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Abstract
Climate change is a major threat to species, unless their populations are able to invade and
colonise new landscapes of more suitable environment. In this paper, we propose a new model of
the invasion process using a tool of landscape network sparsification to efficiently estimate a dur-
ation of the process. More specifically, we aim to simplify the structure of large landscapes using
the concept of sparsification in order to substantially decrease the time required to compute a
good estimate of the invasion time in these landscapes. For this purpose, two different simulation
methods have been compared: full and R-local simulations, which are based on the concept of
dense and sparse networks, respectively. These two methods are applied to real heterogeneous
landscapes in the United Kingdom to compute the total estimated time to invade landscapes.
We examine how the duration of the invasion process is affected by different factors, such as dis-
persal coefficient, landscape quality and landscape size. Extensive evaluations have been carried
out, showing that the R-local method approximates the duration of the invasion process to high
accuracy using a substantially reduced computation time.
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1 Introduction

Climate change and land use change are two threats that cause the extinction of numerous
species [4, 7, 12, 17]. It was observed that species are responding to climate change by
shifting their geographical area [1, 16], however the ability of their population to shift depends
on the availability of suitable habitat to shift and colonise [4, 6, 12, 13]. Species become
under a high risk of extinction if they are shifting very slowly or do not have the ability to
shift [15]. Therefore, to maintain the functioning of an ecosystem and services in a changing
climate, it becomes an important need to facilitate the adaptation of species, especially by
enabling them to shift to new locations with more suitable climate [5]. It is an urgent need
for policymakers and nature conservation organisations to find out whether and how they
can facilitate range shifts [5]. A number of empirical and theoretical studies have shown that
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spatial arrangement of habitats is an important factor that affects the speed of advance to
new landscapes with more suitable climate [3, 5, 17]. Hodgson et al. [5] found the evidence of
the benefits of using different tools such as habitat corridors and stepping stones to speed up
shifting. However, it is still difficult for conservationists to make decisions that can facilitate
range shifts in large landscapes, therefore there is a need for a tool efficiently computing
the invasion time of the original and modified landscapes. Minimising computation time
is especially important because the ultimate aim is for a decision-making tool that can
tune the arrangement of the modified landscape to find scenarios where a small addition of
habitat leads to a large decrease in invasion time. Running many scenarios with different
permutations of habitat could require excessive computation times even with moderately-sized
landscapes. Furthermore, planning for climate change requires the consideration of large
landscapes (e.g., temperature isoclines are expected to shift at several km per decade).

In this study, our focus is to build a new sparse computational model for the invasion
process using the network modelling approach. To model invasion process in a given landscape,
we create a landscape network, where each vertex represents a patch of habitat (henceforth
patch) in the landscape. We distinguish two sets of patches: the source patches represent
initially populated patches in which species are located, and the target patches represent
the target locations for the invasion process. The invasion process is to populate (some)
target patches and we aim to estimate the time needed for achieving this. A stochastic model
from [5] has been implemented in the simulation, which is based on the probability of a
patch to be invaded expressed by a formula depending on various characteristics (distance,
quality of patch, etc.) of all other patches in the network. Such simulation is computationally
expensive, especially when the number of patches is large.

In this paper we propose to approximate the computed invasion time by exploiting
network sparsification. We call the original approach in [5] the full invasion simulation
method. In the protocol implementing full invasion method, in each round of the invasion
process each populated patch tries to populate (independently) all other unpopulated patches
in the landscape. On the other hand, we propose the R-local invasion method, and associated
protocol, such that in each round, every patch only tries to populate other unpopulated
patches within a local distance R. The full invasion protocol can be seen as an R-local
invasion protocol with R equal to the diameter of the landscape. With a smaller value of R,
the R-local invasion process is expected to take less time in each round of computation,
while it may take more rounds to populate the target patches. If the local distance R is
chosen properly, the R-local invasion protocol can compute a comparable (to the full method)
duration of invasion process, while the computation time can be substantially reduced. That
means our proposed method is much more efficient (less computational time) than the
existing model. One important characteristics to consider when computing the total time
of experiment is also the number of simulations needed for the (average) invasion time to
stabilise on the outputted duration of invasion. In this paper, we illustrate how to determine
the local distance R systematically to reach a good trade-off between quality of estimate and
computation time.

In both full and R-local protocols, we investigate the effect of three factors: species’ mean
dispersal distance, landscape quality and landscape size, on the invasion duration. We apply
the full and R-local protocols to real heterogeneous landscapes in the United Kingdom. An
extensive experimental evaluation with real data illustrates the effectiveness and accurateness
of the proposed R-local protocol in estimating the duration of invasion process in large
landscapes in a relatively short time, with respect to the previously used full method.

Technically speaking, the work presented in this paper combines ideas from probability
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Table 1 Aggregate classes [10].

Aggregate class
number Aggregate class Aggregate class

number Aggregate class

1 Broadleaf woodland 6 Mountain, heath, bog
2 Coniferous woodland 7 Saltwater
3 Arable 8 Freshwater
4 Improved grassland 9 Coastal
5 Semi-natural grassland 10 Built-up areas and gardens

and random processes [2, 8, 9] with some use of network/graph foundations [11].

2 Materials and methods

2.1 Notation and technical preliminaries
We are given a 2-dimensional rectangular grid landscape as an input, which we represent
as a landscape graph G = (V,E). Denote by n = |V | the number of vertices/patches in the
landscape graph, and by m = |E| the total number of edges between patches. Let q(v) denote
the quality of a patch v, where the quality is a number between zero and one given as input.
We distinguish two sets of patches, S and T , where S denotes the set of populated source
patches that are non-zeros in quality and T denotes the set of unpopulated target patches
that are also non-zeros in quality. In addition, we define the maximum and minimum quality
as qmax = max{q(v) : v ∈ V } and qmin = min{q(v) > 0 : v ∈ V }, respectively. We define the
height H as the difference in y-coordinates of any top and bottom patch in the landscape
graph G and the width W as the difference in x-coordinates of any left patch in the source
set and right patch in the target set. We also define R-local graph Loc(G,R) = (V ′, E′) as a
subgraph of G that contains all the vertices of the landscape graph G (i.e., V ′ = V ) and a set
of edges E′ ⊆ E such that for any (u, v) ∈ E, (u, v) ∈ E′ if the Euclidean distance between
vertices v and u is at most R. For a defined R-local graph Loc(G,R), we define dmin as
the minimum distance d such that Loc(G, d) connects S to T , i.e., dmin is the minimum
distance d such that every node in T is reachable from some node in S in graph Loc(G, d).

2.2 The studied landscape
For evaluation purposes, the dataset of the 1km resolution raster version of the Land Cover
Map 2007 (LCM2007) for Great Britain [14] is used. To examine the proposed methods,
different sized landscapes from different maps of the aggregate classes are extracted. The
aggregate classes data contain one tiff file for each land use class as in Table 1. Each map
consists of 1300 rows/height (pixels) and 700 columns/width (pixels) and each 1km pixel
provides the percentage cover of a particular land cover at LCM2007 Class level [10]. We
consider the percentage cover at each patch in such an extracted landscape as the quality of
each patch. For examination purposes, from percentage values we formed three groups of
landscape qualities, namely: low quality, medium quality and high quality to represent the
quality of the extracted landscape. If the average of all patches qualities in such an extracted
landscape is between 0% and 5%, 5% and 25%, 25% and 100%, then the extracted landscape
is of low quality, medium quality, and high quality, respectively. For each quality type, we
extract a rectangular landscape that consists of 5 rows and 300 columns. Landscapes of low
and medium qualities were extracted from semi-natural grassland UK map [10], while the
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one of high quality from an improved grassland UK map [10]. On these extracted rectangular
landscapes, we assume that all patches at the first column of each landscape are occupied and
the goal is to populate patches at the target columns (col. 10, 20, 30, etc.). Each landscape
is extracted according to the following criteria:

1. The qualities of all source occupied patches are non-zeros.
2. At each target column, at least one of the patches is non-zero in quality.
Figure 1 shows real landscapes used which are extracted from two LCM2007 UK (aggregate
classes) maps.

(a) Landscape of size 5 × 300 and of low quality.

(b) Landscape of size 5 × 300 and of medium quality.

(c) Landscape of size 5 × 300 and of high quality.

Figure 1 The studied landscapes; three landscapes of size 5 × 300 and of low, medium and high
quality extracted from LCM2007 UK (aggregate classes) maps. In each landscapes, the colour
corresponds to the quality of each patch; black, blue, green, and red corresponds to zero, low (0-0.5),
medium (0.5-0.25), and high quality (0.25-1), respectively.

2.3 New formulas estimating duration of the invasion process
For a given landscape graph G, we use the formula of colonisation probability proposed by
Hodgson et al. [5] to define the transition probability between patches v and u as p(v, u) =
q(v) · exp(−αd(v,u))

( 2π
α2 )−1

, where α > 0 is the dispersal coefficient assumed to be the same for all
patches and d(v, u) is the Euclidean distance between patches v and u.

For a given landscape graph G, source S and target T , we define “all non-zero target
patches” as the total number of target patches that are non-zero in quality, and “majority
of all non-zero target patches” as the number of patches being more than half of the total
number of non-zero quality target patches. In this work, we consider three types of invasions,
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namely: first success, majority success and all successes invasion. The first success invasion
measures the estimated time to populate any of the non-zero target patches. Therefore, the
first success is defined as the estimated time needed until the first non-zero target patch
becomes populated. The majority success is the estimated time to populate the majority
(more than 50%) of all non-zero target patches. Finally, all successes is defined as the
estimated time to populate all non-zero target patches.

Based on the formula of the transition probability, we propose three new estimating times
of invasions in such a landscape. For a given landscape graph G, in order to hop from
source S to target T , we need to find a path that contains at most H+W

dmin(G) hops. According
to the formula of transition probability between patches, the probability of a single hop in
the landscape graph G is at least qmin(G) · exp(−α·dmin(G))

( 2π
α2 )−1

. Thus, the expected time for

each hop is the inverse of its probability, i.e., ( 2π
α2 )−1

qmin(G)·exp(−α·dmin(G)) . Since the number of
hops that are needed in such a path to connect source S with target T is H+W

dmin(G) , the total
expected time of invasion for the first success is at most

H +W

dmin(G) ·
( 2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G)) · c ,

where c is a small constant to be determined by simulation. Consequently, the total expected
time of invasion for the majority success is at most[
H +W

dmin(G) ·
( 2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G)) +
(
H

2 − 1
)
·

( 2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G))

]
· c ,

where
(
H
2 − 1

)
is an upper bound on the total number of majority of target patches decreased

by one and c is again a small constant to be interpolated by simulation. Therefore, the total
expected time of invasion for all successes is at most[

H +W

dmin(G) ·
( 2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G)) + (H − 1) ·
( 2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G))

]
· c ,

where (H − 1) is an upper bound on the total number of all target patches decreased by one
and c is a small constant to be interpolated by simulation.

2.4 The R-local simulation method
We simulate the behaviour of the invasion process by building a simulator that uses the
R-local method to compute the number of rounds needed for invasion. The inputs to the
simulator are: a two-dimensional array that represents a given real landscape and stores
qualities of patches, a source vector containing indices of populated patches, a target vector
containing indices of unpopulated target patches, and dispersal coefficient α (in Algorithm 1
initialised to 0.25). For a given landscape, the simulator constructs a two-dimensional array of
a size equal to the one of the given landscape. Each cell in the constructed array corresponds
to a patch in the landscape and can take only two values, zero or one, where zero means
the cell is unpopulated while one means it is populated. At the beginning of the invasion
process, only source populated patches take value of one and others take value of zero. The
simulator returns an estimated duration needed (number of rounds) to invade targets by the
use of real probabilities for each pair of patches v, u, in which v is populated and u is not.
We use transition probabilities between patches v and u to decide whether patch v populates
patch u or not.
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More formal description of Algorithm 1 provides the structure of the R-local method.
The generic structure of the R-local method contains inputs (as mentioned above), outputs,
and Count rounds function. The Count rounds function counts the number of rounds
required for first, majority and all successes and to compute the real time execution for each
simulation. The function includes nested loops of three levels. The main loop (lines 12-37)
counts the number of rounds to populate target patches. The second level loop (lines 14-36)
is for all populated patches that are trying to populate unpopulated patches. The inner
level loop (lines 17-33) is for all unpopulated patches. Each unpopulated patch becomes
populated if the transition probability between the populated and unpopulated patches is
greater than a random generated number between zero and one (lines 22-25). We consider
only populating a patch with non-zero quality. Each time when an unpopulated target patch
becomes populated, the algorithm checks if the total number of non-zero patches at target
is equal to one or majority or all targets’ number, and the number of rounds is recorded
accordingly. The Count rounds function terminates when all non-zero target patches
become populated and returns the number of rounds needed for each type of successful
invasions as well as the execution time of simulation.

Recall that in the full invasion method, each populated patch in the landscape tries
to populate every other unpopulated patch in the whole landscape, while in the R-local
invasion method each populated patch in the landscape only tries to populate every other
unpopulated patch within local distance R around the populated patch. Thus, parameter R
in the full method takes the whole size (diameter) of the landscape (i.e., R = H +W ), while
in the R-local method we propose an equation to compute the local distance R. In addition,
the inner level loop in Count rounds function runs for all unpopulated patches in the
whole landscape (from 0 to H + W ) in the full method, while runs only for unpopulated
patches that are of distance at most R from the populated patch (from populated patch to R)
in the R-local method (lines 17 and 18 in Algorithm 1).

It is expected that the number of rounds required for the R-local method is larger. In
our simulation, we aim to find the local distance R that allows the following accuracy:

FULL
R-LOCAL = average number of rounds using the full method

average number of rounds using the R-local method ≥ 90% .

As a starting point, we run simulation using both full and R-local methods with some
expected local distances R. It has been observed that the required local distance R for the
FULL/R-LOCAL ratio to be at least 90% in the first success is greater than or equal to
the needed local distance R for majority and all successes. Based on this observation, we
propose an equation that computes the local distance R for a given landscape graph G based
on the total expected time of invasion for the first success. Observe that the probability of a
single hop in a given landscape graph G is less than the inverse of the total expected time of
the invasion process for the first success:

qmin(G) · exp (−α · dmin(G))( 2π
α2

)
− 1

� 1
total expected time of invasion for first success .

Therefore, the following holds:

qmax(G) · exp (−α ·R(G))( 2π
α2

)
− 1

� dmin(G)
H +W

· qmin(G) · exp (−α · dmin(G))( 2π
α2

)
− 1

−α (R(G)− dmin(G)) < ln
(
dmin(G) · q̄(G)

H +W

)
.
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Finally, we get the best (smallest) local distance R needed to create a landscape sub-
graph Loc(G,R), for a given landscape graph G, and guarantees the FULL/R-LOCAL
accuracy is:

R(G) ≈
[

1
α
· ln
(

H +W

dmin(G) · q̄(G)

)
+ dmin(G)

]
· c , (1)

where q̄(G) = qmin(G)
qmax(G) and c is a small constant to be determined by simulation.

2.4.1 Interpolating constant c in Equation (1)
We use the following three objective functions in order to interpolate constant c in Equation (1).
We use terminology “approx R” and “opt R” to express the local distance R using Equation (1)
and simulation such that it is the smallest distance satisfies the FULL/R-LOCAL accuracy,
respectively. We call it opt R because this value of R fulfills our goal of accuracy.

1. The Euclidean distance objective function (ED) chooses the constant c such that it
minimises the sum over all prefixes z of the square difference between the approx R and
opt R:

cED = argmin
c∈R+


z∑
j=1

(approxRj · c− optRj)2

 .

2. The absolute objective function (AB) chooses the constant c such that it minimises the
sum over all prefixes z of the absolute difference between the approx R and opt R:

cAB = argmin
c∈R+


z∑
j=1
|approxRj · c− optRj |

 .

3. The min-max (MM) objective function chooses the constant c such that it minimises the
approx R to be greater than or equal to opt R for all prefixes z:

cMM = argmin
c∈R+

{
max

1≤j≤z
(approxRj · c− optRj) ≥ 0

}
.

2.5 Simulation
2.5.1 Main simulation
The simulation is directed at four goals. The first is to monitor the behaviour of full and
R-local methods and compare results obtained by each method. The second is to investigate
what values of local distance R would allow the FULL/R-LOCAL accuracy. Based on the
results obtained from the simulation, the third goal is to predict an equation for the local
distance R, depending on landscape size, dispersal coefficient α and landscape quality. Finally,
we aim to combine results from simulation and the predicted equation to compare them and
conduct an independent validation based on the value obtained from the proposed equation
on the local distance R.

For each prefix 5 × 10, 5 × 20, 5 × 30, ..., 5 × 300 in each of the extracted rectangular
landscapes in Figure 1, we run the full simulation and, simultaneously, the R-local simulation
with some predicted distances; ideally, one of these R gives the FULL/R-LOCAL accuracy,
while the local distance R decreased by one does not satisfy it. We consider four values
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Algorithm 1 Modelling Invasion Process using R-local Method
1: Inputs:

2-dimensional array G, which stores qualities of patches in a real landscape
Source: vector S contains indices of initial populated patches
Target: vector T contains indices of unpopulated target patches
α← 0.25

2: Outputs:
Number of rounds needed for first, majority and all successful invasions
Execution time of simulation

3: function Count rounds(G,S, T, α)
4: SimulationStartTime ← record start time of simulation
5: R ← Use Equation (1)
6: Create 2-dimensional array B having size equal to array G ← 0
7: for each index of populated patch in vector S do
8: B(index)← 1
9: end for

10: Counter ← 0 . counter to count rounds for successful invasions
11: StartTime ← Record start time of rounds
12: while any of target patch in T is unpopulated do
13: Counter ← Counter+1
14: for i← 0 to number of rows in array G do . loop for all populated patches (1)
15: for j ← 0 to number of columns in array G do
16: if patch B(i, j) is populated then
17: for k ← i−R to i+R do . loop for all unpopulated patches (0)
18: for l← j −R to j +R do
19: if patch B(k, l) is unpopulated and its quality 6= 0 then
20: distance ← Euclidean distance between B(i, j) and B(k, l)
21: if 0 < distance ≤ R then
22: p ← Transition probability between B(i, j) and B(k, l)
23: w ← Generate a random number between 0 and 1
24: if w < p then
25: Populate patch B(k, l)
26: if populated patch B(k, l) is at target column then
27: Check the invasion type first or majority or all
28: end if
29: end if
30: end if
31: end if
32: end for
33: end for
34: end if
35: end for
36: end for
37: end while
38: SimulationEndTime ← Record end time of simulation
39: SimulationTimeExecution ← SimulationEndTime - SimulationStartTime
40: return Counter, SimulationTimeExecution
41: end function
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for the dispersal coefficient α: 0.25, 0.5, 1 and 2. For each prefix and for each dispersal
coefficient α, we run full and R-local simulation 100 times and compute the average number
of rounds for first, majority, and all successes.

2.5.2 Validation of the R-local simulation method
We are interested in the most convenient time for stopping or cutting simulation and determine
the stabilisation time (ST) of simulation. For that purpose we define the stabilisation
time (ST) for a given landscape as the time t such that the change in average number of
rounds for all successes (AFAS) between t and 2t is less than or equal to 2%: ∀τ ∈ (t, 2t],

|AFAS(τ)−AFAS(t)| ≤ 0.02 ·AFAS(t), where AFAS(τ) =
∑τ

j=1
AS(j)
τ and AS(j) is the

number of rounds needed for the all successes at iteration j.
To test the robustness of our method, we have used different sizes from the sizes used in

deriving R. We apply it to four different sizes of landscapes: 5× 50, 10× 50, 15× 50 and
20× 50, as in the following steps.

1. Extract randomly three landscapes of each size from different LCM2007 UK (aggregate
classes) maps for each quality low, medium, and high.

2. On each extracted nine landscapes and for each considered value of the dispersal coeffi-
cient α:

a. Run full simulation, stop simulation at the ST and record the results.
b. Compute the average number of rounds for first, majority and all successes, and the

average of the execution times of full simulation.
c. Compute the minimum quality qmin, the maximum quality qmax and the minimum

distance dmin.
d. Compute three local distances R using Equation (1) with the constants in Table 3

which are calculated as in Section 2.5.1 with the data in Section 2.4.1 (see Section 3).
e. Run R-local simulation with each of the three computed local distances R (based on

cED, cAB , and cMM constants), stop simulation at the ST and record the results.
f. Compute the average number of rounds for first, majority and all successes, and the

average of the execution times of R-local simulation.
g. For all three types of successful invasions and all local distances R computed in

(d), compute the FULL/R-LOCAL accuracy. Then, check all accuracies if they are
guaranteed.

h. Specify which of the computed local distance R is the opt, where the opt one is the
smallest distance that gives the FULL/R-LOCAL accuracy to be at least 90%.

i. Compute the ratio between the average of the execution times (AETS) of full and
R-local simulation methods.

3 Results

3.1 Main simulation
The estimated time of invasion (i.e., average number of rounds over 100 independent ex-
periments) has been computed for each prefix 5 × 10, 5 × 20, 5 × 30, . . ., 5 × 300 in each
landscape of low, medium, and high quality using full and R-local simulation methods. In
order to investigate the local distance R that allows FULL/R-LOCAL accuracy in each
prefix in each of the extracted landscapes we use some predicted local distances R to run
R-local simulation; ideally, one of the predicted distances is the opt that guarantees the
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FULL/R-LOCAL accuracy, while decreasing the opt local distance R by one does not satisfy
it. The simulation results show that the FULL/R-LOCAL accuracy of at least 90% is satisfied
in all scenarios, as shown in Figures 2-4. On these landscapes, the opt local distances R used
for simulations and guaranteeing the FULL/R-LOCAL accuracy are provided in Figure 5a,
while Figure 5b shows the approx local distances R using Equation (1). From the opt local
distances R in Figure 5a, we observe that the dispersal coefficient α is the most important
parameter in both simulation methods. In all qualities, it has been investigated that a larger
local distance R is required when the dispersal coefficient α equals to 0.25, while for 0.5, 1
and 2 a smaller local distance R is sufficient. Therefore, the local distance R that ensures the
FULL/R-LOCAL accuracy depends on the dispersal coefficient α, and hence with decreasing
mean dispersal distance: R decreases with the increase in α. Furthermore, a logarithmic
growth has been observed in the local distance R with the growth of landscape size. On the
other hand, the difference in the landscape quality has not caused a significant difference in
the local distance R.

(a) α = 0.25 (b) α = 0.5

(c) α = 1 (d) α = 2

Figure 2 The FULL/R-LOCAL accuracy for each prefix in landscape of size 5 × 300 and of low
quality when the dispersal coefficient α takes values of 0.25, 0.5, 1 and 2.

Comparison of the obtained results based on the proposed equation with simulation
results demonstrates that the proposed equation (Equation (1)) gives a good estimate of the
local distance R. We define the error rate between the approx and opt local distances R

as:

z∑
j=1

(approxRj−optRj)

z∑
j=1

optRj

. Table 2 gives the error rates between the approx and opt local

distances R for each 5× 300 landscape of low, medium, and high quality. All error rates in
Table 2 are high, which means that we need to find the best constant c such that it minimises
the error for various dispersal coefficients α and different qualities. Table 3 presents the
interpolated constants c based on the objective functions ED, AB and MM for each 5× 300
landscape of low, medium, and high quality. These constants are affected by the opt local
distances R for all prefixes in each landscape of different quality.

In addition, we define the following three error rates, which correspond to constant c
produced by each objective function:
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(a) α = 0.25 (b) α = 0.5

(c) α = 1 (d) α = 2

Figure 3 The FULL/R-LOCAL accuracy for each prefix in landscape of size 5 × 300 and of
medium quality when the dispersal coefficient α takes values of 0.25, 0.5, 1 and 2.

(a) α = 0.25 (b) α = 0.5

(c) α = 1 (d) α = 2

Figure 4 The FULL/R-LOCAL accuracy for each prefix in landscape of size 5 × 300 and of high
quality when the dispersal coefficient α takes values of 0.25, 0.5, 1 and 2.

Table 2 Error rate between approx (when constant c = 1) and opt local distances R for each
5 × 300 landscape of low, medium and high quality when the dispersal coefficient α = 0.25, 0.5, 1, 2.

Landscape quality α=0.25 α=0.5 α=1 α=2
Low quality 0.81 0.74 0.73 0.57
Medium quality 0.83 0.86 0.90 1.01
High quality 0.89 0.75 0.56 0.63
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(a) Opt local distances R computed by
simulations

(b) Approx local distances R computed by
Equation (1)

Figure 5 The local distance R for each prefix in landscape of size 5×300 and of low, medium, and
high quality when α = 0.25, 0.5, 1, 2. (a)The opt local distances R that allows the FULL/R-LOCAL
accuracy and computed by simulations. (b)The computed local distances R by the proposed formula
(Equation (1) when constant c = 1).

Table 3 The computed constant c by the objective functions ED, AB and MM for each 5 × 300
landscape of low, medium and high quality when the dispersal coefficient α = 0.25, 0.5, 1, 2.

Landscape quality Parameters Constant c α=0.25 α=0.5 α=1 α=2

Low quality
qmin = 0.01 cED 0.55 0.55 0.6 0.65
qmax = 0.64 cAB 0.55 0.55 0.55 0.65
dmin = 2 cMM 0.6 0.65 0.7 0.75

Medium quality
qmin = 0.01 cED 0.55 0.55 0.55 0.5
qmax = 0.96 cAB 0.55 0.55 0.5 0.5
dmin = 3 cMM 0.6 0.6 0.65 0.7

High quality
qmin = 0.01 cED 0.55 0.55 0.65 0.6
qmax = 0.99 cAB 0.55 0.6 0.65 0.65
dmin = 3 cMM 0.6 0.65 0.75 0.75



D.A. Aloqalaa, J. A. Hodgson and P.W.H. Wong 35:13

Table 4 The error rate between approx and opt local distances R, when c = cED, cAB , cMM , for
each 5 × 300 landscape of low, medium and high quality when α = 0.25, 0.5, 1, 2.

Landscape quality Parameters Error rate α=0.25 α=0.5 α=1 α=2

Low quality
qmin = 0.01 Error rate (cED) 0.01 0.01 0.01 0.01
qmax = 0.64 Error rate (cAB) 0.04 0.05 0.06 0.05
dmin = 2 Error rate (cMM ) 0.08 0.12 0.21 0.17

Medium quality
qmin = 0.01 Error rate (cED) 0.01 0.01 0.01 0.02
qmax = 0.96 Error rate (cAB) 0.04 0.04 0.05 0.11
dmin = 3 Error rate (cMM ) 0.1 0.11 0.23 0.40

High quality
qmin = 0.01 Error rate (cED) 0.01 0.01 0.02 0.03
qmax = 0.99 Error rate (cAB) 0.05 0.05 0.08 0.12
dmin = 3 Error rate (cMM ) 0.13 0.13 0.17 0.22

1. error rate(cED) =

√
z∑
j=1

(approxRj ·cED−optRj)2

z∑
j=1

optRj

,

2. error rate(cAB) =

z∑
j=1

|approxRj ·cAB−optRj |

z∑
j=1

optRj

, and

3. error rate(cMM ) =

z∑
j=1

(approxRj ·cMM−optRj)

z∑
j=1

optRj

.

Observe that the error rate gives a measure of how well the constant c interpolated by the
corresponding objective function minimises the error rate between the approx and opt local
distances R, for a given landscape. When the approx local distance R is very close or equal
to the opt local distance R, the error will be small or zero. Table 4 provides the computed
error rates between the approx and opt local distances R for each 5 × 300 landscape of
low, medium and high quality, when the constant c is equal to the interpolated cED, cAB,
and cMM (constants in Table 3). As can be seen in Table 4, all error rates are between 0.01
and 0.4. While cED and cAB produce error rates smaller than cMM , constant cMM is the
best among the three. One of the reasons could be that constant cMM in all landscapes
reduces the approx local distance R to be greater than or equal to the opt local distance R.
On the other hand, in some cases cED and cAB decrease the approx local distance R to be
less than the opt local distance R, and that means they give an estimated local distance R
which does not allow the sought FULL/R-LOCAL accuracy.

3.2 Validation
We performed validation on 36 different landscapes. The 36 landscapes are divided into
groups of nine landscapes and the four groups each has size: 5× 50, 10× 50, 15× 50, and
20× 50, respectively. For each landscape size, the nine landscapes are further divided into
subgroups of three and each group has associated low, medium and high quality, respectively.
All landscapes are extracted randomly from different LCM2007 UK (aggregate classes)
maps [14] (i.e., aggregate classes in Table 1). On those landscapes, we run full and R-local
simulations independently as described in Section 2.5.2 in order to get the averages of the
estimated time of invasion for first, majority and all successes as well as the averages of the
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execution times of simulations. Running full and R-local simulations on those landscapes,
using constants in Table 3, gives a good result as the FULL/R-LOCAL accuracy has been
achieved as presented in Figure 6. It has been illustrated by the validation experiments that
the MM objective function is the best function to be used because it gives constant cMM

such that it reduces the approx local distance R to be greater than or equal to the opt for
all 36 landscapes.

(a) Landscapes of size 5 × 50 (b) Landscapes of size 10 × 50

(c) Landscapes of size 15 × 50 (d) Landscapes of size 20 × 50

Figure 6 The average of FULL/R-LOCAL accuracy over the three landscapes in each subgroup
with same size and same landscape quality; the R-LOCAL is with R = approxR for c = cMM . This
is done for different values of dispersal coefficients α.

Furthermore, the validation experiments demonstrate that the total time (TT) of simula-
tion execution, where TT = ST · AETS, needed to compute the estimated duration of the
invasion process is substantially reduced by the R-local simulation method for all landscapes
of different qualities. Figure 7 illustrates how much the R-local method is faster than the
full method for all three qualities. For many cases, the full method takes 5-10 times longer
to compute and this ratio can become as high as 75 for low quality landscape. We note
that in general, for a given landscape size, the speedup of the R-local method increases as
the dispersal coefficient α increases. On the other hand, in most cases, when the dispersal
coefficient α is fixed, the speedup increases as the size of landscape increases.

In more details, in the landscape of size 20× 50 and of low quality, the average execution
time of full simulation is 176.9 seconds while only 2.5 seconds in the R-local simulation. That
means the full method takes around 70 times longer to compute. We could envisage that
when we are running full simulation in very large landscapes e.g., landscape of size 500× 500,
the computation time will be substantially reduced from maybe weeks/days to hours.

4 Conclusion

This study was prompted by a desire to construct the R-local model that visualises the
invasion process based on the landscape network sparsification tool to efficiently estimate
a duration of the process. The capability of our model is to reduce the time needed to
compute the estimated duration of the invasion process on large landscapes while maintaining
a comparable duration of the invasion.
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(a) Landscapes of low quality (b) Landscapes of medium quality

(c) Landscapes of high quality

Figure 7 In each landscape quality (low, medium, high), the ratio between the stabilisation time
(ST) of full and R-local simulations; the ratio between the average of the execution times (AETS) of
full and R-local simulations; the ratio between the total time (TT) of full and R-local simulations
in four different sizes of landscapes 5 × 50, 10 × 50, 15 × 50 and 20 × 50, when R = approxR

for c = cMM , and dispersal coefficient α = 0.25, 0.5, 1, 2.

The simulations demonstrate how the local distance R depends on two factors: the
dispersal coefficient α and the landscape quality. A small dispersal coefficient α requires
a large local distance R in all types of quality, while a small R is sufficient for a large α.
The difference in landscape quality does not cause a significant difference in the needed
value of the local distance R. Indeed, the tool of landscape network sparsification proves
its efficiency in computing the invasion time especially for large landscapes. Even when the
size of landscape is increased, the local distance R does not grow significantly (see Figure 5).
This implies a sparser landscape networks for large landscapes, and therefore the time needed
to compute the invasion duration decreases substantially.

As for future work, we aim to study how to improve/spoil the invasion process, e.g.,
to increase/decrease the speed of invasion by modifying landscapes. (Note that in some
applications decreasing the speed of invasion could be more desirable, e.g., in epidemics.) This
would require the computation of the invasion duration many times to verify the effectiveness
of landscape modification, and therefore our work improving the speed up of the computation
would be beneficial.
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