(3):1244–
1252, 2012.

[26] T. Lui, W. Stirling, and H. Marcy. Get smart. IEEE Power and Energy Magazine,
8(3):66–78, 2010.

[27] C. Y. T. Ma, D. K. Y. Yau, and N. S. V. Rao. Scalable solutions of markov games
for smart-grid infrastructure protection. IEEE Trans. Smart Grid, 4(1):47–55,
2013.

[28] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Basar. Dependable demand
response management in the smart grid: A stackelberg game approach. IEEE
Trans. Smart Grid, 4(1):120–132, 2013.

[29] M. Minoux. A polynomial algorithm for minimum quadratic cost flow problems.
European Journal of Operational Research, 18(3):377 – 387, 1984.

[30] M. Minoux. Solving integer minimum cost flows with separable convex cost objec-
tive polynomially. In G. Gallo and C. Sandi, editors, Netflow at Pisa, volume 26
of Mathematical Programming Studies, pages 237–239. Springer, 1986.

[31] A.-H. Mohsenian-Rad, V. Wong, J. Jatskevich, and R. Schober. Optimal and
autonomous incentive-based energy consumption scheduling algorithm for smart
grid. In Innovative Smart Grid Technologies (ISGT), 2010.

20

[32] REGEN Energy Inc. ENVIROGRIDTM SMART GRID BUNDLE. http://www.
regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/.

[33] S. Salinas, M. Li, and P. Li. Multi-objective optimal energy consumption schedul-
ing in smart grids. IEEE Trans. Smart Grid, 4(1):341–348, 2013.

[34] E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approxima-
tion for scheduling unrelated machines. Operations Research Letters, 33(2):127 –
133, 2005.

[35] P. T. Sokkalingam, R. K. Ahuja, and J. B. Orlin. New polynomial-time cycle-
canceling algorithms for minimum-cost flows. Networks, 36(1):53–63, 2000.

[36] Toronto Hydro Corporation. Peaksaver Program. http://www.peaksaver.com/

peaksaver_THESL.html.

[37] UK Department of Energy & Climate Change. Smart grid: A more energy-
efficient electricity supply for the UK. https://www.gov.uk/smart-grid-a-

more-energy-efficient-electricity-supply-for-the-uk, 2013.

[38] US Department of Energy. The Smart Grid: An Introduction. http://www.oe.

energy.gov/SmartGridIntroduction.htm, 2009.

[39] L. A. Végh. Strongly polynomial algorithm for a class of minimum-cost flow
problems with separable convex objectives. In Proceedings of the 44th symposium
on Theory of Computing, STOC ’12, pages 27–40, New York, NY, USA, 2012.
ACM.

[40] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
In Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS),
pages 374–382, 1995.

[41] Zpryme Research & Consulting. Power systems of the future: The case for energy
storage, distributed generation, and microgrids. http://smartgrid.ieee.org/

images/features/smart_grid_survey.pdf, 2012.

21

