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Abstract. One of the basic problems in optical networks is assigning
wavelengths to (namely, coloring of) a given set of lightpaths so as to
minimize the number of ADM switches. In this paper we present a con-
nection between maximum matching in complete multipartite graphs and
ADM minimization in star networks. A tight 2/3 competitive ratio for
finding a maximum matching implies a tight 10/9 competitive ratio for
finding a coloring that minimizes the number of ADMs.
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1 Introduction

Optical wavelength-division multiplexing (WDM) is today the most promising
technology that enables us to deal with the enormous growth of traffic in commu-
nication networks, like the Internet. A communication between a pair of nodes is
done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in the network, with a color assigned to it.

Given a WDM network G = (V,E) comprising optical nodes and a set of full-
duplex lightpaths P = {p1, p2, ..., pN} of G, the wavelength assignment (WLA)
task is to assign a wavelength to each lightpath pi. Recent studies in optical
networks dealt with the issue of assigning colors to lightpaths, so that every two
lightpaths that share an edge get different colors.

When the various parameters comprising the switching mechanism in these
networks became clearer the focus of studies shifted, and today many studies
concentrate on the total hardware cost. The key point here is that each lightpath
uses two Add-Drop Multiplexers (ADMs), one at each endpoint. If two adjacent
lightpaths, i.e. lightpaths sharing a common endpoint, are assigned the same
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wavelength, then they can use the same ADM. Because ADMs are designed to
be used mainly in ring and path networks in which the degree of a node is at
most two, an ADM may be shared by at most two lightpaths. The total cost
considered is the total number of ADMs. Lightpaths sharing ADMs in a common
endpoint can be considered as concatenated, so that they form longer paths or
cycles. These paths/cycles do not use any edge e ∈ E twice, for otherwise they
cannot use the same wavelength which is a necessary condition to share ADMs.

Minimizing the number of ADMs in optical networks is a main research topic
in recent studies. The problem was introduced in [GLS98] for the ring topology.
An approximation algorithm for the ring topology with approximation ratio of
3
2 was presented in [CW02], and was improved in [SZ04],[EL04],[EL09] to 10

7 + ε,
10
7 , and 98

69 respectively. The off-line version of the Minimum ADM problem can
be solved optimally for trees [ZCXG03].

The motivation for the on-line problem stems from the need to utilize the
cost of use of the optical network. We assume that the switching equipment
is installed in the network. Once a lightpath arrives, we need to assign it two
ADMs, and our target is to determine which wavelength to assign to it so that
we minimize the cost, measured by the total number of ADMs used.

An on-line algorithm with competitive ratio of 7
4 for any network topology

was presented in [SWZ07]. It was shown that this algorithm has an optimal 7
4

competitive ratio for a ring topology, and an optimal 3
2 competitive ratio for a

path topology.
In this paper we present a connection between matchings in complete multi-

partite graphs and ADM minimization in star networks. Online bipartite max-
imum matching problem was introduced in [KVV90] and a (1−1/e)-competitive
randomized algorithm was proposed , which is optimal [GM08,BM08]. The greedy
algorithm is 1/2-competitive and is optimal for deterministic online algorithms.
The problem has found applications in other related problems (e.g., [ANR02],
[AR05], [AC06]). The problem has also been studied for general weighted graphs
in [KP93] where a 1/3-competitive deterministic algorithm is given. In [Sit96],
a formula for the cardinality of the maximum matching in complete multipar-
tite graph is given. To the best of our knowledge, there is no work on online
maximum matching in multipartite graphs.

We show a tight bound of 2/3 for the competitive ratio of deterministic algo-
rithms for this maximum matching problem, implying a tight 10/9 competitive
ratio for the ADM minimization problem.

In Section 2 we describe both problems. The lower bound and upper bound
for the competitive ratio are presented in Sections 3 and 4, respectively. We
conclude and discuss further research directions in Section 5.

2 Preliminaries

2.1 The ADM Minimization Problem

An instance α of the problem is a pair α = (G,P ) where G = (V,E) is an
undirected graph and P is a multi-set of simple paths in G. In an on-line instance,



the graph G is known in advance and the set P of paths is given on-line. In this
case we denote P = {p1, p2, ..., pN} where pi is the i-th path of the input and
Pi = {pj ∈ P |j ≤ i} consists of the first i paths of the input.

A valid chain (resp. cycle) is a path (resp.cycle) formed by the concatenation
of distinct paths pi0 , pi1 , ... ∈ P that do not have an edge in common. A solution
S of an instance α = (G,P ) is a partition of P into valid chains and cycles.

The cost of a valid chain (resp. cycle) containing k paths is k + 1 (resp. k)
ADMs. The cost cost(S) of a solution S is the sum of the costs of its valid chains
and cycles. The objective is to find a solution S such that cost(S) is minimum.

Let OPT be an optimal off-line algorithm. An online algorithm A to a mini-
mization problem is said to be c-competitive (for c ≥ 1) if there exists some b ≥ 0
such that for any input I, A(I) ≤ c×OPT (I) + b, where A(I) and OPT (I) de-
note the cost of the output of A and OPT , respectively, on input I. Similarly,
for a maximization problem A is said to be c-competitive (for c ≤ 1) if there
exists some b ≥ 0 such that for any input I, A(I) ≥ c×OPT (I)− b.

2.2 The Star Topology and the d-PARTMM problem

Let G be a star with d edges, namely G = (V,E), V = {0, 1, ..., d} , E =
{e1, ..., ed} and ∀1 ≤ i ≤ d, ei = (0, i). In this case paths in P are of length
either 1 or 2. Let p ∈ P be a path of length 2 with endpoints i and j. For a
path p′ to be concatenated to p, one of its endpoints should be either i or j. In
this case p and p′ would share one of the edges ei, ej . Therefore paths of length
2 constitute valid chains of size 1 in every solution, and each such path costs 2
ADMs. We therefore assume w.l.o.g. that all the paths are of length 1.

Two paths p, p′ of length 1 have always a common endpoint 0. Let i (resp.
j) be the other endpoint of p (resp. p′). They can form a valid chain if and only
if i 6= j. In this case the cost of the valid chain is 3, or in other words 3/2 per
path, whereas a path constituting a valid chain costs 2. Therefore our goal is
to maximize the number of valid chains of size 2, that is equivalent to find a
maximum matching in a complete d-partite graph. This problem will be called
the d-PARTMM problem throughout the paper.

The following lemma is proven in [Sit96], we give a sketch of proof for com-
pleteness.

Lemma 2.1 Let G = (V,E) be a complete d-partite graph with N nodes (V is
partitioned into parts V1, V2, · · · , Vd). G contains a matching of size bN

2 c if and

only if |Vi| ≤ d
N
2 e for every i.

Sketch of Proof: The ‘only if’ part is obvious. The ‘if’ part is proved by
induction on N . Assume w.l.o.g. that V1 and V2 are the two largest sets among
V1, V2, · · · , Vd. The induction step stems from the observation that, by matching
any node v ∈ V1 with any node v′ ∈ V2, and deleting these two nodes from G,
results in a complete bipartite graph G′ of N − 2 nodes (and sets V1−{v}, V2−
{v′}, V3, · · · , Vd). The proof follows by the inductive hypothesis.

�



A d-partite graph having a matching of size bN
2 c will be called balanced.

In an on-line instance, the input consists of d empty parts that are initially
empty. The nodes of the graph are revealed one at a time where each node is an
element of some part. For each node pi of the input, an on-line algorithm has
to decide to which node pj(j < i) to match it, or to leave it unmatched. As the
graph is a complete d-partite graph pj is eligible if and only if it is unmatched
and it is not in the same part as pi. Once two nodes are matched, the decision
cannot be revoked. An on-line instance will be called completely balanced if every
prefix of it is balanced.

When d = 2, the on-line problem can be solved optimally by the greedy
algorithm, which matches to each pi an unmatched node pj in the other part of
the graph as long as such a pj exists. In the rest of our work we assume d ≥ 3.

We conclude this section with the following claim that relates the perfor-
mances of any solution with respect to these two problems.

Lemma 2.2 A solution to the d-PARTMM problem is a c-approximation (0 ≤
c ≤ 1), if and only if the corresponding solution to the Minimum ADM problem
is a 4−c

3 -approximation, with the same additive term.

Proof. Let MM be the size of a maximum d-partite matching, and let M be
the size of a d-partite matching that constitutes c-approximation. There exists
a constant b ≥ 0, such that M ≥ cMM − b. Let S∗ be an optimal solution
to the Minimum ADM problem and S be a solution corresponding to the c-
approximation.

cost(S∗) = 2 |P | −MM

cost(S) = 2 |P | −M ≤ 2 |P | − cMM + b =
2 |P | − cMM

2 |P | −MM
cost(S∗) + b

=
2− c(MM/ |P |)

2−MM/ |P |
cost(S∗) + b.

As 0 ≤ c ≤ 1, the coefficient of cost(S∗) is a non decreasing function of MM/ |P |.
Considering that MM/ |P | ≤ 1/2 we conclude

cost(S) ≤
2− c/2

2− 1/2
cost(S∗) + b =

4− c

3
cost(S∗) + b.

On the other hand let S be a c′ = 4−c
3 approximation to the Minimum ADM

problem and M the size of d-partite matching that it induces. There is a constant
b′ such that

cost(S) ≤ c′ · cost(S∗) + b′

2 |P | −M ≤ c′(2 |P | −MM) + b′

M ≥ c′MM + (1− c′)2 |P | − b′ ≥ c′MM + (1− c′)4MM − b′

= (4− 3c′)MM − b′ = cMM − b′.

ut



3 Lower Bound

Lemma 3.1 For any c > 2
3 and d ≥ 3 there is no c-competitive deterministic

on-line algorithm for the d-PARTMM problem.

Proof. Assume, by contradiction that there is a
(

2
3 + ε

)

-competitive determinis-
tic on-line algorithm ALG for some ε > 0. Then there is a constant b ≥ 0, such
that for any online instance I

ALG(I) ≥

(

2

3
+ ε

)

OPT (I)− b

where ALG(I) is the size of the matching returned by the algorithm and OPT (I)
is the size of the maximum matching.

For any non-negative integer k, consider the instance I containing 2k nodes,
such that k of them are in V1 and k of them are in V2. Obviously OPT (I) = k,
then

ALG(I) ≥

(

2

3
+ ε

)

k − b =
2

3
k + εk − b

and ALG leaves k − ALG(I) unmatched nodes at each one of V1 and V2. Let
I ′ be the online instance which is obtained by appending to I, 2k nodes from
part 3. In this phase ALG can not do better than matching the 2(k −ALG(I))
unmatched nodes to the nodes of V3. Therefore

ALG(I ′) ≤ ALG(I) + 2(k −ALG(I)) = 2k −ALG(I) ≤
4

3
k − εk + b. (1)

On the other hand OPT (I ′) = 2k. Then

ALG(I ′) ≥

(

2

3
+ ε

)

OPT (I ′)− b =

(

2

3
+ ε

)

2k − b (2)

Combining (1) and (2) we get

(

2

3
+ ε

)

2k − b ≤
4

3
k − εk + b

2εk − b ≤ −εk + b

k ≤ 2b
3ε

For any input I with k bigger than the right hand side we reach a contradiction.
ut

By applying Lemma 2.2 for c = 2
3 , and using Lemma 3.1, we have thus

proved:

Theorem 1 For any c < 10
9 , there is no c-competitive deterministic on-line

algorithm for the Minimum ADM problem in star networks.



4 Upper Bound

4.1 Eliminating unbalanced instances

The following lemma shows that the difficult instances of the d-PARTMM prob-
lem are the completely balanced instances.

Lemma 4.1 There is a c-competitive deterministic algorithm for the d-PARTMM
problem, if and only if there is a c-competitive deterministic algorithm for it when
the instances are restricted to be completely balanced.

Sketch of Proof: The ‘only if’ part is immediate. We now show the ‘if’ part. Let
ALG be a c-competitive deterministic on-line algorithm for completely balanced
instances, where 0 ≤ c ≤ 1. We claim that the following algorithm ALG′ is
c-competitive for all instances.

ALG′

Initialization:
U ← ∅

On input pi do: //I = {p1, ..., pi}
B ← I \ U
If B is completely balanced then

follow the decision of ALG on input B
else{// There is exactly one part h with more than bB

2 c nodes of B
If pi is in h then

leave pi unmatched
else{

choose an arbitrary unmatched node pj ∈ U (*)
match pi to pj

}
U ← U ] {pi}

}

First note that any instance I which is not completely balanced has prefixes
which are not balanced. Each such prefix has one part h which is the “heav-
iest” part containing more than half of the nodes. As the instance is initially
balanced it can be uniquely divided into intervals B1, U1, B2, U2, ... which are
alternately balanced and unbalanced. Each unbalanced interval Ui has a corre-
sponding ”heaviest” part hi.

We describe in detail how the intervals Ui are determined. Consider a step
during which the input became unbalanced. This happens necessarily after some
odd step 2si − 1 with si nodes in hi. After this step si + 1 nodes out of 2si

are in hi. Now consider the first step that the input becomes balanced again. It
happens necessarily after some even step 2ei with 2ei− 2 nodes in hi. After this
step ei nodes out of 2ei − 1 are in hi. In this case Ui is the interval from 2si to
2ei − 1 during which the input contained 2ei − 2si nodes out of which ei − si

are in hi. As 2ei − 1 is the first step that this happens, at any time between
these two steps any node not in hi can be matched to a node in hi in line (*) of



ALG’. Moreover the nodes of Ui admit a perfect matching where each edge of
the matching has an adjacent node in hi. If we remove the sub-instance Ui from
the input we remain with the instance until step 2si− 1 which is balanced. Note
that an intervals Bi may possibly be empty.

If the instance terminates with an unbalanced interval, i.e. the instance is
unbalanced, then for the last unbalanced interval Ul, more than half of the nodes
revealed during Ul, say x + δ of them, are in hl where x is the total number of
nodes in the other parts. If the instance is balanced let δ = 0. Let B = B1, B2, ...
and U = U1, U2, ..., Ul−1.

Then ALG′ returns |Ui|
2 matchings at each interval Ui, i < l. And for Ul it

returns x matchings. On the other hand ALG ”sees” only the sub-instance B
that is completely balanced. Therefore for some constant b, it returns at least
c ·OPT (B) + b matchings. We conclude

ALG′(I) = ALG(B) +
∑

i<l

|Ui|

2
+ x ≥ c ·OPT (B) + b +

|U |

2
+ x

≥ c

(

OPT (B) +
|U |

2
+ x

)

+ b.

On the other hand

OPT (I) ≤

⌊

|I| − δ

2

⌋

=

⌊

|B ∪ U |

2

⌋

+x =

⌊

|B|

2

⌋

+
|U |

2
+x = OPT (B)+

|U |

2
+x.

We conclude that ALG′ is c-competitive.

�

4.2 Algorithm MATCHBYRATIO

In this section we present the algorithm MATCHBY RATIO(α, d) for com-
pletely balanced instances, where 0 < α ≤ 2/3 and d is the number of parts of
the graph. We prove that for any α in this interval the algorithm is α-competitive.

Algorithm MATCHBYRATIO is designed with the lower bound proof in
mind. It depends on some constant 0 < α ≤ 2/3 and the number of parts d (we
justify the dependency on d in Section 5).

. In the preprocessing step, it calculates a value β depending on d. The
algorithm attempts to maintain the number of the matchings to be close to α
times the optimum (with an additive offset of β). Each time it falls behind this
threshold it adds one matching to the output. One node of the matching is the
current input node by definition of the problem. We call this node the matching
node. The other node is chosen arbitrarily from the part having the biggest ratio
of unmatched nodes (ratio of number of unmatched nodes to total number of
nodes in the part). This node is called the matched node.

The following pseudo-code of the algorithm will be helpful in the analysis.
The algorithm partitions the nodes into three sets: U is the set of unmatched
nodes, MG is the set of matching nodes, and MD is the set of matched nodes.



MATCHBY RATIO(α, d)
Initialization:

Calculate β as a function of d // See analysis (Theorem 2)
U ← ∅
MG← ∅
MD ← ∅

On input pi do: //I = {p1, ..., pi}
opt← OPT (I) // = b i

2c)
if |MG| < bα · opt− βc then { // (**)

Let h be the part containing pi

choose an arbitrary unmatched node pj from part h′ 6= h having a
maximal ratio of unmatched nodes

if there is no such node then FAIL (*)
output the edge (pi, pj)
U ← U \ {pj}
MD ←MD ∪ {pj}
MG←MG ∪ {pi}

} else {
U ← U ∪ {pi}

}

By the description of the algorithm, it is clearly α-competitive unless it fails
in the line marked by (*). It remains to prove that this does not happen if
α ≤ 2/3.

We begin by introducing some notation. Ui (resp. MDi, MGi) is the value
of the set U (resp. MD, MG) after step i of the algorithm, in other words after

it has processed pi. Let also Mi
def
= MGi ]MDi and Ti

def
= Mi ] Ui. P is the

set of all the input nodes. We denote by P1, ..., Pd the parts of the multipartite

graph, clearly P = ]d
h=1Ph. For any subset Q of P , Xi(Q)

def
= Xi ∩Q where X

stands for any one of U,MD,MG,M or T . Whenever X is the name of a set,
its lowercase counterpart x denotes its size. For instance mgi(Ph) is the number
of matching nodes of Ph after input pi is processed by the algorithm. For a

nonempty subset Q of P we define its unmatched ratio as ρi(Q)
def
= ui(Q)

ti(Q) .

A basic property of the algorithm is that the sizes ui,mi, ... do not depend
on the input and are functions of i only. However their subdivision, i.e. the sizes
ui(Ph),mi(Ph), ... depend on the input.

Lemma 4.2 For all steps 1 ≤ i ≤ j, in which the condition in line (**) is true,
we have

αi− 2β + 2− 2α ≤ mi < αi− 2β + 2 (3)

(1− α)i + 2β − 2 < ui ≤ (1− α)i + 2β − 2 + 2α (4)



and

|mj −mi − α(j − i)| < 2α

|uj − ui − (1− α)(j − i)| < 2α.

Proof. Omitted. ut

We assume by contradiction that the algorithm fails, and then use back-
ward analysis to reach a contradiction. Under the failure assumption we define
recursively the following two finite sequences:

i0 is the step during which the algorithm failed and H0 is the part containing
the input at step i0. Formally,
H0 = Ph, where pi0 ∈ Ph.

For any k > 0:
ik is the last step before ik−1 that a matching is added to the output and

none of its nodes are in Hk−1. If such a step does not exist then ik is undefined
and ik−1 terminates the sequence, otherwise:

Hk = Hk−1 ∪ Ph where p′ ∈ Ph and p′ is the matched node at step ik.
Note that a matching or a failure may occur only at even steps, because αb i

2c
does not increase at odd steps. Therefore ik is even for all k. Note also that the
length of the sequence is at most d − 1, because each time a part of the graph
is added to H, and at least one part (i.e. the part of the matching node) is left
out.

Lemma 4.3 For any d ≥ 3 and any α < 1/2, MATCHBY RATIO(α, d) does
not FAIL if β ≥ 1.

Proof. Assume by contradiction that the algorithm fails at some step, and let
i0 be the step before the failure. By definition H0 is the part of the graph
containing the input node at this step. All the unmatched nodes should be in
H0, because otherwise the algorithm would pick an unmatched node from P \H0

and construct a matching, thus would not fail. Therefore we have

ui0(H0) = ui0 > (1− α)i0 + 2β − 2 ≥ (1− α)i0 > i0/2.

On the other hand as the instance is balanced we have ui0(H0) ≤ ti0(H0) ≤
di0/2e = i0/2, a contradiction. ut

Lemma 4.4 If α ≤ 2/3 and β > d then

uik
(Hk) ≥ 2(1− α)tik

(Hk) + 2β − 2− k ≥ 2(1− α)tik
(Hk).

Proof. The second inequality follows from β > d, k < d and d ≥ 3. We will prove
the first inequality by induction on k.

k = 0: The proof is similar to the proof of Lemma 4.3:

ui0(H0) = ui0 > (1−α)i0+2β−2 = (1−α)ti0 +2β−2 ≥ 2(1−α)ti0(H0)+2β−2



where the last inequality holds because the instance is balanced.

k > 0: Recall that ik < ik−1 and both even. For readability we denote m = ik
and n = ik−1. We will analyze the change in the sizes of the sets U,MG,MD,
etc... from step m + 1 to step n.

b′

Hk−1

z

z′
x y a b

c f

a′

t′

tw

u

z′′

Fig. 1. The scenario discussed in the proof of Lemma 4.4

Consult Figure 1 for the following discussion. Solid edges are matchings that
were output until step m and dotted edges are matchings that were output from
step m + 1 to step n. A black node is a matching node, and a white node is
a matched node. An unmatched node is drawn with a solid border if it was
input until step m, and with a dotted border otherwise. The figure shows all
the possibilities of matchings and all the possibilities of unmatched nodes. The
letters on the nodes (resp. edges) are the number of such nodes (resp. edges).

First note that m is the last step during which two elements of Hk−1 =
P \Hk−1 are matched to each other. Therefore z′ = z′′ = 0 and the set sizes are
as follows:



mdm(Hk−1) = y + w

mgm(Hk−1) = x + w

mm(Hk−1) = x + y + 2w

um(Hk−1) = a + u + t′

tm(Hk−1) = x + y + 2w + a + u + t′

mdn(Hk−1) = y + w + a + f + t + t′

mgn(Hk−1) = x + w + b + c + t + t′

mn(Hk−1) = x + y + 2w + a + b + c + f + 2t + 2t′

un(Hk−1) = u + b′

tn(Hk−1) = x + y + 2w + a + b + c + f + u + b′ + 2t + 2t′

mgn −mgm = a + b + c + f + t + t′

tn − tm = a′ + b′ + a + b + 2c + 2f + 2t + t′

Claim. b′−a−t′

b+c+f+b′+2t+t′
≤ 2(1− α) + α

n−m
.

Proof.

b′ − a− t′

b + c + f + b′ + 2t + t′
≤

b′ − a + t

b + c + f + b′ + 2t + t′

≤
a′ + b′ + c + f + t

a′ + b′ + a + b + 2c + 2f + 2t + t′
. (5)

The second inequality above holds by the following observation. If b′ − a + t ≤
0 then the left hand side is non-positive and the right hand side is positive,
therefore the inequality holds. Otherwise b′ − a + t > 0 and the left hand side
is a fraction with value of at most 1. Increasing the value of both nominator
and denominator by the same value increases the fraction. Note that the right
hand side is obtained from the left hand side by adding a + a′ + c + f to both
nominator and denominator.

On the other hand we have

a′ + b′ + c + f + t

a′ + b′ + a + b + 2c + 2f + 2t + t′
=

(tn − tm)− (mgn −mgm)

tn − tm

=
(n−m)− (mgn −mgm)

n−m
<

(n−m)− (α
2 (n−m)− α)

n−m

=
(

1−
α

2

)

+
α

n−m
≤ 2(1− α) +

α

n−m
. (6)

Note that the last inequality holds because α ≤ 2/3. By combining (5) and (6)
we get the claim. ut

By the inductive assumption we have

un(Hk−1) ≥ 2(1− α)tn(Hk−1) + 2β − 2− (k − 1),



and by the above claim

b′ − a− t′ ≤ 2(1− α)(b + c + f + b′ + 2t + t′) + α
(b + c + f + b′ + 2t + t′)

n−m

< 2(1− α)(b + c + f + b′ + 2t + t′) + 1.

We combine to get

um(Hk−1) = un(Hk−1)− (b′ − a− t′)

> 2(1− α)tn(Hk−1) + 2β − 2− (k − 1)

−2(1− α)(b + c + f + b′ + 2t + t′)− 1

= 2(1− α)tm(Hk−1) + 2β − 2− k > 2(1− α)tm(Hk−1).

Therefore ρm(Hk−1) > 2(1 − α). Now recall that in step m the algorithm
matched two nodes, both not from Hk−1. Let Ph be the part of the graph con-
taining the matched node. By the behavior of the algorithm this means that the
unmatched ratio of Ph is at least as much as each one of the parts of Hk−1, thus
at least as much as entire Hk−1, therefore ρm(Ph) ≥ ρm(Hk−1) > 2(1 − α), i.e.
um(Ph) > 2(1− α)tm(Ph). Combining with the above, we get:

um(Hk) = um(Hk−1) + um(Ph)

> 2(1− α)tm(Hk−1) + 2β − 2− k + 2(1− α)tm(Ph)

= 2(1− α)tm(Hk) + 2β − 2− k.

ut

Lemma 4.5 For any d ≥ 3 and 1/2 ≤ α ≤ 2/3, MATCHBY RATIO(α, d)
does not FAIL if β > 3

2d + 3.

Proof. If the algorithm fails, the sequences i0, i1, ..., il and the H0,H1, ...,Hl are
defined, where l ≤ d − 2. Let Hl = P \ Hl. By the definition of the sequence
H and the fact that Hl is the last item of the sequence no matching can have
both nodes in Hl. Such a matching would cause part of Hl to be added to Hl,
to form Hl+1. In other words all the matchings contain at least one node in Hl.
Therefore

mil
(Hl) ≤ mil

(Hl).

α and β satisfy the conditions of Lemma 4.4, by which we have

uil
(Hl) ≥ 2(1− α)til

(Hl) + δ = 2(1− α)mil
(Hl) + 2(1− α)uil

(Hl) + δ

1

3
uil

(Hl) ≥ (2α− 1)uil
(Hl) ≥ 2(1− α)mil

(Hl) + δ ≥
2

3
mil

(Hl) + δ

uil
(Hl) ≥ 2mil

(Hl) + 3δ.

for δ = 2β − 2− k. We conclude

uil
≥ uil

(Hl) ≥ 2mil
(Hl) + 3δ ≥ mil

(Hl) + mil
(Hl) + 3δ = mil

+ 3δ



uil
−mil

≥ 3δ.

Recalling that α ≥ 1/2 we get from (3) and (4)

uil
−mil

≤ (1− 2α)il + 4β + 4α− 4 ≤ 4β + 4α− 4 ≤ 4β.

Therefore

4β ≥ 3δ = 6β − 6− 3k

2β ≤ 3k + 6 ≤ 3d + 6

contradicting our assumption. ut

Combining Lemma 4.3 and Lemma 4.5 we get

Theorem 2 For any d ≥ 3 and any α ≤ 2/3, MATCHBY RATIO(α, d) does
not FAIL if β > 3

2d + 3.

Corollary 4.1 MATCHBY RATIO(2/3, d) is a 2/3-competitive algorithm for
the d− PARTMM problem, with an additive term of 3

2d + 3.

5 Conclusion and Possible Improvements

In this paper, we have shown an interesting connection between maximum match-
ings in complete multipartite graphs and ADM minimization in star networks.
We show a tight 2/3 competitive ratio for finding a maximum matching, im-
plying a tight 10/9 competitive ratio for finding a coloring that minimizes the
number of ADMs.

The algorithm used in the upper bound is 2/3-competitive with an additive
term β that depends on the number of parts d of the graph, which is supposed to
be known in advance. Actually this is the situation for the ADM minimization
problem in which the star network (and therefore d) is given in advance. On the
other hand our algorithm is usable also when d is not known a priori by a slight
modification. We start with the assumption d = 3 and increment the value of
d each time the first node of some part is revealed, and adjust β accordingly.
In this case β = O(d) is unbounded and depends on the on-line input. However
this does not constitute a problem if d is o(N).

An open question is to improve the competitive ratio by randomized algo-
rithms. It is also interesting to consider other topologies like trees. We believe
the result in star networks may be a starting point for the investigation of the
more general tree networks.

Another important extension is to consider the ADM minimization problem
when grooming is allowed; in graph-theoretic terms, this amounts to coloring
the paths so that at most g of them are crossing any edge, and where each
ADM can serve up to g paths that come from at most two of its adjacent edges
(see [GRS98,ZM03]). Another direction of extension is to the case where more
involved switching functions are under consideration.
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[CW02] G. Călinescu and P-J. Wan. Traffic partition in WDM/SONET rings to

minimize SONET ADMs. Journal of Combinatorial Optimization, 6(4):425–
453, 2002.

[EL04] L. Epstein and A. Levin. Better bounds for minimizing SONET ADMs. In
2nd Workshop on Approximation and Online Algorithms, Bergen, Norway,
September 2004.

[EL09] L. Epstein and A. Levin. Better bounds for minimizing sonet adms. J.

Comput. Syst. Sci., 75(2):122–136, 2009.
[GLS98] O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a WDM ring

to minimize cost of embedded SONET rings. In INFOCOM’98, Seventeenth

Annual Joint Conference of the IEEE Computer and Communications So-

cieties, pages 69–77, 1998.
[GM08] G. Goel and A. Mehta. Online budgeted matching in random input mod-

els with applications to adwords. In Proceedings of the Nineteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA,
pages 982–991, January 2008.

[GRS98] O. Gerstel, R. Ramaswami, and G. Sasaki. Cost effective traffic grooming
in WDM rings. In INFOCOM’98, Seventeenth Annual Joint Conference of

the IEEE Computer and Communications Societies, 1998.
[KP93] B. Kalyanasundaram and K. Pruhs. On-line weighted matching. J. Algo-

rithms, 14(3):478–488, 1993.
[KVV90] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for

on-line bipartite matching, 1990.
[Sit96] D. Sitton. Maximum matchings in complete multipartite graphs. Furman

University Electronic Journal of Undergraduate Mathematics, 2:6–16, 1996.
[SWZ07] M. Shalom, P. W. H. Wong, and S. Zaks. Optimal on-line colorings for

minimizing the number of ADMs in optical networks. In DISC, pages 435–
449, 2007.

[SZ04] M. Shalom and S. Zaks. A 10/7 + ε approximation scheme for minimizing
the number of ADMs in SONET rings. In First Annual International Con-

ference on Broadband Networks, San-José, California, USA, pages 254–262,
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