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Abstract: This paper extends the study of online algorithms for energy-efficient deadline schedul-

ing to the overloaded setting. Specifically, we consider a processor that can vary its speed between
0 and a maximum speed T to minimize its energy usage (the rate is believed to be a cubic function
of the speed). As the speed is upper bounded, the processor may be overloaded with jobs and
no scheduling algorithms can guarantee to meet the deadlines of all jobs. An optimal schedule is

expected to maximize the throughput, and furthermore, its energy usage should be the smallest
among all schedules that achieve the maximum throughput. In designing a scheduling algorithm,
one has to face the dilemma of selecting more jobs and being conservative in energy usage. If we

ignore energy usage, the best possible online algorithm is 4-competitive on throughput [Koren and
Shasha 1995]. On the other hand, existing work on energy-efficient scheduling focuses on a setting
where the processor speed is unbounded and the concern is on minimizing the energy to complete
all jobs; O(1)-competitive online algorithms with respect to energy usage have been known [Yao

et al. 1995; Bansal et al. 2007a; Li et al. 2006]. This paper presents the first online algorithm for
the more realistic setting where processor speed is bounded and the system may be overloaded;
the algorithm is O(1)-competitive on both throughput and energy usage. If the maximum speed of
the online scheduler is relaxed slightly to (1+ ǫ)T for some ǫ > 0, we can improve the competitive

ratio on throughput to arbitrarily close to one, while maintaining O(1)-competitiveness on energy
usage.
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Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems—Sequencing and scheduling; G.2.1 [Discrete

Mathematics]: Combinatorics—Combinatorial algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Power saving, speed scaling, deadline scheduling, online
algorithms, competitive analysis

1. INTRODUCTION

Deadline scheduling. Let us first review a classical online problem of deadline
scheduling. We are given a processor of speed T , which can do T units of work in one
unit of time. Jobs arrive online at unpredictable times; the work and deadline of a
job are known when the job arrives. The aim is to design an (online) algorithm that
maximizes the throughput, which is the total work of the jobs completed by their
deadlines (see, e.g., [Baruah et al. 1991; Dertouzos 1974; Koren and Shasha 1995]).
We assume preemption is allowed, and a preempted job can be resumed at the point
of preemption. Note that a processor of speed T may not meet the deadlines of all
jobs, i.e., the processor is overloaded. An algorithm A is said to be c-competitive,
where c ≥ 1, if for any job sequence, A obtains a throughput at least 1/c of the best
offline schedule. Koren and Shasha [1995] have showed that the online algorithm
Dover is 4-competitive and no online algorithm can be better than 4-competitive.
If the job sequence is restricted to admit a (offline) schedule that completes all jobs
on time (i.e., the underloaded setting), the algorithm EDF (earliest deadline first)
guarantees to complete all jobs in time and is thus 1-competitive [Dertouzos 1974].

Energy efficiency. Recent development on mobile devices makes energy efficiency
a major concern as these devices are battery-operated. A popular technology to
reduce energy usage is to allow variable processor speed, which is commonly known
as dynamic voltage scaling (see, e.g., [Grunwald et al. 2000; Pillai and Shin 2001;
Weiser et al. 1994]). As the rate of energy usage P required to run a processor at
speed s is believed to be roughly sα where α ≥ 2 [Brooks et al. 2000], it is more
energy efficient to schedule a job at a low speed whenever possible. In this paper,
we assume that the online algorithm can adjust the speed of the processor to any
value in [0, T ] where T is fixed in advance [Pillai and Shin 2001], and we assume
a general rate of energy usage in the form sα. Given a job sequence, an optimal
schedule maximizes the throughput, while minimizing the energy usage subject to
this throughput. Our primary concern is whether there exists an online algorithm
that can be O(1)-competitive on throughput and O(1)-competitive on energy usage,
i.e., the throughput and energy usage are respectively at least 1/c and at most c′

times of that of an optimal schedule, where c and c′ are constants.

Previous work. Energy efficient algorithms for deadline scheduling are first
studied by Yao et al. [1995]. They considered the case where the processor can run
at any speed in [0,∞), and can always complete a job sequence without missing
a deadline. In this case, both online and offline algorithms aim to complete the
entire job sequence, the only concern is the speed and energy usage. Yao et al.
[1995] gave a simple online algorithm called AVR for determining the speed. When
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coupled with EDF, AVR gives an online algorithm that is 2ααα-competitive on en-
ergy usage. They also proposed another online algorithm OA (Optimal Available),
which was later shown by Bansal et al. [2007a] to be αα-competitive. Bansal et al.
[2007a] further improved the result with a new algorithm that is 2(α/(α − 1))αeα-
competitive. This algorithm is also e-competitive with respect to the maximum
speed. On the other hand, Li et al. [2006] have considered structured jobs and
shown that AVR has a better performance.

Our contribution. In this paper, we consider energy-efficient deadline scheduling
on a processor with a fixed maximum speed T and the system may be overloaded.
We give an algorithm, called FSA(OAT) below, which is 14-competitive on through-
put and (αα + α24α)-competitive on energy usage. If T = ∞, then this algorithm
is 1-competitive on throughput and αα-competitive on energy usage. That is, its
behavior is identical to OA.

As the maximum speed is bounded, an online scheduling algorithm may not
be able to finish all jobs. It needs two kinds of strategies, one for selecting jobs
and one for determining the speed (as a function over time). In this paper, we
consider a simple job selection strategy called FSA (Full Speed Admission). Slightly
oversimplifying, FSA attempts to admit a new job J for processing whenever it
finds that using the maximum speed, it is feasible to complete J together with
the remaining work of all admitted jobs. Such a feasibility test makes FSA very
aggressive in admitting new jobs. In Section 2, we will show that if FSA is coupled
with a speed function that allows FSA to finish all jobs ever admitted, then FSA
is 14-competitive on throughput.

The key question is whether there is a speed function that is conservative in
energy usage and can make FSA finish all jobs ever admitted. To this end, we
make use of the previously known algorithm OA, which is for scheduling jobs on
a processor with unbounded speed. We denote OAT (Optimal Available, at most
T ) to be the speed function which, at any time, takes the minimum of T and the
speed used by OA. We show that FSA when coupled with OAT can complete all
jobs admitted and is thus 14-competitive on throughput. And OAT is conservative
in energy usage in the bounded-speed setting, i.e., the energy usage of OAT is at
most a constant times of that of any algorithm that maximizes the throughput
on a processor with a maximum speed T . The analysis of OAT is non-trivial. It
stems from an intriguing classification of underloaded and overloaded periods and
the observation that an optimal schedule (which maximizes the throughput) must
complete all jobs in underloaded periods and at least a constant fraction of the
largest possible amount of work that can be completed for the remaining jobs.

We also apply our results on FSA and OAT to the following three variations:

—Discrete speed levels. Very recently, scheduling on a processor with a fixed
number of discrete speed levels has also attracted attention [Kwon and Kim
2005; Li and Yao 2005]; in particular, assuming the underloaded setting, Li
and Yao [2005] have devised a polynomial-time offline algorithm for finding a
schedule with optimal energy usage. But not much has been known for the
overloaded setting, let alone competitive online algorithms. Note that FSA(OAT)
can be adapted to discrete speed levels; we simply set the maximum speed to
be the highest speed level and round up the speed function to the next higher
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Table I. The performance guarantee (in terms of competitive ratios) for three different settings

unbounded fixed fixed discrete

max speed max speed speed levels

Throughput 1 14 14

Energy usage 2ααα [Yao et al. 1995] (αα + α24α) ∆α(αα + α24α) + 2

αα [Yao et al. 1995; Bansal et al. 2007a]

2(α/(α − 1))αeα [Bansal et al. 2007a]

level. A careful analysis would show that this algorithm is still 14-competitive
on throughput and (∆α(αα + α24α) + 2)-competitive on energy usage, where ∆
is the largest ratio of two consecutive (non-zero) speed levels (e.g., if the speed
levels are uniformly distributed between [0, T ], then ∆ = 2). Table I gives a
summary of the competitive ratios under different speed models.

—Jobs with arbitrary value. In some applications, the throughput is measured by
the value or profit of jobs, which is not related to the amount of work [Koren and
Shasha 1995]. In this more general case, a straightforward adaptation of FSA
can give an online algorithm that is (12ψ + 2)-competitive on throughput and
(αα + α2(4ψ)α)-competitive on energy usage, where ψ is the importance ratio
(i.e., the ratio of the largest possible value per unit work to the smallest possible
one).

—Better throughput via resource augmentation. Note that even if the energy
concern is ignored, no online algorithm can be better than 4-competitive on
throughput [Koren and Shasha 1995]. To obtain a better performance, we also
consider in this paper the possibility of compensating the online algorithm with
a higher maximum speed. We show that if the maximum speed of the online
scheduler is relaxed to (1 + ǫ)T , for any ǫ > 0, there exists an online algorithm
that is (1+1/ǫ)-competitive on throughput and (1+ ǫ)α(αα +α24α)-competitive
on energy usage.

Remarks. The literature also contains results on other interesting aspects of
energy efficient scheduling [Irani and Pruhs 2005]. Irani et al. [2007] extended the
result on AVR [Yao et al. 1995] to a setting where the processor has a sleep state,
and showed that the extension increases the competitive ratio on energy by only
a constant factor. We conjecture that using a similar technique, the algorithm in
this paper can also be adapted to allow a sleep state. On the other hand, Pruhs
et al. [2008a] have studied the offline problem of minimizing the total flow time
subject to a fixed amount of energy, while Albers and Fujiwara [2007] and Bansal
et al. [2007b] have studied the online problem of minimizing a cost consisting of
the energy usage and the total flow time. Furthermore, the offline problem of
minimizing the makespan subject to a fixed amount of energy has been studied
in [Bunde 2006; Pruhs et al. 2008b]. Another practical concern is the maximum
temperature of the processor as the temperature is related to energy usage. Several
interesting results have been reported in [Bansal et al. 2007a].

Organization of paper. The rest of the paper is organized as follows. Section 2
shows that if FSA is coupled with a speed function that allows FSA to finish all
jobs admitted, then FSA is 14-competitive. Section 3 proves that OAT is a speed
function as required. Section 4 analyzes the energy usage of OAT. The last two
sections discuss the results on discrete speed levels, jobs with arbitrary value, and
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relaxation of the maximum speed.
Notations. For any job J , we denote the release time, work and deadline of J

as r(J), w(J), and d(J), respectively. The span of J , denoted span(J), is the time
interval [r(J), d(J)]. For any set of jobs L, let w(L) denote the total work of all
jobs in L. To ease our discussion, we assume that an algorithm will not process a
job after missing its deadline, and whenever we say that a job is completed, it is
always meant to be completed by the deadline.

2. THROUGHPUT ANALYSIS OF FSA

This section presents the details of FSA, which is a strategy for selecting jobs for
possible scheduling and does not specify the processor speed. To define a schedule,
we need to supplement FSA with a speed function f . The resulting scheduling
algorithm will be referred to as FSA(f). The main result in this section is that if
the function f is fast enough for FSA(f) to complete every job it has admitted for
scheduling, then FSA(f) is 14-competitive on throughput.

FSA maintains an admitted list of jobs. Jobs that are not admitted will not get
scheduled. At any time, FSA runs the job in the admitted list with the earliest
deadline. The admitted list is updated as follows.

Job Arrival. When a job J arrives, let J1, J2, . . . , Jn be the jobs currently
in the admitted list, where d(J1) ≤ d(J2) ≤ · · · ≤ d(Jn).

—J is admitted if J together with J1, J2, . . . , Jn is full-speed admissible.
[A set S of jobs is said to be full-speed admissible at a certain time if,
using the maximum speed onwards, the remaining work of every job in
S can be completed by its deadline. ]

—Otherwise, J can still be admitted if w(J) > 2(w(J1) + w(J2) + · · · +
w(Jk)) and {J, Jk+1, Jk+2, . . . , Jn} is full-speed admissible, where k is
the smallest possible integer in [1, n]. In this case, J1, . . . , Jk will be
expelled from the admitted list.

Job Completion. When a job J finishes, J is removed from the admitted
list.
Job Overdue. At the deadline of a job J , if job J is still in the admitted
list but has not yet finished, J is removed from the admitted list.
(Note that the overdue condition is defined for completeness; we will show
later that it does not occur in the algorithm FSA(OAT) we are going to
use.)

Note that FSA does not guarantee a job admitted at release time to be completed;
the job may be expelled due to other bigger jobs released later. A job is said to be
admitted perennially if this job, after being admitted, never gets expelled due to
bigger jobs. Note that if the online algorithm always runs at speed T , then no job
will become overdue and all jobs admitted perennially will be completed by their
deadlines. In general, for an arbitrary speed function f , FSA(f) may not be able
to complete all jobs admitted perennially.

Definition 2.1. FSA(f) is said to be honest if for any job sequence I, FSA(f)
completes all jobs admitted perennially on or before their deadlines.
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If FSA(f) is honest, then no job becomes overdue; furthermore, FSA(f) is con-
stant competitive on throughput as shown in the following theorem.

Theorem 2.2. If FSA(f) is honest, then FSA(f) is 14-competitive on through-
put.

The rest of this section is devoted to proving Theorem 2.2. In the next section,
we will describe a speed function OAT and show that FSA(OAT) is honest. Assume
that FSA(f) is honest and consider any job sequence I. Without loss of generality,
we assume that every job in I is full-speed admissible on its own. We define several
subsets of I, namely, A, N , C and E representing jobs that are admitted, not
admitted, completed and expelled. Precisely, let A ⊆ I be the set of jobs that have
been admitted by FSA(f) at their release times, and let N = I − A. We further
divide A into C and E such that C is the set of jobs that are admitted perennially,
and E = A − C. Since FSA(f) is honest, FSA(f) completes exactly the jobs in C
and expels all jobs in E. The competitiveness of FSA(f) (i.e., Theorem 2.2) stems
from the following upper bounds on E and N .

Lemma 2.3. w(E) ≤ w(C).

Proof. For every job X in A that forces another job J in E to be expelled from
the admitted list, we link up X and J so that X is the parent of J . This parent
relationship forms a forest, and the root of each tree is a job in C and all other
nodes are jobs in E. By the definition of expelling jobs, the work of a parent is at
least two times the total work of its children. Thus, for each root r, we have w(r)
at least the total work of all other nodes in the tree. Sum over all trees, we obtain
the relationship w(E) ≤ w(C).

Consider the union of the spans of all jobs in N , which may cover one or more
intervals. Let ℓ = |

⋃

X∈N span(X)| be the total length of these intervals. The total
work of N might be huge, yet the amount of work of N that can be completed (by
the optimal algorithm) is bounded by ℓT . Below we give an upper bound on ℓT .

Lemma 2.4. ℓT ≤ 6w(A).

With Lemmas 2.3 and 2.4, proving Theorem 2.2 is straightforward.

Proof of Theorem 2.2. Consider any optimal algorithm. It can at most com-
plete all jobs in A. With respect to N , the jobs that can be completed have a total
work at most ℓT , which, by Lemma 2.4, is at most 6w(A). Thus, the total amount of
work completed is at most 7 w(A), or equivalently, 7(w(C)+w(E)). By Lemma 2.3,
w(E) ≤ w(C) and 7(w(C) + w(E)) ≤ 14w(C). Recall that FSA(f) completes all
jobs in C, attaining a throughput of w(C). Thus, Theorem 2.2 follows.

It remains to prove Lemma 2.4, i.e., the upper bound on ℓ. Recall that ℓ =
|
⋃

X∈N span(X)|. We will define, for each job X ∈ N , an interval span∗(X) that
encloses span(X) (see Definition 2.5). Then ℓ ≤ |

⋃

X∈N span∗(X)|. The way span∗

is defined allows us to upper bound each |span∗(X)| in terms of the jobs in A whose
deadlines are in span∗(X) (see Lemma 2.6).

Definition 2.5. At time r(X) (i.e., when X is released), let S(X) = {J1, J2, . . . ,
Jn} be the jobs in the admitted list, where d(J1) ≤ d(J2) ≤ · · · ≤ d(Jn). Be-
cause X is in N , X and S(X) together are not full-speed admissible. Note that
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X alone is full-speed admissible. Let k ≤ n be the smallest integer such that
X,Jk+1, . . . , Jn are full-speed admissible, but X,Jk, Jk+1, . . . , Jn are not. Further-
more, let m ≤ n be the smallest integer such that X,Jk, Jk+1, . . . , Jm are not
full-speed admissible. Let s = max{d(X), d(Jm)} and let span∗(X) = [r(X), s].
Denote S1(X) = {J1, . . . , Jk} and S2(X) = {Jk, . . . , Jm}. Note that each job in
S1(X) or S2(X) has deadline in span∗(X).

Lemma 2.6. For any job X ∈ N , |span∗(X)|T < 2w(S1(X)) + w(S2(X)) ≤
3w(A|span∗(X)), where A|span∗(X) denotes the subset of jobs in A whose deadlines
are in span∗(X).

Proof. Any job X ∈ N is not admitted at time r(X). By the definition of
S1(X), {X} ∪ (S(X) − S1(X)) is full-speed admissible at r(X). Since X is not
admitted, we have w(X) ≤ 2w(S1(X)).

By definition, at time r(X), X plus S2(X) = {Jk, . . . , Jm} are not full-speed
admissible, but become full-speed admissible if Jm is removed. In other words,
w(X) plus the remaining work of S2(X) at time r(X) is strictly greater than
(max{d(X), d(Jm)} − r(X))T = |span∗(X)|T . Thus, we have |span∗(X)|T <
w(X) + w(S2(X)) ≤ 2w(S1(X)) + w(S2(X)). Since jobs in S1(X) or S2(X)
are all in A and have deadlines in span∗(X), we have 2w(S1(X)) + w(S2(X)) ≤
3w(A|span∗(X)). The lemma follows.

By definition, ℓ ≤ |
⋃

X∈N span∗(X)|. The following simple observation shows
that |

⋃

X∈N span∗(X)| can be upper bounded by considering a subset M of N whose
elements X have disjoint span∗(X). Then we can easily make use of Lemma 2.6 to
show that ℓT ≤ 6w(A).

Lemma 2.7. N contains a subset M such that all elements X of M have mutu-
ally disjoint span∗(X), and |

⋃

X∈N span∗(X)| ≤ 2
∑

X∈M |span∗(X)|.

Proof. Let N ′ be a minimal subset of N such that
⋃

X∈N ′ span∗(X) =
⋃

X∈N span∗(X).
I.e., N ′ and N define the same union of time intervals. Note that no three jobs in
N ′ have their intervals overlapping at a common time. We can further partition
N ′ into two disjoint subsets such that in each subset, no two intervals overlap. Let
M be the subset whose union of intervals has a bigger total length. Then we have
ℓ ≤ |

⋃

X∈N ′ span∗(X)| ≤ 2|
⋃

X∈M span∗(X)| = 2
∑

X∈M |span∗(X)|.

Finally we are ready to give an upper bound on ℓ in terms of the work of A and
prove Lemma 2.4.

Proof of Lemma 2.4. By Lemma 2.6, for each job X ∈ N , |span∗(X)|T <
3w(A|span∗(X)). By Lemma 2.7, N contains a subset M with all elements X having
disjoint span∗(X), and ℓT ≤ 2

∑

X∈M |span∗(X)|T ≤
∑

X∈M 6w(A|span∗(X)). For
any two jobs X,X ′ in M , span∗(X) and span∗(X ′) do not overlap, and the sets
A|span∗(X) and A|span∗(X′) are also disjoint. Thus,

∑

X∈M 6w(A|span∗(X)) ≤
6w(A).

3. THE SPEED FUNCTION OAT MAKES FSA HONEST

We supplement FSA with a speed function OAT, which is derived from the al-
gorithm OA (Optimal Available) [Yao et al. 1995]. As mentioned before, OA is
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designed for scheduling on a processor with unbounded speed and targets to com-
plete all jobs. Given a job sequence I, we maintain an imaginary schedule of I
using OA. Let OA(t) be the speed of OA at time t. Note that OA(t) may be higher
than the given maximum speed T . The speed function OAT(t) is defined to be
min{OA(t), T}. Let us reiterate that OA and OAT do not depend on how FSA
works.

In this section, we first review the definition and some properties of OA. Then
we present the main result that FSA(OAT) is honest. At first glance, one might
worry that OAT does not use maximum speed all the time and may be too slow
to allow FSA to complete the jobs admitted. Nevertheless, we have a non-trivial
observation that when OA (and hence OAT) is using a speed below T , the jobs
admitted by FSA must already have better progress in the schedule of FSA(OAT)
than in the schedule of OA. Note that the latter can complete all jobs. Thus,
FSA(OAT) does not require a higher speed to get completed.

OA and its properties. Let I be a job sequence. Let wOA(J, t) denote the
remaining work of a job J at time t in the OA schedule (we assume that wOA(J, t) =
0 if J has not yet arrived at t). At time t, among all currently available jobs, the
OA algorithm schedules the job with the earliest-deadline at speed

OA(t) = max
t′>t

∑

J:d(J)≤t′ wOA(J, t)

t′ − t
.

Roughly speaking,
P

J:d(J)≤t′ wOA(J,t)

t′−t
measures the “density” of the interval [t, t′],

which is a lower bound on the speed required to complete the remaining jobs with
deadlines falling into [t, t′]. (Section 4.2 will further discuss the schedule of OA
calculated at time t, but those details are not needed in this section.)

We order the jobs in I in ascending order of their release times (ties are broken by
job ID). Below the variable I ′ (or I1) refers to a prefix of I. We often compare the
OA schedule of I and the OA schedule of I ′. At any time t, let OAI(t) and OAI′(t)
denote the current speed of the OA schedule of I and I ′, respectively. Similarly,
we define OATI(t) or OATI′(t) for OAT. The following properties of OA can be
proven based on the existing knowledge of OA [Yao et al. 1995; Bansal et al. 2007a].
Intuitively, Fact 3.1 means that the speed of the OA schedule is sufficient to finish
all the jobs by their deadlines, while Fact 3.2 means that OA does not decrease
speed when more jobs are released.

Fact 3.1. At any time t, let I ′ ⊆ I be all the jobs released at or before t. Then,

for all t′ > t, we have
∑

J:d(J)≤t′ wOA(J, t) ≤
∫ t′

t
OAI′(x)dx.

Fact 3.2. Let J be a job in I. Let I ′ ⊆ I denote all jobs preceding J , and
I ′′ = I ′ ∪ {J}. Consider the two OA schedules for I ′ and I ′′ respectively. At any
time before r(J), these two schedules run at the same speed. At any time t ≥ r(J),
OAI′(t) ≤ OAI′′(t). Furthermore, OAI′′(t) ≤ OAI(t).

At any time t, let wFSA(J, t) denote the remaining work of job J at time t in the
schedule given by FSA(OAT). Note that a set S of jobs is full-speed admissible at
time t if and only if, for any t′ > t,

∑

J∈S and d(J)≤t′

wFSA(J, t) ≤ T (t′ − t).
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First of all, we prove a weaker form of honesty for FSA(OAT), namely, whenever
FSA(OAT) finds a full-speed admissible set of jobs, FSA(OAT) can complete them
if no more jobs will arrive.

Consider any time t1 when a job is released. Let I1 be the set of jobs arrived at
or before t1. OAT updates its admitted list at time t1; let S1 ⊆ I1 be the set of
jobs in the admitted list of FSA(OAT). By definition, the jobs in S1 are full-speed
admissible at t1. In Lemmas 3.3 and 3.5 below, we show that if no more job arrives
after t1, the remaining work of all jobs in S1 can be completed using the speed
function OATI1

, or equivalently, for any t′ > t1,

∑

J∈S1 and d(J)≤t′

wFSA(J, t1) ≤

∫ t′

t1

OATI1
(x)dx.

Consider the OA schedule of I1. Let t2 ≥ t1 be the latest time this OA schedule
runs at a speed higher than T (if t2 does not exist, then we set t2 to be the time
immediately before t1). In other words, for any time t in [t1, t2], OAI1

(t) > T and
OATI1

(t) = T . And for any t > t2, OAI1
(t) = OATI1

(t). Lemma 3.3 derives an
upper bound on the remaining work in S1 with deadlines at most t2, and Lemma 3.5
considers those with deadlines beyond t2.

Lemma 3.3. For any t1 ≤ t′ ≤ t2,

∑

J∈S1 and t1≤d(J)≤t′

wFSA(J, t1) ≤ T (t′ − t1) =

∫ t′

t1

OATI1
(x)dx.

Proof. The lemma is true since S1 is full-speed admissible at t1 and OATI1
(x) =

T for t1 ≤ x ≤ t′.

We then consider the remaining work in S1 with deadlines beyond t2. This case
depends on an interesting observation that FSA(OAT) has made more progress
than OA for every job J in S1 with deadline greater than t2.

Lemma 3.4. wFSA(J, t1) ≤ wOA(J, t1) for any J ∈ S1 with d(J) > t2.

Proof. Note that some jobs might have released before t1. We prove the lemma
by induction on the number of distinct times before t1 when jobs are released. Base
case: If t1 is indeed the first time when a job arrives, neither FSA(OAT) nor OA
has processed any work at t1, and the lemma is trivially true.

Induction step: Suppose the lemma is true if there are k−1 distinct release times
before t1. Below we consider the case for k distinct release times before t1. Let r be
the last release time before t1. Recall that I1 and S1 denote the set of jobs released
up to t1 and the set of admitted jobs at t1, respectively. Similarly, we define Ir and
Sr for r. Note that r < t1, Ir ⊆ I1, and S1 ⊆ Sr ∪ (I1 − Ir).

Recall that at time t1, assuming no more jobs arrive afterwards, we define t2 ≥ t1
to be the latest time such that OA(t2) > T (precisely, OAI1

(t2) > T ). Similarly,
assuming no more jobs arrive after time r, we define r1 ≥ r to be the latest time
such that OA(r1) > T (precisely, OAIr

(r1) > T ). By Fact 3.2, we have r1 ≤ t2.
At time t1, let J be a job in S1 with d(J) > t2. If J is released at time t1,

then both FSA(OAT ) and OA haven’t processed J at t1. Thus, wFSA(J, t1) =
wOA(J, t1) = w(J), and the lemma follows. The non-trivial case is when J is
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released at or before r. In this case, J is also in Sr and d(J) > t2 ≥ r1. The
induction hypothesis guarantees that wFSA(J, r) ≤ wOA(J, r).

To complete the proof, we consider whether t1 ≤ r1.

—Assume that t1 ≤ r1. The remaining work of J under FSA(OAT) cannot increase
from time r to t1. Thus, wFSA(J, t1) ≤ wFSA(J, r) ≤ wOA(J, r). The definition of
r1 implies that at time r, OA is committed to schedule only jobs with deadlines at
most r1 within (r, r1] (and jobs with deadlines beyond r1 after time r1). Yet such
commitment may change when new jobs arrive at t1. For J , since d(J) > t2 ≥
r1, OA does not schedule J during [r,min{t1, r1}] (= (r, t1]), and wOA(J, r) =
wOA(J, t1). In conclusion, wFSA(J, t1) ≤ wOA(J, t1).

—Assume that r1 < t1. Let us consider the schedule during the period (r1, t1]. By
definition, at any time t ∈ (r1, t1], OA(t) ≤ T and FSA(OAT) runs at the speed
OA(t). On the other hand, OA and FSA(OAT) both use EDF to select jobs from
Ir and Sr, respectively. Since Sr ⊆ Ir, we can be sure that for every job J ′ in
Sr (including J), if wFSA(J ′, r1) ≤ wOA(J ′, r1), then wFSA(J ′, t1) ≤ wOA(J ′, t1).
Therefore, with respect to J , wFSA(J, t1) ≤ wOA(J, t1).

Combining the two cases, the lemma follows.

We now present and prove Lemma 3.5.

Lemma 3.5. For any t′ > t2,
∑

J∈S1 and t2<d(J)≤t′

wFSA(J, t1) ≤
∑

J∈I1 and t2<d(J)≤t′

wOA(J, t1)

≤

∫ t′

t2

OAI1
(x)dx =

∫ t′

t2

OATI1
(x)dx.

Proof. The first inequality follows from Lemma 3.4 that at time t1, for any
job J ∈ S1 with d(J) > t2, FSA(OAT) has made more progress than OA. I.e.,
wFSA(J, t1) ≤ wOA(J, t1).

The second inequality follows from the definition of OA and Fact 3.1. Consider
the OA schedule of I1. By the definition of OA, in interval [t1, t2], the proces-
sor must only work on jobs with deadline ≤ t2 without being idle. Therefore,
∑

J∈I1 and d(J)≤t2
wOA(J, t1) =

∫ t2

t1
OAI1

(x)dx. Together with Fact 3.1, for any

t′ > t2,
∑

J∈I1 and t2<d(J)≤t′

wOA(J, t1) =
∑

J∈I1 and d(J)≤t′

wOA(J, t1) −
∑

J∈I1 and d(J)≤t2

wOA(J, t1)

≤

∫ t′

t1

OAI1
(x)dx −

∫ t2

t1

OAI1
(x)dx =

∫ t′

t2

OAI1
(x)dx .

The last equality is due to the definition of t2, which asserts that OAI1
(t) ≤ T

for any t > t2.

Theorem 3.6. FSA(OAT) is honest.

Proof. We prove by contradiction. Let J be a job that FSA(OAT) admitted
perennially but the deadline of J is missed. Let t < d(J) be the latest time that
there is a job J ′ arriving at t. After running an admission test on J ′ by FSA(OAT),
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the admitted list, which must still include J , remains full-speed admissible. By
Lemmas 3.3 and 3.5, no job in the admitted list should miss deadline before any
new job arrives, which contradicts the assumption that J misses its deadline.

4. ENERGY USAGE OF FSA(OAT)

This section shows that OAT is (αα +α24α)-competitive on energy when compared
to any algorithm that maximizes the throughput. In the previous section, OAT
refers to a speed function without a schedule, while OA defines both. In this
section, we overload OAT to refer to an imaginary schedule which at any time t,
processes the same job as OA at the speed min{OA(t), T}. Note that OAT, as
re-defined, is running the same speed as before, but it may not process a job till
completion (as the speed is capped at T ). This capped schedule is, however, very
helpful in analyzing the energy usage of OAT.

First of all, let us review how Bansal et al. [2007a] make use of a potential function
of unfinished work to analyze the energy usage of OA when the processor has no
maximum speed. In this case, OA as well as the optimal schedule Opt can complete
all jobs. At any time t, let EOA(t) and EOPT(t) be the energy used so far by OA
and Opt, respectively. It was proven in [Bansal et al. 2007a] that EOA(t)+φOA(t) ≤
ααEOAT(t)+φOPT(t), where φOA(t) [resp. φOPT(t)] denotes the unfinished work of OA
[resp. Opt] “weighted” by a special function to make it compatible with energy.
Let te be the termination time, i.e., the first time when all deadlines have passed.
Then φOA(te) and φOPT(te) both equal zero, and EOA(te) ≤ ααEOPT(te). Thus, OA
is αα-competitive.

Below we show how to extend the above analysis to the setting where the proces-
sor has a maximum speed T . First of all, we need the following observations and
notations.

—Let I be a job sequence. Let Opt be a schedule (using maximum speed T ) that
maximizes the throughput, while using the smallest possible energy. Opt may
complete only a subset of I and never schedules the other jobs. For the sake of
analysis, jobs in I that are completed by Opt are referred to as type-1 jobs and
other jobs in I are called type-0 jobs. The work due to a type-0 job is called
type-0 work, and similarly type-1 work for type-1 jobs. Note that the online
algorithm doesn’t know such a classification.

—Neither OAT nor Opt intend to complete all jobs in I. At any time t, the
unfinished work no longer means the unfinished work of all jobs. For Opt, we
confine the unfinished work to type-1 jobs only. OAT follows OA to schedule
every job in I using a speed capped at T . At time t, the unfinished work of
OAT refers to the amount of work to be processed by OAT in accordance with
the capped schedule of OA calculated at time t. See Section 4.1 for a formal
definition.

—OAT attempts to schedule every job including type-0 jobs. This makes it very
difficult to relate the energy and remaining work of OAT and Opt. For example,
when a type-0 job J arrives, the unfinished work of Opt remains unchanged,
yet J will boost the unfinished work of OAT. We resolve this problem by adding
another potential function to discount the effect of type-0 jobs in the amortization
analysis.
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More specifically, we want to show that EOAT(t) and φOAT(t), the energy and the
weighted unfinished work of OAT at time t, satisfy the following inequality:

EOAT(t) + φOAT(t) − βOAT(t) ≤ ααEOPT(t) + φOPT(t), (1)

where βOAT(t) denotes a weighted sum of the type-0 work that OAT has already
processed and the unfinished type-0 work that OAT has yet to process (the weight
is to be defined).

At the termination time te, φOAT(te) and φOPT(te) both equal zero. Yet βOAT(te)
would have accumulated a lot of finished work. As to be shown in Corollary 4.6,
an interesting finding in this section is that the work processed by OAT on type-0
jobs can be shown to be at most 4 times the work processed by Opt on I, and, in
particular, βOAT(te) ≤ α24αEOPT(te). Thus, EOAT(te) ≤ (αα + α24α)EOPT(te), and
OAT is (αα + α24α)-competitive on energy.

The rest of this section is divided into two parts. Section 4.1 derives an up-
per bound for the type-0 work that OAT can process (i.e., βOAT(te)). Section 4.2
is devoted to the technical details of the potential function φ and the proof of in-
equality (1). To simplify our discussion, we will omit the subscripts in the potential
functions and rewrite inequality (1) as

EOAT(t) + φ(t) − β(t) ≤ ααEOPT(t), (2)

where φ(t) = φOAT(t) − φOPT(t). It is worth mentioning that φ and β give different
weights to work; for β, work is weighted using a simple multiplier but for φ, the
weight is more complicated and not uniform; basically, we apply the weighting
function in [Bansal et al. 2007a] to our new definition of unfinished work.

4.1 Overloaded periods, properties of Opt, and upper bound of β(te)

We now define β(t) formally. Let I be a job sequence. At any time t, we define β(t)
to be α2Tα−1 times the sum of the type-0 work that OAT has already processed
and the unfinished type-0 work that OAT has yet to process. We make use of the
fact that Opt maximizes its throughput to show that the amount of type-0 work
that any algorithm (including OAT) can process is at most 4 times of the total
work Opt can complete for I (or equivalently, all type-1 work). Then we show that
β(te) ≤ α24αEOPT(te).

The above results stem from a slightly complicated notion of overloaded periods.
As to be shown later, this notion has a nice property of enclosing the span of every
type-0 job. The rough idea is as follows. Let |Po| be the total length of such
periods. The amount of type-0 work that OAT or any algorithm can process is at
most T |Po|. More interestingly, since Opt maximizes the throughput, it cannot be
too lazy during the overloaded periods and we can show that the amount of work
it completes is at least 1

4T |Po|. Details are given below.
For any subset of jobs S ⊆ I, S is said to be feasible if a processor with maximum

speed T can complete all jobs in S; and S is infeasible otherwise. Furthermore,
S ⊆ I is a minimally infeasible job set if (1) S is infeasible, and (2) for any job
J ∈ S, S − {J} is feasible. The span of a minimally infeasible job set S, denoted
span(S), is the union of span(J) over all jobs J ∈ S. Note that span(S) is a single
time interval.
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Let M be the collection of all minimally infeasible job sets of I. Note that the
elements of M may overlap. The union of span(S) over all S ∈ M defines a number
of disjoint time intervals λ1, λ2 . . . . We call each such time interval an overloaded
period. We call the remaining time intervals the underloaded periods. Let Po and
Pu be the set of overloaded periods and underloaded periods, respectively.

We divide I into two groups: Io = {J ∈ I | span(J) ⊆ λi for some overloaded
period λi} and Iu = I − Io. That is, a job J is in Iu if its span overlaps with
any underloaded period. Below we prove a property about Iu, followed by a useful
property about Opt.

Lemma 4.1. (i) Iu is feasible. (ii) For any feasible job set S ⊆ Io, Iu ∪ S is
feasible.

Proof. We first show that for any set S ⊆ I, if S is feasible, then for any
J ∈ Iu − S, S ∪ {J} is feasible. Assume for contradiction that there is a set S ⊆ I
such that for some J ∈ Iu − S, S is feasible and S ∪ {J} is infeasible. Let S be the
one with the smallest number of jobs. Let J ′ ∈ S be a job such that (S−{J ′})∪{J}
is infeasible. If no such J ′ is found, then S ∪ {J} is a minimally infeasible job set
and J cannot be in Iu. The latter is a contradiction. If such a J ′ exists, then
(S −{J ′}) is feasible and (S −{J ′})∪{J} is infeasible. It contradicts that S is the
smallest set with such property.

Thus, for any set S ⊆ I, if S is feasible, we can add each job in Iu to S repeatedly,
and the resulting set S ∪ Iu remains feasible.

If we consider S being an empty set, then (i) follows. If S is a subset of Io, then
(ii) follows.

Lemma 4.2. Opt completes all jobs in Iu.

Proof. Let S ⊆ I be the set of jobs Opt completes. Let S′ = S − Iu. Note that
S′ ⊂ Io and S′ is feasible. By Lemma 4.1, S′ ∪ Iu is feasible. Since Opt achieves
the maximum throughput, S cannot have less work than S′ ∪ Iu. In other words,
S must include every job in Iu.

Corollary 4.3. All jobs in Iu are type-1, and all type-0 jobs are in Io.

Lemma 4.4. Let |Po| be the total length of all overloaded periods. Then, the jobs
in Io that Opt completes have a total work at least 1

4T |Po|.

Proof. We will show that there is a set of jobs So ⊆ Io such that So is feasible
and the total work of So is at least 1

4T |Po|. Then, by Lemma 4.1, So∪Iu is feasible,
and the throughput of Opt is at least the work of So ∪ Iu, which is at least 1

4T |Po|
plus the total work of Iu. Thus, Opt completes at least 1

4T |Po| units of work
belonging to jobs in Io.

From the collection M of all minimally infeasible job sets, we can select greedily
a sub-collection N = {S1, S2, . . . , Sr}, ordered by their starting time, such that the
union of the span of all Si ∈ N is exactly Po, and the span of each Si does not overlap
with other job sets in N , except Si−1 and Si+1. Let N1 = {Si ∈ N | i is odd} and
N2 = {Si ∈ N | i is even}. The span of at least one of the above two groups has a
total length at least |Po|/2. W.L.O.G., let that group be N1. Note that no two job
sets in N1 overlap.
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For each Si ∈ N1, we remove the smallest-size job from Si to make a feasible job
set. Let So be the union of these feasible job sets. Then, So is feasible and the total
work of So is at least T times half the total span of all Si in N1. Thus, the total
work of So is at least 1

4T |Po|.

Corollary 4.5. The amount of type-0 work that OAT can process is at most
4 times of the amount of work in I that Opt completes.

Proof. All type-0 jobs are in Io, and they must be processed entirely within
Po. Thus, the maximum amount of type-0 work that OAT can process is T |Po|.
By Lemma 4.4, the amount of work that Opt has processed is at least 1

4T |Po|. The
corollary follows.

Corollary 4.6. β(te) ≤ α24αEOPT(te).

Proof. Recall that β(te) is defined as α2Tα−1 times of the amount of type-0
work that OAT has processed, which is at most α2Tα|Po|. To complete 1

4T |Po|
units of work during the overloaded periods, the minimum energy required by Opt
is (T

4 )α|Po|. Thus, EOPT(te) ≥ (T
4 )α|Po|, or equivalently, |Po| ≤ ( 4

T
)αEOPT(te). The

corollary follows.

4.2 Potential functions and energy usage of OAT and Opt

This section proves inequality (2). First of all, we formally define the unfinished
work of OAT and show how to apply the weighting function in [Bansal et al. 2007a]
to such unfinished work so as to define the potential function φ. Note that the
weighting function in [Bansal et al. 2007a] is based on the notion of critical intervals
of an OA schedule [Yao et al. 1995; Bansal et al. 2007a], detailed as follows. Let t
be the current time.

—For any time t′, t′′ ≥ t, let w(t′, t′′) be the unfinished work under OA that is
currently available with deadlines in (t′, t′′]. Define ρ(t′, t′′) = w(t′, t′′)/(t′′ − t′),
which is also called the density of the interval.

—Furthermore, define a sequence of times as follows: Let c0 = t. For i ≥ 1, define
ci to be the earliest time after ci−1 such that ρ(ci−1, ci) = maxt′>ci−1 ρ(ci−1, t

′).
Each interval (ci−1, ci] is called a critical interval. To ease our discussion, we use
ρi to denote ρ(ci−1, ci). It is useful to note that ρ1 ≥ ρ2 ≥ ρ3 ≥ ... By definition,
if no more job arrives after time t, OA runs at speed ρi during the entire i-th
critical interval (ci−1, ci] and processes the jobs with deadlines in (ci−1, ci] to
completion.

OAT schedules every job in I in accordance with OA, but using a speed capped
at T . Unlike OA, OAT does not aim to complete every job. For any currently
available job J , if J ’s deadline is in the critical interval (ci−1, ci] and OA plans
to schedule J for x time units, then OAT is committed to process min{ρi, T} × x
units of work for J . Thus, we define the unfinished work of J under OAT to be
min{ρi, T}x. Note that the unfinished work under OA with deadlines in a critical
interval (ci−1, ci] is exactly ρi(ci−ci−1), while the unfinished work under OAT with
deadlines in (ci−1, ci] is min{ρi, T}(ci − ci−1).

The potential function φ(t) weights the unfinished work of the currently available
jobs according to which critical intervals their deadlines fall into. At time t, with
respect to the i-th interval (ci−1, ci],
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—let wOAT(i) be the unfinished work under OAT with deadlines in (ci−1, ci];
—let wOPT(i) be the unfinished type-1 work under Opt with deadlines in (ci−1, ci].

Adapting the work in [Bansal et al. 2007a], we apply the weight of α(min{ρi, T})α−1

to the unfinished work with deadlines in the i-th critical interval and define

φ(t) = α
∑

i≥1

(min{ρi, T})α−1(wOAT(i) − α wOPT(i)) .

We are ready to state the main result of this section. Recall that β(t) has already
been defined as α2Tα−1 times the sum of the type-0 work that OAT has processed
up to time t and the unfinished type-0 work under OAT.

Lemma 4.7. At any time t, EOAT(t) + φ(t) − β(t) ≤ ααEOPT(t).

To prove Lemma 4.7, we follow the framework in [Bansal et al. 2007a] to consider
how the potential functions change in two different scenarios, namely, at the arrival
time of jobs and at any other time. The analysis to be presented in Section 4.2.1
and 4.2.2 is indeed a natural but tedious extension of [Bansal et al. 2007a]. For
example, in many cases, β remains unchanged, and φ changes in the same way as in
[Bansal et al. 2007a] and is sufficient to offset the different growth rate of EOAT and
EOPT. The most noticeable case is when a type-0 job J arrives. J would drastically
increase the unfinished work under OAT, but not for Opt; in other words, φ would
go up. Nevertheless, J also boosts β, balancing out the increase of φ.

4.2.1 Change of potential between job arrivals. Let t be the current time. As-
sume that no job arrives at t. Let s and sopt be the current speed of OAT and Opt,
respectively. By definition, the rate of change of EOAT and EOPT are sα and sα

opt,
respectively. Let φ′ and β′ be the current rate of change of φ and β. The following
lemma gives a bound on φ′ − β′.

Lemma 4.8. Assume that no job arrives at time t. Then sα + φ′ − β′ ≤ ααsα
opt.

Proof. We first observe the following bounds for φ′ and β′.

—Recall that no job arrives at time t. Under OAT, the rate of type-0 work to be
processed exactly equals the rate of unfinished type-0 work to decrease. Thus,
β′ = 0.

—Next, we upper bound φ′. At time t, OAT is going to process a job with deadline
in the first critical interval (as defined at time t). In other words, wOAT(1) is
decreasing at the rate of s. The deadline of the job to be processed by Opt
is not necessarily in the first critical interval. Suppose it is in the k-th critical
interval for some k ≥ 1. Then wOPT(k) is decreasing at the rate of sopt. Note that
s = min{ρ1, T} ≥ min{ρk, T}, where ρi denotes the density of the i-th critical
interval. By definition, φ is changing at the rate of

−α min{ρ1, T}α−1s + α2 min{ρk, T}α−1sopt ≤ −αsα + α2sα−1sopt.

Therefore,

sα + φ′ − ααsα
opt ≤ sα − αsα + α2sα−1sopt − ααsα

opt.

Let f(z) = (1−α)zα +α2zα−1−αα. Then f(s/sopt)s
α
opt = sα−αsα +α2sα−1sopt−

ααsα
opt. Now we argue that f(z) ≤ 0 for all z ≥ 0. Note that f(z) = −αα if z = 0,
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and f(z) = −∞ if z = ∞. If we set the derivative of f(z) to 0, we have z = α and
f(α) = 0. Therefore, f(z) ≤ 0 for all z ≥ 0, and sα + φ′ − ααsα

opt ≤ 0.

Lemma 4.8 implies that if Lemma 4.7 (i.e., EOAT(t) + φ(t) − β(t) ≤ ααEOPT(t))
holds at a particular job arrival time, then it remains true up to the moment just
before the next job arrives because the rate of change EOAT(t)+φ(t)−β(t) is always
upper bounded by that of ααEOPT(t). In the next section, we consider the scenario
when a job arrives.

4.2.2 Change of potential when a job arrives - a simple case. Assume that a job
J is released at time t. The arrival of J immediately changes the schedule of OA
and OAT, the boundaries of critical intervals, unfinished work of OAT and Opt,
as well as φ and β. Denote the change in φ and β due to the arrival of J at t
as ∆φ and ∆β, respectively. Just before J arrives, denote the critical intervals as
Ci = (ci−1, ci] and the unfinished work under OAT and Opt with deadlines in Ci as
wOAT(i) and wOPT(i), respectively. Suppose that d(J) falls into Cx. Note that J can
be a type-1 job (i.e., Opt schedules J) or a type-0 job (i.e., Opt doesn’t schedule
J).

Simple Case. Following [Bansal et al. 2007a], we first consider a special case
where the critical intervals of OA has a minimal change and then consider the
general case in Section 4.2.3. Assume that immediately after J arrives, Cx remains
a critical interval in the OA schedule, and J only increases the density of Cx but
not other critical intervals. Suppose that the density of Cx increases from ρ to ρ′.
Depending on whether ρ and ρ′ exceed T , we give a different argument for proving
∆φ − ∆β ≤ 0.

Lemma 4.9. (Simple Case 1) Assume ρ < ρ′ ≤ T . (i) If J is a type-1 job
then ∆φ ≤ 0 and ∆β = 0. (ii) If J is a type-0 job then ∆φ ≤ α2Tα−1w(J) and
∆β = α2Tα−1w(J).

Proof. In this case, ρ = wOAT(x)
|Cx|

and ρ′ = wOAT(x)+w(J)
|Cx|

, where |Cx| = cx − cx−1.

(i) Suppose that J is a type-1 job. Then ∆β = 0 because there is no increase
in type-0 work. It remains to consider φ. J increases the unfinished work of Opt
by exactly w(J). Since ρ′ ≤ T , the increase of the unfinished work of OAT (during
Cx) is also w(J). ∆φ is upper bounded by

αρ′α−1
(

(wOAT(x) + w(J)) − α(wOPT(x) + w(J))
)

− αρα−1
(

wOAT(x) − α wOPT(x)
)

=
α

|Cx|α−1

[

(wOAT(x) + w(J))α−1
(

(wOAT(x) + w(J)) − α(wOPT(x) + w(J))
)

− wOAT(x)α−1
(

wOAT(x) − α wOPT(x)
)]

.

Bansal et al. [2007a] has shown that a general form of the above expression is
non-positive:

For any q, r, δ ≥ 0 and α ≥ 1, (q + δ)α−1(q + δ − α(r + δ)) − qα−1(q − αr) ≤ 0.

Thus, putting q = wOAT(x), r = wOPT(x), and δ = w(J), we conclude that ∆φ ≤ 0.

(ii) Suppose that J is a type-0 job. J increases the type-0 unfinished work of
OAT. Because ρ′ ≤ T , the increase is exactly w(J), and ∆β = α2Tα−1w(J).
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J , being a type-0 job, does not increase the unfinished work of Opt. ∆φ can be
bounded as follows.

∆φ ≤ αρ′α−1
(

wOAT(x) + w(J) − α wOPT(x)
)

− αρα−1
(

wOAT(x) − α wOPT(x)
)

≤ αρ′α−1
(

wOAT(x) + w(J)
)

− αρα−1wOAT(x)

=
α

(cx − cx−1)α−1

(

(wOAT(x) + w(J))α − wOAT(x)α
)

=
α

(cx − cx−1)α−1
w(J)

(

(wOAT(x) + w(J))α−1 + wOAT(x)(wOAT(x) + w(J))α−2

+ · · · + wOAT(x)α−1
)

≤
α

(cx − cx−1)α−1
w(J)α(wOAT(x) + w(J))α−1

= α2w(J)(ρ′)α−1 ≤ α2w(J)Tα−1

The second equality uses the fact that xα − yα = (x − y)(xα−1 + xα−2y + · · · +
xyα−1 + yα).

Lemma 4.10. (Simple Case 2.) Assume T ≤ ρ < ρ′. (i) If J is a type-1 job
then ∆φ = −α2Tα−1w(J) and ∆β ≥ −α2Tα−1w(J). (ii) If J is a type-0 job then
∆φ = 0 and ∆β ≥ 0.

Proof. We first consider β. Since ρ ≥ T , OAT has committed to run at speed
T in Cx before J arrives. When J arrives, OA (and hence OAT) will schedule J
in Cx and must reduce the time for processing existing jobs in Cx so as to make
room for J . Since OAT cannot increase the speed beyond T during Cx, the work
of some existing jobs to be processed by OAT during Cx has to be reduced. Some
of the work reduced may be type-0; yet the reduction of type-0 work is at most
the work OAT commits to J . In summary, if J is type-1, β may decrease but by
at most α2Tα−1w(J); If J is type-0, J itself contributes to the type-0 work in Cx,
compensating for any possible decrease of the existing jobs, i.e., ∆β ≥ 0.

Let us consider φ. OAT has already committed maximum work in Cx, and
J cannot increase the unfinished work of OAT in Cx. If J is a type-1 job, J
increases the unfinished work of Opt by w(J). Thus, φ decreases by exactly
α min{ρ′, T}α−1αw(J) = α2Tα−1w(J). If J is a type-0 job, J does not increase
the unfinished work of Opt either, and ∆φ = 0

Lemma 4.11. (Simple Case 3.) Assume ρ < T < ρ′. Then ∆φ − ∆β ≤ 0.

Proof. In this case, we divide J into two jobs J1 and J2, with the same arrival
time and deadline; w(J1) = (T − ρ)|Cx| and w(J2) = w(J) − w(J1). The arrival
of J can be simulated by J1’s arrival followed by J2’s arrival. By Lemmas 4.9 and
4.10, we can conclude that ∆φ − ∆β ≤ 0.

4.2.3 Change of potential when a job arrives - the general case. In general, when
a job J is released at time t, the schedule of OA may change radically. Nevertheless,
as observed in [Bansal et al. 2007a], we can consider the change as a sequence of
smaller changes. In particular, we can imagine the size of J as increasing from 0 to
w(J). Let u ≤ w(J) be the smallest size such that one of the following two events
occurs. Below, Cx = (cx−1, cx] again denotes the critical interval containing the
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deadline of J ; furthermore, Cy, . . . , Cx−1, where y ≤ x, are all the critical intervals
before Cx with the same density as Cx.

—Cy, Cy+1, . . . , Cx−1, Cx merge into a single critical interval and its density in-
creases to that of Cy−1.

—Again, the boundary between Cy, Cy+1, . . . , Cx−1, Cx dissolve, yet splitting oc-
curs within Cx. I.e., Cy, Cy+1, . . . , Cx−1, Cx merge and then split into two or
more critical intervals (cy−1, di1 ], (di1 , di2 ], . . . , (dir

, cx] all with the same density,
where r ≥ 1 and cx−1 < di1 < di2 < · · · < dir

< cx.

The arrival of J can be simulated by the arrival of two jobs J1 and J2, both
arriving at time t and having the same deadline. J1 has size u and J2 has size
w(J)− u. We can repeat this process recursively for the job J2, until we use up all
w(J) units of work of J . Then, the change in the OA schedule due to J is equivalent
to a sequence of smaller changes, where each of them triggers one of the above two
events. To analyze the change of potential due to J , we follow the above sequence
of smaller changes and analyze the change in potential due to J1 and then repeat
this analysis recursively for J2.

For the first type of event, we can consider the critical intervals Cy, . . . , Cx as a
single critical interval (cy−1, cx] without affecting the value of the potential func-
tions. Then, the change in potential due to J1 can be analyzed in the same way
as the simple case in Section 4.2.2. I.e., applying Lemmas 4.9–4.11 for J1 with
(cy−1, cx] as the critical interval in concern, we can show that the change in poten-
tial is non-positive.

For the second type of event, we again consider the critical intervals Cy, . . . , Cx

as a single critical interval (cy−1, cx]. This does not affect the value of the potential
functions. Also, we can consider the final critical intervals (cy−1, ci1 ], (ci1 , ci2 ], . . . ,
(cir

, ci] as a single critical interval (cy−1, cx] (with the same density as (cir
, ci+1]),

without affecting the value of the potential functions. Again, the change in potential
due to J1 can be analyzed in the same way as the simple case. The change in
potential is non-positive.

For each of the smaller change in the sequence, the change in the potential is
non-positive. So the change in the potential due to J is non-positive.

4.2.4 Competitiveness of OAT. Using the above results on the potential func-
tions, we can prove Lemma 4.7, which states that at any time t, EOAT(t) + φ(t) −
β(t) ≤ ααEOPT(t).

Proof of Lemma 4.7. We prove the lemma by induction on time. Let t0 = 0
be the time before any job arrives. Obviously, φ(t0), β(t0), EOAT(t0), and EOPT(t0)
all equal 0, and the lemma is true. With respect to a job sequence I, let t1, t2, ...
be the arrival times of the jobs. Consider any i ≥ 1. Assume that the lemma is
true at time ti−1. Then by Lemma 4.8, the lemma remains true for all time before
the job arrives at ti. Furthermore, by Lemmas 4.9-4.11, when the job arrives at
ri, φ(t) − β(t) cannot increase and the lemma holds again. This completes the
induction.

Let te be the time when the last job in the input sequence expires. The above
lemma implies that EOAT(te) + φ(te) − β(te) ≤ ααEOPT(te). As both Opt and OAT
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has no more unfinished work at te, φ = 0. By Corollary 4.6, β(te) ≤ α24αEOPT(te).
Thus, EOAT(te) ≤ (αα +α24α)EOPT(te). We conclude this section with the following
theorem.

Theorem 4.12. FSA(OAT) is (αα + α24α)-competitive on energy.

5. DISCRETE SPEED LEVELS AND JOBS WITH ARBITRARY VALUE

In this section, we show how to extend the algorithm FSA(OAT) to solve two
other related scheduling problems, namely, scheduling with discrete speed levels
and scheduling jobs with arbitrary value.

5.1 Discrete speed levels

Up to now, we assume a continuous setting where the processor can run arbitrarily
at any speed between 0 and the maximum speed T . In the following, we consider a
more realistic discrete setting where the processor can only run at a fixed number
of discrete speed levels. Let 0 = s0 < s1 < · · · < sd = T be the possible speeds of
the processor.

We can easily extend FSA(OAT) to the discrete setting and the algorithm be-
comes 14-competitive on throughput and (∆α(αα + α24α) + 2)-competitive on en-
ergy, where ∆ is the maximum ratio between two consecutive non-zero speeds. The
modification is limited to the speed function. Define a speed function OAT-d:
At any time t, OAT-d(t) is the lowest speed level si such that si ≥ OAT(t).
FSA(OAT-d) is the required algorithm.

Analysis. At any time, the speed of OAT-d is no less than that of OAT. Thus,
OAT-d also makes FSA honest and FSA(OAT-d) is 14-competitive on throughput
in the continuous and thus the discrete setting.

For energy usage, we consider any job sequence I. Let P1 and P2 be the collection
of time intervals such that FSA(OAT-d) is running at speed s1 and at speed at least
s2, respectively. Let EP1

and EP2
be the total energy usage of FSA(OAT-d) during

P1 and P2, respectively. Let Eopt be the total energy usage of the optimal algorithm
in the discrete setting. At any time during P2, the speed of OAT-d is at most ∆
times that of OAT. Thus, EP2

is at most ∆α times the total energy used by OAT.
We can adapt the analysis in Section 4.2 to show that the total energy used by
OAT is also at most (αα +α24α) times of EOpt. Thus, EP2

≤ ∆α(αα +α24α)EOpt.
At any time during P1, the speed of OAT-d may be arbitrarily greater than that

of OAT. Yet a brute force approach suffices to bound EP1
(since the processor is

running at the lowest speed). Let A ⊆ I be the set of jobs admitted by FSA(OAT-d).
Let C ⊆ A be the set of jobs completed, and let B = A − C. We know that

w(B) ≤ w(C) (by Lemma 2.3) and hence w(C) ≥ w(A)
2 . Then, EP1

is at most
w(A)

s1
× sα

1 . The optimal algorithm completes at least w(C) units of work, so Eopt

is at least w(C)
s1

× sα
1 ≥ 1

2
w(A)

s1
× sα

1 ≥ 1
2EP1

. Thus, the total energy usage of

FSA(OAT-d) is at most (∆α(αα + α24α) + 2) times Eopt. It gives the following
theorem.

Theorem 5.1. For a processor with discrete speed levels, FSA(OAT-d) is 14-
competitive on throughput and (∆α(αα + α24α) + 2)-competitive on energy, where
∆ is the largest ratio of two consecutive (non-zero) speed levels.
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5.2 Jobs with arbitrary value

Assume that each job J is associated with a value v(J) when it is released. We
expect an optimal schedule to maximize the total value of jobs completed, while
minimizing the energy usage subject to this total value. In this section, we show
that FSA(OAT) can be adapted easily to become (12ψ + 2)-competitive on total
value and (αα + α2(4ψ)α)-competitive on energy, where ψ is the importance ratio
of the jobs (i.e., the ratio of the largest possible value per unit work to the smallest
possible one).

Specifically, the only change to FSA(OAT) is on the condition of expelling a job
from the admitted list. We compare job value instead of job size and the new job
admission rule is as follows: When a job J arrives, let J1, . . . , Jn be the jobs in the
admitted list, where d(J1) ≤ d(J2) ≤ · · · ≤ d(Jn). J is admitted if J together with
J1, . . . , Jn are full-speed admissible. Otherwise, J can still be admitted if for some
k ≤ n, v(J) > 2(v(J1)+ · · ·+v(Jk)) and {J, Jk+1, . . . , Jn} are full-speed admissible,
In this case, J1, . . . , Jk, where k is the smallest possible, are expelled. We follow
all other parts of FSA and also run according to the speed function OAT. We call
the resulting algorithm vFSA(OAT).

Analysis. To show that vFSA(OAT) is (12ψ + 2)-competitive on total value, our
analysis is similar to the one for throughput. For a job sequence I, let A ⊆ I be
the set of jobs admitted and N = I −A. Also, let C ⊆ A be the set of jobs that are
admitted perennially and E = A − C. Using the same argument as before, we can
show that OAT makes vFSA honest, i.e., completing all jobs in C. For any set of
jobs S, let v(S) be the total value of jobs in S. It is easy to see that v(E) ≤ v(C).
Also, consider the union of spans of all jobs in N , which may consist of a number
of disjoint intervals. Let ℓ be the total length of these intervals. We can again
show that ℓT ≤ 6w(A) ≤ 6v(A). Then, the total value obtained by the optimal
algorithm is at most v(A) + ℓ T ψ ≤ v(A) + 6v(A)ψ ≤ (12ψ + 2)v(C), which is the
desired result.

To analyze the energy usage of OAT, we define the overloaded periods Po and job
sets Io and Iu in the same way as before. We follow the original analysis and show
that the optimal algorithm must complete all jobs in Iu. The only change is on the
lower bound of the optimal schedule Opt. We can only show that Opt achieves a
total value (instead of work) of at least 1

4T |Po| from completing jobs in Io. Thus,
the work done by Opt during the overloaded periods is at least 1

4ψ
T |Po|, using

at least ( 1
4ψ

T )α|Po| units of energy. Then, we can define the potential functions

φ(t) and β(t) and the energy functions EOAT(t) and EOPT(t) as before, and we
show that the equation EOAT(t) + φ(t) − β(t) ≤ ααEOPT(t) for all t remains true
even if jobs have different values. At the termination time te (when the deadlines
of all jobs have passed), β ≤ α2Tα|Po| ≤ α2(4ψ)αEOPT(te). Thus, EOAT(te) ≤
(αα + α2(4ψ)α)EOPT(te), which is the desired result.

Combining the above analysis, we have the following theorem.

Theorem 5.2. For scheduling jobs with arbitrary values, vFSA(OAT) is (12ψ+
2)-competitive on total value and (αα +α2(4ψ)α)-competitive on energy, where k is
the importance ratio.
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6. RESOURCE AUGMENTATION

In this section, we study the case that the maximum processor speed of the online
algorithm is relaxed to (1 + ǫ)T for some ǫ > 0, while the offline algorithm retains
T . We show that a simpler algorithm FSA′, when coupled with the speed function
OAT′(t) = min{OA(t), (1 + ǫ)T}, is (1 + 1/ǫ)-competitive on throughput and (1 +
ǫ)α(αα + α24α)-competitive on energy usage. FSA′ uses a simple admission test
that admits a new job if and only if the new job plus the admitted list of jobs is
(1 + ǫ)T -speed admissible. Unlike FSA, FSA′ does not expel any admitted jobs.
Yet FSA′ still guarantees that after every job arrival, the admitted list is full-speed
(precisely, (1+ǫ)T -speed) admissible. The analysis in Section 3 can be simplified to
prove that FSA′(OAT′) is honest. The rest of this section is devoted to analyzing
the throughput and energy usage of FSA′(OAT′).

Throughput Analysis. Consider any time t when a job J arrives. Let S be the
set of admitted jobs just before J arrives. If {J} ∪ S is full-speed admissible, J
is admitted. With respect to the schedule of FSA′(OAT′), define w(J, t) to be the
remaining work of a job J at time t. Furthermore, for any t′ > t, define w(t, t′) to
be the total remaining work of jobs in S with deadlines at most t′. We have the
following observations:

—FSA′(OAT′) is honest. For any t′ > t, FSA′(OAT′) completes at least w(t, t′)
units of work during the time interval [t, t′].

—If J is not admitted by FSA′, then there exists t′ ≥ d(J) such that w(t,t′)+w(J)
t′−t

>
T (1 + ǫ), or equivalently, w(t, t′) > T (1 + ǫ)(t′ − t) − w(J).

Let Opt denote an optimal schedule that maximizes the throughput using maxi-
mum speed T . Let N be the set of jobs that is completed in Opt but not admitted
by FSA′(OAT′). We are ready to consider how much work FSA′(OAT′) would
perform for each job J in N .

Lemma 6.1. Suppose that J is not admitted by FSA′(OAT′). Let {[x1, y1], [x2, y2],

. . . , [xk, yk]} be a set of disjoint intervals within span(J) such that
∑k

i=1 (yi − xi) ≥
w(J)/T . Then the total work completed by FSA′(OAT′) during these intervals is
at least ǫ · w(J).

Proof. We prove by contradiction. Suppose that V = {[x1, y1], [x2, y2], . . . ,

[xk, yk]} is a set of intervals within span(J) such that
∑k

i=1 (yi − xi) ≥ w(J)/T ,
and the work completed by FSA′(OAT′) during these intervals is less than ǫ ·w(J).
Let t = r(J), and let w(t, t′) be defined as above. For any t′ ≥ t, w(t, t′) ≤
T (1 + ǫ)(t′ − t − w(J)/T ) + ǫ · w(J) because the work completed by FSA′(OAT′)
during V is less than ǫ · w(J). Therefore, w(t, t′) + w(J) ≤ T (1 + ǫ)(t′ − t) for all
t′ ≥ t. Then J should be admitted. A contradiction occurs.

Lemma 6.2. FSA′ is (1 + 1/ǫ)-competitive on throughput (against any offline
algorithm with maximum speed T ).

Proof. Let N denote the set of jobs completed by Opt but not by FSA′(OAT′).
Let J be any job in N . Suppose Opt schedules J in the disjoint intervals [x1, y1], [x2,

y2], . . . , [xk, yk]. Note that
∑k

i=1 (yi − xi) ≥ w(J)/T . By Lemma 6.1, FSA′(OAT′)
completes at least ǫ · w(J) units of work in these disjoint intervals. Note that the
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sets of corresponding intervals for all jobs completed by Opt, and in particular for
those jobs in N , are disjoint. Denote the total work completed by FSA′(OAT′) as
wf . Then, wf is at least ǫ ·w(N). On the other hand, the total work completed by
Opt is at most wf + w(N) ≤ wf + wf/ǫ = (1 + 1/ǫ)wf . The lemma follows.

Energy analysis. It is clear that the energy incurred by OAT′ is at most (1+ ǫ)α

times that incurred by OAT defined in Section 3. By Theorem 4.12 in Section 4, the
energy incurred by OAT is at most αα + α24α times that of the optimal schedule
with maximum speed T . Thus, the energy usage by FSA′(OAT′) is at most (1 +
ǫ)α(αα + α24α) times that of the optimal schedule with maximum speed T . We
conclude with the following lemma.

Lemma 6.3. FSA′(OAT′) is (1 + ǫ)α(αα + α24α)-competitive on energy usage
(against any offline algorithm with maximum speed T ).
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