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Abstract

DNA microarray technology, originally developed to measure the level of gene expression, has become one of the most widely used

tools in genomic study. The crux of microarray design lies in how to select a unique probe that distinguishes a given genomic sequence

from other sequences. Due to its significance, probe selection attracts a lot of attention. Various probe selection algorithms have been

developed in recent years. Good probe selection algorithms should produce a small number of candidate probes. Efficiency is also crucial

because the data involved are usually huge. Most existing algorithms are usually not sufficiently selective and quite a large number of

probes are returned. We propose a new direction to tackle the problem and give an efficient algorithm based on randomization to select a

small set of probes and demonstrate that such a small set of probes is sufficient to distinguish each sequence from all the other sequences.

Based on the algorithm, we have developed probe selection software RANDPS, which runs efficiently in practice. The software is available

on our website (http://www.csc.liv.ac.uk/�cindy/RandPS/RandPS.htm). We test our algorithm via experiments on different genomes

(Escherichia coli, Saccharamyces cerevisiae, etc.) and our algorithm is able to output unique probes for most of the genes efficiently. The

other genes can be identified by a combination of at most two probes.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

DNA microarrays (Gerhold et al., 1999) have become a
very important research tool which have proved to benefit
areas including gene discovery, disease diagnosis, and
multi-virus discovery. They are used for performing a large
number of hybridization experiments simultaneously. Be-
sides their prevalent use to measure the amount of gene
expression (Slonim et al., 2000) in a cell, microarrays are an
efficient tool for making a qualitative statement about the
presence or absence of biological target sequences in a

sample. A DNA microarray (‘‘chip’’) is a plastic or glass
slide which consists of thousands of (about 60,000) short
DNA sequences known as probes. A probe is a contiguous
substring of a cDNA, which acts as its fingerprint (a.k.a
signature). Fingerprinting is the technique of identifying or
confirming specific DNA fragments by ‘‘cutting’’ them with
special enzymes, observing the unique pattern of the
fragment sizes that result, and then comparing this with
the pattern of a known DNA fragment. Usually, a probe is
20–70 nucleotides (nt) long.
A typical application of microarrays is detection of

different members of a virus family in a sample. In this
case, we have a database of the DNA sequences (called
targets) for a known family of viruses and we wish to
identify an unspecified virus whose DNA sequence is
present in the database. What we need is a set of
hybridization tests based on good selection of probes such
that on every known family, the set of answers (red, green,
yellow or black signal on the microarray) that we receive is
unique with respect to any other virus in the database.
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Therefore, the probe should bind only to its corresponding
sequence, and not to any other sequence available in the
database. If this is the case, we say that the probe is unique.
The quality of the probe selection process can be expressed
by the proportion of DNA sequences in the database
possessing unique probes.

Depending upon the application, the hybridization
experiments are conducted using either single or multiple
probes and very often under the assumption that there is
only one target present in the sample. The probe selection

problem we studied is to find a small number of good
probes with specified length for every gene in the genome,
that satisfies (1) quantitative criteria; (2) homogeneity; (3)
sensitivity and (4) specificity. For more detailed definitions
of these criteria, see Section 2.1).

The specificity check based on Hamming Distance2

(Hamming, 1999) as the similarity measure is computa-
tionally expensive and takes the most time in probe
selection process. The brute force approach for specificity
checking scans through the whole length-n genome for
every length-m probe and determines if the Hamming
distances are large enough. Such a process is expensive and
requires Oðmn2Þ time. For example, brute force specificity
checking would take about 72 h for S. pombe genome of
length 7:1� 106 nt and is thus impractical for large
genomes. A good probe selection algorithm should be
both time and space efficient.

1.1. Probe selection problem

To summarize, given a set S of gene sequences g also
called targets or target sequences, the objective is to find for
each gene sequence g in S a probe p which hybridizes only
to g. The probe p is said to be a unique probe of gene g. If
such a probe p does not exist, i.e., p cross-hybridizes to
other sequences in S, then find a small collection of probes
that uniquely identifies g.

1.2. Previous work

Selection criteria: Lockhart et al. (1996) were among the
first to study the probe selection problem. The quantitative
criteria they proposed are widely used (Li and Stormo,
2001; Relogio et al., 2002; Tolonen et al., 2002; Sung and
Lee, 2003; Rouillard et al., 2003; Bozdech et al., 2003), with
some minor variations. Homogeneity and specificity were
also used in their algorithm, though the exact algorithm
has not been published. Homogeneity is used in almost all
existing algorithms, in which is usually measured by the
nearest-neighbor model (NNM). Kaderali and Schliep
(2002) focus on melting temperature (Tm) and compute
the optimal (the best) probe using suffix trees and dynamic

programming. However, this is too slow, especially for
large genomes, e.g., it takes 2 weeks to design a probe set
for the whole yeast genome. A different formula was also
used in Wright and Church (2002), Bozdech et al. (2003) to
calculate Tm. Other work like Matveeva et al. (2003) also
only focuses on criteria related to thermodynamic evalua-
tion. It is generally agreed that Tm and free energy can be
used as parameters to evaluate probe hybridization
behavior and have been shown to be useful (Li and
Stormo, 2001).3

As for specificity, there are two major measurements:
Hamming distance (Li and Stormo, 2001; Rahmann, 2002;
Sung and Lee, 2003) and BLAST search (Relogio et al.,
2002; Tolonen et al., 2002; Rouillard et al., 2003; Wright
and Church, 2002; Bozdech et al., 2003). Using BLAST
(Altschul et al., 1997) (http://www.ncbi.nih.gov/blast/), the
algorithms assume the search is done in advance and the
results passed as input. The computation time, thus,
depends on the number of sequences in the BLAST
database; e.g., the algorithm by Rouillard et al. (2003)
takes from 4 to 12 h to design up to three 45mer probes per
gene for most of the bacterial genome.
Sensitivity is also a popular consideration to avoid self-

binding of probes selected. This may be done by checking
the stability of the secondary structure formed (stable
means not a good candidate). MFOLD (Zuker et al.,
1999), Vienna RNAfold (Hofacker, 2003) and Smith–Wa-
terman (Smith and Waterman, 1981) algorithms have been
used in Bozdech et al. (2003), Rouillard et al. (2003),
Matveeva et al. (2003), Wright and Church (2002) for this
purpose.4 Other algorithms (Li and Stormo, 2001; Tolonen
et al., 2002; Relogio et al., 2002; Sung and Lee, 2003;
Rahmann, 2002) directly check sensitivity by eliminating
probes that are self-complementary.

Existing software: Based on the above three criteria, a
number of algorithms have been proposed. Li and Stormo
(2001) used a fast approximate matching search algorithm
Myersgrep (Myers, 1950) for uniqueness checking. How-
ever, the algorithm is still not fast enough for computing
probes of large genome sets. It takes almost 4 days to
design a length-24 probe set for Saccharomyces cerevisiae

genome (12M nt with about 6000 genes). Rahmann (2002)
presented a fast algorithm eliminating candidates that have
a long common factor with other genes. This algorithm
allows selection of probes for large genomes like Neuro-

spora crassa with total size 43MB in 4 h on a Compaq
ES40 (833 MHz) with 16GB memory. However, the
approach only designs short probes and requires a lot of
space during computation.
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2For two strings s and t, the Hamming distance Hðs; tÞ is the number of

positions where the characters at corresponding positions of the two

strings differ. For example, if s ¼ 00010101, t ¼ 00011010, then Hðs; tÞ
¼ 4.

3Some researchers (Naef and Magnasco, 2003; Wu and Irizarry, 2005)

argue that thermodynamic criteria may not be adequate for microarray

analysis, we leave this decision to biologists while we mainly provide a

computational tool to design probes using thermodynamic criteria.
4It is worth mentioning that recently there have been other softwares

developed for predicting secondary structure, e.g., Sfold (Ding et al.,

2004), UNAFOLD (Markham and Zuker, 2005), though they are not yet

employed directly in the context of probe selection.
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Sung and Lee (2003) attempted to reduce the time
complexity by using several filtering steps and exploiting
the Pigeon Hole Principle (Cameron, 1994) to avoid
redundant comparisons. A length 50mer probe set for N.

crassa can be generated in 3.5 h on SunFire Workstations
(700MHz) with 4GB memory.

Relogio et al. (2002) proposed a modified version of the
Gene Skipper software; the specificity check only considers
perfect matches ignoring possible mismatches which may
still result in probes that are non-specific and bind to other
sequences in addition to the target.

Tolonen et al. (2002) also only considered perfect match;
specificity checking requires no region of self-complemen-
tarity of five or more bases at either end.

Wright and Church (2002) proposed an algorithm which
terminates once good probes (not necessary optimal) are
found. They also introduced an interesting concept to
define probe sequence complexity based on the Lempel-Ziv
(LZ) compression algorithm (Lempel, 1977). Indepen-
dently, this idea was also employed by Bozdech et al.
(2003).

Recently, Klau et al. (2004) presented the first approach
to select a minimal probe set for the case of non-unique
probes in the presence of a small number of multiple
targets in the sample. Their approach is based on
Integer Programming mixed with a branch-and-cut
algorithm. Their preliminary implementation is capable
of separating all pairs of targets optimally in a reasonable
time and achieves a considerable reduction on the
numbers of probes needed compared to previous greedy
algorithms.

1.3. Our result

We propose a new approach that takes as input a set of
known gene sequences and builds a small cardinality set of
probes allowing us to identify the unknown target in the
sample. Instead of checking all possible probes, we exploit
randomization. We randomly pick probes with some
minimal criteria checking. All probes are far (in terms of
Hamming distance) from each other. Our algorithm
performs efficient probe selection providing unique probes
for almost all target sequences in the considered genomes.
More detailed discussion on the selection of our procedure
can be found in Section 2.2. Our algorithm is quick because
exhaustive search is not required. Also, we do not rely on
external software.

The experimental results show that our algorithm is
much faster than existing algorithms especially for large
genomes. For more commonly tested data sets, Table 1
summaries the relative performance of our algorithm
with some algorithms mentioned in Section 1.2.
Our randomized procedure selects probes efficiently
from short (24 bases) through long (64 bases) probes for
large genomes. Furthermore, our approach significantly
reduces the number of probes needed in microarray
design.

The length of the probes designed by existing software
ranges from 20 to 70: around 20 (Lockhart et al., 1996; Li
and Stormo, 2001; Kaderali and Schliep, 2002; Sung and
Lee, 2003; Tolonen et al., 2002), around 30 (Kaderali and
Schliep, 2002; Rahmann, 2002) around 50 (Li and Stormo,
2001; Sung and Lee, 2003; Rouillard et al., 2003), and
around 70 (Li and Stormo, 2001; Sung and Lee, 2003;
Wright and Church, 2002; Bozdech et al., 2003). Our
software is able to design probes of various length in this
range (see Section 3.2).
As for the number of probes returned, some algorithms

returned all probes (Sung and Lee, 2003) requiring longer
computational time while most of the other software return
a small number of probes. We follow the approach adopted
by most software and report a small number.

2. Material and method

In the section, we present our approach for the probe
selection problem. In Section 2.1, we first specify the exact
criteria for a probe. In Section 2.2, we describe our
randomized algorithm. In Section 2.3, we discuss the issue
of speeding up our algorithm by some combinatorial
structure.

2.1. Probe selection criteria

Every length-m substring of a gene sequence is called a
candidate. For every candidate, we check whether it
satisfies fundamental probe selection criteria: (1) quantita-
tive criteria; (2) homogeneity; (3) sensitivity. Any candidate
that passes all these three criteria is called a probe.

Quantitative criteria are described by Lockhart et al.
(1996) and are used in Affymetrix probe selection criteria:
(1) the content of any single base (As, Ts, Cs or Gs) does
not exceed 50% of the candidate size; (2) the length of any
contiguous As and Ts or Cs and Gs region is less than 25%
of the candidate size; (3) GC-content is between 40% and
60% of the candidate (GC-content is the percentage of
nucleotides which are G or C in the sequence).

Homogeneity criterion requires that the melting tem-
perature of candidates should be within some pre-defined
range, because a good probe set needs to hybridize to their
intended targets at about the same temperature in
experiments.
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Table 1

Comparison of our algorithm and other algorithms

Li and Stormo

(2001)

Rahmann

(2002)

Our algorithm

E. coli 23 nt, 1.5 days 24 nt, 32min 64 nt, 20min

S. cerevisiae 24 nt, 4 days 24 nt, 116min 64 nt, 40min

N. crassa More than a week 24 nt, 240min 24 nt, 155min

Human

chromosome 1

A few weeks Space

exhausted

64 nt, 740min
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Melting temperature (Rychlik et al., 1990) of a probe is
the temperature at which 50% of the oligonucleotides
and its perfect complement are in duplex. Since it is
impossible to know the target DNA concentration, the
calculation is approximate, but still useful. Melting
temperature Tm of each candidate in our approach is
calculated as

Tm ¼
DH

DS þ R� lnðc=4Þ
� 273:15, (1)

where DH and DS are the enthalpy and entropy for the
helix formation, respectively, R is the molar gas constant
(1.987 cal/(Kmol)), and c is the total molar concentration
of the annealing oligonucleotides when oligonucleotides
are not self-complementary.5

Sensitivity criterion filters out candidates prone to self-
complementarity (see Fig. 1). This is to reject all candidates
who may fold back on themselves rather than on target
sequences. Consider every segment of a candidate of length
‘. If its reversal forms a consecutive length ‘ complemen-
tary segment within itself, the candidate is considered
prone to fold back on itself.

Another useful measure for sensitivity is the free energy.
The total difference in the free energy of the folded and
unfolded states of a DNA duplex is approximated by a
NNM:

DGiðtotalÞ ¼
X

j

nijDGj þ DGiðinitÞ þ DGiðsymÞ, (2)

where each different oligonucleotide duplex is given the
subscript i, DGj is the free energy for the 10 possible
Watson–Crick nearest-neighbor stacking interactions, nij is
the number of occurrences of each nearest neighbor j, in
each sequence i, DGiðinitÞ is the initiation free energy, and
DGiðsymÞ equals +0.4 kcal/mol if duplex i is self-comple-
mentary and zero if it is non-self-complementary (Cantor
and Schimmel, 1980). DNA oligonucleotide nearest-neigh-
bor thermodynamic parameters are available (SantaLucia
et al., 1996) and they allow prediction of oligonucleotide
DNA hybridization energies.

The thermodynamic parameters used in our melting
temperature and free energy calculation were estimated
from experimental measurements on short probes. There-
fore, although we used both to model long probe binding
stability, the free energy values should be viewed as a
function of binding stability on a relative scale, rather than
be interpreted as the absolute free energy generated during
DNA duplex formation.

In this work, we are mainly interested in efficient
selection of unique probes, playing a role of gene signatures.
We say that probe p is a unique probe for gene g in a
genome if and only if p occurs in g and there is no close
occurrence (in terms of Hamming distance, see Specificity
criterion) of p in any other gene of the genome.

Specificity identifies probes that are unique to each gene
in the genome. This condition minimizes cross-hybridiza-
tion of the probes with other gene sequences. Hamming
distance has been used as the basis for coding theoretic
approaches (Frutos et al., 1997; Li et al., 2002) to the DNA
word design problem. In particular, Hamming distance
becomes a powerful tool for determining closeness/
similarity and recently has been adopted as the specificity
measure (Li and Stormo, 2001; Rahmann, 2002; Sung and
Lee, 2003). Thus, if the Hamming distance between a probe
and every candidate (excluding those candidates from the
gene where the probe belongs to) is greater than some
constant, the probe is said to be specific enough.6

2.2. Randomized probe selection algorithm

In this section, we present a new algorithm to select
probes for DNA microarrays. Initially, our algorithm
exploits several filters (based on probe selection criteria) to
reduce the search space for probes. However, the main idea
used here is to explore randomization to reduce the time
complexity of the search. And indeed, randomly generated
sequences are expected to possess properties of unique
probes. E.g., probe selection criteria enforce balanced
distribution of base pairs in probes which is naturally
satisfied by random sequences. Moreover, the Hamming
distance between two randomly chosen sequences of length
m over a four letter alphabet is about 3m=4, which is also
highly desired property of a system of probes.

Algorithm 1. Probe selection (m: length of probe; S:
genome; d: Hamming distance threshold, default is 5).

i( 0 and not_found ( true;
for every gene g 2 S: do

while io5 and not_found is true do

generate a random sequence ri of length m;

ARTICLE IN PRESS
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Fig. 1. A candidate prone to self-complementarity.

5The NNM is well adapted to compute the Tm for short sequences, but

may lead to an overestimate of the Tm of probes longer than 50 nt. Other

methods compute Tm by the formula (Wetmur, 1991) Tm ¼ 81:5þ
ð16:6 logð½Naþ�Þ þ 41½ðG þCÞ=length� � ð500=lengthÞ where ½Naþ� is the

sodium ion concentration. However, evidence for size limitation of the

NNM and parameters is sparse (Bozdech et al., 2003). For 70-mer probes,

the difference between the Tm values calculated using this method is

negligible (Wright and Church, 2002).

6Our approach is independent from any particular specificity criterion

(whether Hamming distance or BLAST search) is used. Our algorithm can

be adopted any other specificity criteria as a black box.
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find the closest probe pi in gene g;
if Hðpi; qÞXd for all candidates q in other genes in S-

{g} then

pi is chosen as the unique probe for g, report pi,
not_found ( false;

end if

i( i þ 1;
end while

end for

Our probe selection algorithm starts with the filtering
stage applied on the whole genome. For each candidate, we
test whether it passes the probe selection criteria (1), (2)
and (3) and we eliminate all candidates who fail the test.
For (2) homogeneity, we require that the melting tempera-
ture lies between 78 and 90; for (3) sensitivity, we reject all
candidates with a self-complementary segment of length
greater than or equal to 4.

When the filtering is completed, we iterate a probe
selection procedure which acts on all genes in the genome.
The probe selection procedure, see Algorithm 1, runs with
gene g 2 S, generates a unique (if it is able to find it) probe
p for gene g. This is done as follows: (a) generate a random
sequence r of length m; (b) find the closest match p of r

among probes in the target; (c) check whether p satisfies
specificity criterion. This process is iterated at most five
times which allows us to obtain a good trade-off between
the accuracy of the search procedure and its running time.
We have fixed the number of iterations to five times by
testing the performance against the number of iterations.
We observed that the percentage of targets identified by a
single probe becomes stable after five iterations (see Fig. 2).
The code of the procedure could be easily modified to
incorporate the case when a unique probe is not found, in
this case, we check whether a combination of any two (and
very rarely three) already selected probes uniquely identi-
fies the considered gene g.

It should be pointed out that our algorithm terminates
once probes have been found to satisfy the probe selection
criteria, rather than searching for optimal probes. In this
end, we are in line with Rahmann (2002), Sung and Lee
(2003), Relogio et al. (2002), Tolonen et al. (2002),
Rouillard et al. (2003), Wright and Church (2002), Bozdech
et al. (2003). Using this strategy, our algorithm can select
probes for large genomes for which algorithms demanding
optimality are unsuccessful (Li and Stormo, 2001; Kaderali
and Schliep, 2002).

2.3. Speeding up methods

To speed up our probe selection procedure, we exploit an
‘‘encoding’’ method to test self-complementarity and
specificity. Consider every segment of a candidate of length
4, if its reversal forms complementary segment within itself,
the candidate is prone to form a secondary structure. In
particular, every segment of a candidate of length ‘ is
encoded as follows:

X‘�1

i¼0

ci � 4ð‘�i�1Þ, (3)

where ci is either 0, 1, 2 or 3 (standing for A, C, G, T,
respectively) representing the ith base of the segment. For
example, a sequence ATCG is encoded as
0� 43 þ 3� 42 þ 1� 41 þ 2� 40 ¼ 54. Furthermore, we
exploit the tabling method to speed up the specificity
checking process. We pre-compute a matrix D ¼ ½Dij� in
which the rows and columns are indexed by numerical
values obtained (by Formula 3) from all possible DNA
sequences of length 4. Each entry Dij is the Hamming
distance between two DNA sequences with numerical value
i and j. For example, if i ¼ 0, representing AAAA, and
j ¼ 255, representing TTTT, then D0;255 ¼ 4. By looking
up the appropriate entry in the table, Hamming distance
between two probes of length-m can be quickly determined.

3. Result and discussion

3.1. Time complexity

The brute force approach for specificity checking scans
through the whole length-n genome for every length-m
probe and determines if the Hamming distances are large
enough. Such a process is computationally expensive,
requiring Oðmn2Þ time. In comparison, we pick up a probe
of length m by using randomization for every gene in the
genome, then scan through the whole genome for
specificity checking. By doing this, we do not need to
check every probe in each gene which greatly reduce the
time complexity. Thus, the time complexity of our
algorithm is OðkmnÞ where k (usually much smaller than
n) is the number of genes in the whole genome, m is the
length of probe and n is length of the whole genome.
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Table 2

Information of the data sets and time used for RANDPS of probe length 64

E. coli S. cerevisiae S. pombe N. crassa A. thaliana Mouse chromosome 2 Human chromosome 1

Total length 4,752,411 8,783,280 7,272,320 17,484,362 33,581,216 182,887,278 197,317,844

No. of genes 5253 5888 5471 10,633 26,186 1302 2017

Avg. length per gene 905 1492 1329 1644 1282 140,466 97,827

Time (minutes) 20 40 60 310 1520 470 740

Table 3

Results of RANDPS for E. coli

Genome E. coli

Length 4,752,411

No. of genes 5253

Probe length Number of genes requiring

1 probe 2 probes No probe returned

24 4759 (90.7%) 490 (9.3%) 4

32 4791 (91.3%) 457 (8.7%) 5

40 4805 (91.6%) 442 (8.4%) 6

48 4808 (91.7%) 436 (8.3%) 9

56 4827 (92.1%) 413 (7.9%) 13

64 4832 (92.3%) 405 (7.7%) 16

Table 4

Results of RANDPS for S. cerevisiae

Genome S. cerevisiae

Length 8,783,280

No. of genes 5888

Probe length Number of genes requiring

1 probe 2 probes No probe returned

24 5481 (93.2%) 401 (6.8%) 6

32 5516 (93.9%) 361 (6.1%) 11

40 5525 (94.2%) 341 (5.8%) 22

48 5549 (94.7%) 313 (5.3%) 26

56 5560 (95.0%) 292 (5.0%) 36

64 5560 (95.1%) 288 (4.9%) 40

Table 5

Results of RANDPS for S. pombe

Genome S. pombe

Length 7,272,320

No. of genes 5471

Probe length Number of genes requiring

1 probe 2 probes No probe returned

24 5061 (92.6%) 407 (7.4%) 3

32 5064 (92.6%) 404 (7.4%) 3

40 5131 (94.1%) 321 (5.9%) 19

48 5141 (94.3%) 308 (5.7%) 22

56 5154 (94.6%) 294 (5.4%) 23

64 5152 (94.7%) 287 (5.3%) 32

Table 6

Results of RANDPS for N. crassa

Genome N. crassa

Length 17,484,362

No. of genes 10,633

Probe length Number of genes requiring

1 probe 2 probes No probe returned

24 10530 (99.2%) 90 (0.8%) 13

32 10551 (99.5%) 57 (0.5%) 25

40 10557 (99.5%) 50 (0.5%) 26

48 10558 (99.6%) 45 (0.4%) 30

56 10559 (99.6%) 42 (0.4%) 32

64 10544 (99.6%) 40 (0.4%) 49

Table 7

Results of RANDPS for A. thaliana

Genome A. thaliana

Length 33,581,216

No. of genes 26,186

Probe length Number of genes requiring

1 probe 2 probes No probe returned

24 22407 (85.6%) 3773 (14.4%) 6

32 24400 (93.2%) 1777 (6.8%) 9

40 24813 (94.8%) 1358 (5.2%) 15

48 25094 (95.9%) 1063 (4.1%) 29

56 25238 (96.5%) 910 (3.5%) 38

64 25327 (96.9%) 807 (3.1%) 52

Table 8

Results of RANDPS for Mouse chromosome 2

Genome Mouse

chromosome 2

Length 182,887,278

No. of genes 1302

Probe length Number of genes requiring

1 probe 2 probes No probe

returned

24 1194 (91.7%) 108 (8.3%) 0

32 1229 (94.4%) 73 (5.6%) 0

40 1231 (94.5%) 71 (5.5%) 0

48 1235 (94.9%) 67 (5.1%) 0

56 1239 (95.2%) 63 (4.8%) 0

64 1240 (95.2%) 62 (4.8%) 0
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3.2. Analysis of experimental results

Our software RANDPS is written in C and is developed
and tested on Athlon XP2000þ Cluster with 2GB
memory. The software is available on our website (http://
www.csc.liv.ac.uk/�cindy/RandPS/RandPS.htm). The size
of RANDPS code is 25KB which is simple and clean while

being efficient and effective. Inputs of RANDPS are FASTA
formatted gene sequences, downloaded from the NCBI
website (http://www.ncbi.nlm.nih.gov/). RANDPS uses a
size-n array, where n is the concatenated length of gene
sequences of a genome, to store the inputs, together with
another two size-n arrays to store the corresponding
numerical value of each base in the genome and the status
(candidate or probe) of each position in the concatenated
sequence.
The experiments were undertaken in order to evaluate

the performance of our software on various types of
genomes. We report our results using several genomes that
have been widely used for the probe selection problem.
These data sets have been used in experiments in Kaderali
and Schliep (2002), Li and Stormo (2001), Rahmann
(2002), Rouillard et al. (2003), Sung and Lee (2003),
Tolonen et al. (2002). In terms of time consumption, for
probe length 64, it takes about 20min to process the
Escherichia coli genome, 40min to process the S. cerevisiae

genome, 60min for S. pombe, 310min for N. crassa, 470min
for Mouse chromosome 2, about 740min for Human
chromosome 1 and 1520min for Arabidopsis thaliana.
The genomes involved in the experiments and correspond-
ing time used are listed and in Table 2.
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Table 9

Results of RANDPS for Human chromosome 1

Genome Human

chromosome 1

Length 197,317,844

No. of genes 2017

Probe length Number of genes requiring

1 probe 2 probes No probe

returned

24 1718 (85.2%) 299 (14.8%) 0

32 1914 (94.9%) 103 (5.1%) 0

40 1918 (95.1%) 99 (4.9%) 0

48 1926 (95.5%) 91 (4.5%) 0

56 1931 (95.7%) 86 (4.3%) 0

64 1932 (95.8%) 85 (4.2%) 0

Fig. 3. Comparison of free energy between the optimal probe and the probe chosen by RANDPS. (a) E. coli; (b) S. cerevisiae; (c) S. pombe.
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In terms of accuracy of probe selection, we are able to
find unique probes for up to 99% of genes in the whole
genome. The full details of the experimental results are
shown in Tables 3–9.7 We have run experiments 30 times
on each data set for each probe length. In these tables, the
first three rows are basic information about the data sets,
which are the name of the genome, the length of the
genome and the number of genes in the genome. The
column ‘‘Probe length’’ lists the different lengths we used to
test the performance of our software. The column ‘‘1
probe’’ shows the number of genes which can be identified
by a unique probe, while ‘‘2 probes’’ column shows the
number of genes which require a combination of two
probes for unique identification. The percentages in
brackets are calculated on the basis of the number of
genes with probes (i.e., total number of genes minus
number of genes without probes). The ‘‘no probe returned’’
column shows the number of genes where our software did
not find feasible probes.

The experimental results in Table 3 show that RANDPS is
able to find a unique probe for over 90% of E. coli with
different probe lengths. The remaining genes can be
identified by a combination of two probes. There are only
around 10 genes where our algorithm did not find feasible
probes. For other genomes with similar number of genes
(S. cerevisiae and S. pombe), around 95% genes can be
identified by using a single probe. The results can be found
in Tables 4 and 5. Tables 6 and 7 illustrate that for genomes
with larger number of genes (N. crassa and A. thaliana), up
to 99% genes can be identified by one probe. Finally, for
larger data sets of length over 180M (Mouse chromosome
2 and Human chromosome 1), results are shown in Tables
8 and 9. In this case, RANDPS is able to select unique
probes for over 95% of the data sets.
In our experiments, we have noticed that there are some

genes with no probe. An investigation of these genes
revealed that some of these genes are duplicated or very
similar to some other genes in the genome. Another reason
is that the lengths of some of these genes are too short.
Apart from these cases, our software is able to select probes
for all genes.
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Fig. 4. Comparison of free energy between the optimal probe and the probe chosen by RANDPS. (a) N. crassa; (b) A. thaliana; (c) Mouse chromosome 2;

(d) Human chromosome 1.

7The melting temperature range has been slightly modified for longer

probe lengths 48, 56, and 64.
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As further illustration of our software in terms of
accuracy of the probe set, we compare the free energy of a
group of our probes with the optimal probes with
minimum free energy, which is found by using a brute
force approach. This is shown in Figs. 3–4 on samples of
100 arbitrarily chosen genes for each genome. A closer look
into the mean and standard deviation (Table 10) of
hybridization free energy between the optimal probes and
the probes chosen by RANDPS reveals that the probes we
found are very close to the optimal one. Thus, our software
is able to find high quality probes.

4. Conclusion

We have proposed a new approach to select (randomly)
a small set of probes and demonstrated that such a small
set of probes is sufficient to distinguish each gene from all
the other genes in the genome. Almost all genes can be
identified by a unique probe, the others need at most two
probes. We have implemented a probe selection software
RANDPS, which runs efficiently. The software is avail-
able on line at http://www.csc.liv.ac.uk/�cindy/RandPS/
RandPS.htm.

We believe that our approach should prove to be useful
also in the design of multiple probes. Multiple probes
might be needed for several reasons. E.g., to accommodate
a lack of accuracy in experimental work, a fault-tolerant
system is desirable. In some experimental situations, the
mRNA is broken into random fragments, which thus
require multiple probes per gene.

Therefore, one of our future direction would be on
identification and classification of genes by multiple
probes. This requires adaptation of our algorithm. We
expect the running time to increase, yet this is worthwhile
for the scenario we described above.

In future research, it would be interesting to improve
performance of our algorithm on more complex organisms,
since the structure of higher organism differs from that of
bacteria and viruses. This would lead to a more challenging
combinatorial problem.

Another direction would be further studies on sensitivity.
There have been several improvements in the calculation of
minimum free energy in recent software UNAFOLD
(Markham and Zuker, 2005). Although UNAFOLD is

not yet used directly into probe selection, it is important to
consider UNAFOLD in probe selection as future work.
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