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Abstract. Existing work on scheduling with energy concern has focused
on minimizing the energy for completing all jobs or achieving maximum
throughput [19, 2, 7, 13, 14]. That is, energy usage is a secondary concern
when compared to throughput and the schedules targeted may be very
poor in energy efficiency. In this paper, we attempt to put energy effi-
ciency as the primary concern and study how to maximize throughput
subject to a user-defined threshold of energy efficiency. We first show that
all deterministic online algorithms have a competitive ratio at least ∆,
where ∆ is the max-min ratio of job size. Nevertheless, allowing the on-
line algorithm to have a slightly poorer energy efficiency leads to constant
(i.e., independent of ∆) competitive online algorithm. On the other hand,
using randomization, we can reduce the competitive ratio to O(log ∆)
without relaxing the efficiency threshold. Finally we consider a special
case where no jobs are “demanding” and give a deterministic online al-
gorithm with constant competitive ratio for this case.

1 Introduction

Processor scheduling is a classical optimization problem. As the proliferation of
mobile computing devices, energy usage has become an important performance
measure for processor scheduling. Dynamic voltage scaling [9, 15, 18] is a tech-
nology that enables the reduction in energy usage. It allows a processor to run in
variable speed; the rate of energy consumption of a processor running at speed s
is believed to be sα where α ≥ 2 [5]. Note that a processor running at speed s can
do s units of work in one unit of time. To process a job with w units of work at
speed s, a processor consumes sαw/s = sα−1w units of energy. In other words,
it is more energy efficient to schedule a job at a low speed whenever possible.

In the literature, the study of energy-efficient scheduling was mainly in the
context of deadline scheduling [19, 2, 7, 13, 14]. Given a processor where jobs ar-
rive at unpredictable times with arbitrary work and deadline requirement, the
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aim is to design an (online) schedule that maximizes the throughput, which is
the total work of the jobs completed by their deadlines. An algorithm A is said
to be c-competitive, where c ≥ 1, if for any job sequence, A produces a schedule
with a throughput at least 1/c of the best offline schedule.

Existing work on scheduling with energy concern has focused on minimizing
the energy for completing all jobs or achieving maximum throughput [19, 2, 7, 13,
14]. That is, energy usage is a secondary concern when compared to throughput
and the schedules targeted may be very poor in energy efficiency. In this paper,
we attempt to put energy efficiency as the primary concern and study how to
maximize throughput subject to a user-defined threshold of energy efficiency.
We define the energy efficiency of a schedule to be the total amount of work
completed in time divided by the total energy usage. The range of efficiency is
[0,∞). For example, assuming the processor completes every job (on time) it
works on, using unit-speed gives an efficiency of 1; 0.5-speed gives an efficiency
of 4 (assuming α = 3); 2-speed gives an efficiency of 0.25; running the processor
at high speed would give an efficiency approaching zero. We refer to an effi-
ciency of 1 the “ideal” efficiency. We assume that the user has a preference on
energy efficiency and would not accept schedules with energy efficiency below a
certain threshold E. Given a job sequence and an efficiency threshold E, we aim
at finding an energy-efficient schedule (i.e., with energy efficiency at least E)
that maximizes the throughput. In this paper we investigate online algorithms
that produce energy-efficient schedules with throughput competitive to the opti-
mal schedule which has the maximum throughput while maintaining an energy
efficiency at least E.

Previous work. There has been a number of work when throughput is
the primary concern and energy usage the secondary. Yao et al. [19] considered
the case where a processor can run at any speed s ≥ 0. They gave two online
algorithms AVR and OA, and showed that AVR is 2ααα-competitive on energy
usage (against the optimal offline schedule that uses the minimum amount of
energy to complete all jobs). OA was later proved, by Bansal et al.[2], to be αα-
competitive. Bansal et al. [2] further improved the result with a new algorithm
that is 2(α/(α − 1))αeα-competitive. Chan et al. [7] considered the case where
the speed of a processor is upper bounded by a constant T , i.e., the processor
can run at any speed s ∈ [0, T ]. The optimal schedule is the one that maximizes
the throughput and minimizes the energy usage among all schedules with the
maximum throughput. They proposed an online algorithm FSA(OAT) that is
14-competitive on throughput and (αα + α24α)-competitive on energy with the
optimal schedule. On the other hand, Li et al. [13] have considered structured
jobs and shown that AVR has a better performance. Very recently, scheduling
on a processor with a fixed number of discrete speed levels has also attracted
some attention [12, 14, 7].

Our contributions. Assume that a processor can run at any speed s ≥
0, we study how to maximize throughput subject to a user defined threshold
of energy efficiency. We first show that no deterministic online algorithm can
achieve a constant competitive ratio on throughput while guarantee an energy



efficiency at least E. Precisely, let ∆ be the max-min ratio of work of the jobs.
All deterministic online algorithms have a competitive ratio at least ∆. Then,
we study the problem in three different directions.

1. Relaxed energy efficiency threshold: Assume that the energy efficiency
threshold of the online algorithm is relaxed to E/(1 + ε) for some constant
ε > 0, while that for the optimal offline algorithm remains E. We give a
deterministic online algorithm with competitive ratio 2 + 3

(1+ε)
1

α−1−1
. For

example if α = 2, the algorithm is 2 + 3/ε-competitive. Note that we have a
lower bound that no deterministic online algorithm can achieve a competitive
ratio of 1 even with relaxed energy efficiency threshold. However with limited
pages, the details are omitted.

2. Randomized algorithm: We devise a randomized online algorithm with a
competitive ratio of O(log ∆). Our algorithm is adapted from the random-
ized algorithm of Goldman et al. [8]. They showed that their algorithm is
6(log ∆+1)-competitive for a fixed-speed processor. The adapted algorithm
works for a variable speed processor, which produces schedules with energy
efficiency at least E and is still O(log ∆)-competitive.

3. No demanding jobs: We consider a special case that no job is demanding.
A job is demanding if it could not be completed (by its deadline) by a
processor running at unit speed. For this special case and with E < 1, we
give a deterministic online algorithm with competitive ratio 2+ 3

1−E
1

α−1
. We

can see that a smaller E would give a smaller competitive ratio. For E ≥ 1,
the lower bound of ∆ for the general input also applies to this case.

Remarks. The literature also contains results on other interesting aspects
of scheduling with energy concern [11]. Irani et al. [10] extended the result on
AVR [19] to a setting where the processor has a sleep state, and showed that the
extension increases the competitive ratio on energy by only a constant factor.
On the other hand, Pruhs et al. [16] have studied the offline problem of min-
imizing total flow time subject to a fixed amount of energy, while Albers and
Fujiwara [1] and Bansal et al. [4] have studied the online problem of minimizing
a cost consisting of the energy usage and the total flow time. Furthermore, the
offline problem of minimizing the makespan subject to a fixed amount of energy
has been studied in [6, 17]. Another practical concern is the maximum temper-
ature of the processor as the temperature is related to energy usage. Several
interesting results have been reported in [2, 3].

Organization of paper. The rest of the paper is organized as follows.
In Section 2, we give the problem definition and a general lower bound. In
Section 3, we show that allowing the online algorithm to have a slightly poorer
energy efficiency leads to a constant competitive online algorithm. In Section 4,
we present the randomized algorithm and analyze its performance. Finally, in
Section 5, we study the special case with no demanding jobs.



2 Preliminaries

For any job J , we denote the release time, work and deadline of J as r(J), w(J),
and d(J), respectively. We assume that all jobs satisfy the property w(J) ≤
(d(J) − r(J))/E

1
α−1 , otherwise no algorithm can complete this individual job

with energy efficiency at least E. The span of J , denoted as ρ(J), is the time
interval [r(J), d(J)]. For any set of jobs L, let w(L) denote the total work of all
jobs in L. To ease our discussion, we assume that an algorithm will never process
a job after missing its deadline, and whenever we say that a job is completed,
it is always meant to be completed by the deadline. We assume preemption is
allowed, and a preempted job can be resumed at the point of preemption. Given
an efficiency threshold E, the optimal schedule is one whose energy efficiency
is at least E and the throughput is the maximum among these schedules. An
online algorithm is said to be c-competitive if for any job sequence, the schedule
produced has an energy efficiency at least E and throughput at least 1/c of the
optimal schedule.

Next we give a lower bound on the competitive ratio on throughput.

Theorem 1. To maintain a user defined energy efficiency E, any deterministic
online algorithm is at least ∆-competitive on throughput, where ∆ is the max-
min ratio of the work of jobs.

Proof. Consider an example with two jobs. The first job J1 is released at time 0
with d(J1) = 2 and w(J1) = 2/E

1
α−1 . Any online algorithm must schedule this

job immediately at its arrival with speed 1/E
1

α−1 in order to complete the job
in time and satisfy the efficiency constraint. Otherwise, the adversary would
stop releasing jobs. Then, at time 1, J2 is released, with d(J2) = 2∆ + 1 and
w(J2) = 2∆/E

1
α−1 . The online algorithm cannot further schedule J2 due to the

efficiency constraint. However, the optimal schedule only schedules J2, and hence
the competitive ratio is ∆. ut

3 Relaxed energy efficiency threshold

In this section we study the case where the energy efficiency threshold of the
online algorithm is relaxed to E/(1 + ε) for some constant ε > 0, while that for
the optimal offline algorithm remains E. We first present an algorithm named
Efficiency, and show some properties of the optimal offline algorithm. Then
we analyze the performance of this online algorithm.

3.1 The online algorithm

EfficiencyE takes a parameter E and schedules jobs with speed 1/E
1

α−1 . The
selection of jobs to run depends on a notion called wait(·) defined as follows. For
any job J , we denote by lst(J) the latest start time of J such that J can still
be finished by EfficiencyE , i.e., lst(J) = d(J)−w(J)E

1
α−1 . At any time t, we

define the allowed waiting time of the job J , wait(J, t) = lst(J)− t.



EfficiencyE works as follows: Whenever the processor is idle, EfficiencyE

schedules the job with the smallest wait(J, t) ≥ 0 with speed 1/E
1

α−1 .

Lemma 1. The energy efficiency of the schedule given by EfficiencyE is E.

Proof. EfficiencyE always runs at speed 1/E
1

α−1 and it completes a job when-
ever the job is scheduled. Let T be the total time EfficiencyE works on I. Then

the resulting efficiency is T/E
1

α−1

T/E
α

α−1
= E. ut

We analyze the relation between the throughput of EfficiencyE and the
optimal offline algorithm OPT. Consider any job sequence I. Let A ⊆ I be the
set of jobs scheduled by EfficiencyE and let N = I − A. Consider the union
of spans of all jobs in N , i.e.,

⋃
X∈N ρ(X). Let ` = |

⋃
X∈N ρ(X)|. We show

below that the competitive ratio of EfficiencyE depends on the ratio `/w(A).
Consider the optimal schedule for I. We denote by S, M , F the amount of work
finished by OPT using slow, medium and fast speed, respectively. Precisely, S,
M , F denote the amount of work OPT finishes with speed ≤ 1/E

1
α−1 , ≤ 2/E

1
α−1 ,

and > 2/E
1

α−1 , respectively. Note that the total work finished by OPT equals
M + F . The following lemma gives the relation between S, M , F and w(A).

Lemma 2. (i) F ≤ S; (ii) M ≤ w(A) + 2`/E
1

α−1 ; (iii) S ≤ w(A) + `/E
1

α−1 .

Proof. (i) Suppose the periods OPT running with speed > 2/E
1

α−1 have dura-
tions t1, t2, . . . , tn and speed 2k1/E

1
α−1 , 2k2/E

1
α−1 , . . . , 2kn/E

1
α−1 , respectively,

for some ki > 1. Since the efficiency of the resulting schedule of OPT must be
at least E, we have

S +
∑

1≤i≤n 2kiti/E
1

α−1∑
1≤i≤n 2αkα

i ti/E
α

α−1
≥ Energy efficiency of OPT ≥ E .

Thus, we have
∑

1≤i≤n(2α−1kα−1
i −1)(2kiti/E

1
α−1 ) ≤ S . Since (2α−1kα−1

i −1) ≥
1, we have F =

∑
1≤i≤n(2kiti/E

1
α−1 ) ≤ S.

(ii) Using speed at most 2/E
1

α−1 , OPT can at most complete all jobs in A

and a work of 2`/E
1

α−1 during the period of length `. Therefore, M ≤ w(A) +
2`/E

1
α−1 .

(iii) Similarly, using speed at most 1/E
1

α−1 , OPT can at most complete
all jobs in A and a work of `/E

1
α−1 during the period of length `. Therefore,

S ≤ w(A) + `/E
1

α−1 . ut

Lemma 3. OPT
w(A) ≤ 2 + 3`

w(A) ·
1

E
1

α−1
.

Proof. OPT = M + F ≤ M + S, the inequality is due to Lemma 2 (i). Together
with Lemma 2 (ii) and (iii), the lemma follows. ut



3.2 Performance of EfficiencyE/(1+ε)

We consider the algorithm EfficiencyE/(1+ε) and bound the ratio `
w(A) , thereby,

show that EfficiencyE/(1+ε) is constant competitive.
For any X ∈ N , X is not scheduled by Efficiency, implying that Efficiency

has scheduled some other jobs during the span ρ(X). The following lemma gives
a lower bound on w(r(X), b), which denotes the amount of work finished by
Efficiency during the interval [r(X), b] ⊆ ρ(X).

Lemma 4. For any X ∈ N , w(r(X), t) > ((1+ ε)
1

α−1 − 1)(t− r(X))/E
1

α−1 , for
any r(X) < t ≤ d(X).

Proof. From r(X) to lst(X), Efficiency must not be idle. Since the processor
runs at a speed ((1+ε)/E)

1
α−1 , at any time r(X) < t ≤ lst(X), it has completed

a work of ((1 + ε)/E)
1

α−1 (t− r(X)) > ((1 + ε)
1

α−1 − 1)(t− r(X))/E
1

α−1 .
Furthermore, we have

w(r(X), lst(X)) = ((1 + ε)/E)
1

α−1 (lst(X)− r(X))

= ((1 + ε)
1

α−1 − 1)|ρ(X)|/E
1

α−1 + |ρ(X)|/E
1

α−1

−(d(X)− lst(X))((1 + ε)/E)
1

α−1

= ((1 + ε)
1

α−1 − 1)|ρ(X)|/E
1

α−1 + |ρ(X)|/E
1

α−1 − w(X).

By the assumption of the work of a job, we have w(X) ≤ |ρ(X)|/E
1

α−1 .
Hence, w(r(X), lst(X)) ≥ ((1 + ε)

1
α−1 − 1)|ρ(X)|/E

1
α−1 ≥ ((1 + ε)

1
α−1 − 1)(t −

r(X))/E
1

α−1 for r(X) < t ≤ d(X). Since X is not scheduled by Efficiency,
another job must be scheduled at lst(X) and last until a time after lst(X) and
by Efficiency it must complete, and thus w(r(X), t) > w(r(X), lst(X)) for
any t > lst(X). Thus, we have w(r(X), t) > ((1 + ε)

1
α−1 − 1)(t − r(X))/E

1
α−1

for lst(X) < t ≤ d(X). This completes the proof of the lemma. ut

Based on Lemma 4, we can bound w(A)/` as follows.

Lemma 5. w(A) > ((1 + ε)
1

α−1 − 1)`/E
1

α−1 .

Proof. Let M be a minimal subset of N such that
⋃

X∈M ρ(X) =
⋃

X∈N ρ(X),
i.e., M induces the same union of spans as N does. Note that no job in M has
its span being a sub-interval of any job in M and no three jobs in M have their
spans overlapping at a common time. A consequence is that we can arrange the
jobs in M such that the arrival times, as well as the deadlines, of the jobs are
strictly increasing. Furthermore, the span of the jobs may form several disjoint
continuous intervals ρ1, ρ2, · · · , ρk, for some k. To prove the lemma, it suffices to
show that w(ρi) > ((1 + ε)

1
α−1 − 1)|ρi|/E

1
α−1 for all 1 ≤ i ≤ k.

Suppose the subset of jobs in M with span in ρi is {X1, X2, · · · , Xm} such
that r(Xj) < r(Xj+1) < d(Xj) < d(Xj+1) for all 1 ≤ j ≤ m − 1. We are
going to show by induction on j that, for any r(X1) < t ≤ d(Xj), w(r(X1), t) >



((1 + ε)
1

α−1 − 1)(t− r(X1))/E
1

α−1 . By Lemma 4, the base case is true. Assume
it is true up to some j. Consider Xj+1. By induction and r(Xj+1) ≤ d(Xj), we
have w(r(X1), t) > ((1 + ε)

1
α−1 − 1)(t− r(X1))/E

1
α−1 for r(X1) < t ≤ r(Xj+1).

Using Lemma 4 for Xj+1 and r(Xj+1) < t ≤ d(Xj+1), we have, for r(X1) <

t ≤ d(Xj+1), w(r(X1), t) > ((1 + ε)
1

α−1 − 1)(t − r(X1))/E
1

α−1 . Therefore, the
hypothesis is true for j + 1 and the lemma follows. ut

With Lemmas 3 and 5 , we have a constant competitive ratio for EfficiencyE/(1+ε).

Theorem 2. EfficiencyE/(1+ε) is 2 + 3

(1+ε)
1

α−1−1
-competitive on throughput

when the energy efficiency threshold is relaxed to E/(1 + ε).

4 Randomized algorithm

As we have seen in Theorem 1, any deterministic online algorithm is at least
∆-competitive on throughput, where ∆ is the max-min ratio of the work of jobs.
In this section we show that randomization helps to overcome this barrier. By
adapting the randomized algorithm of Goldman et al. [8], we can yield a compet-
itive ratio of O(dlog ∆e) on throughput while maintaining an energy efficiency
of E.

This section proceeds as follows. We first present the adapted randomized
algorithm called Ran and state the results of Goldman et al. which also apply
to Ran when the processor speed is fixed. Then, in Section 4.1, we analyze the
competitive ratio of Ran when the processor speed can vary. More interestingly,
we compare Ran with both the optimal non-preemptive and preemptive energy-
efficient schedules (i.e., with energy efficiency at least E). A crucial lemma we
used in the analysis would be proved in Section 4.2.

The algorithm of Goldman et al. schedules jobs in a processor with fixed unit
speed. Each job is either (1) scheduled, (2) virtually scheduled, or (3) rejected.
The job only runs if it is scheduled. A virtually scheduled job J does not run
itself, but prevents any job of work less than 2w(J) from running. Thus, virtually
scheduling a job J holds the processor for a longer job with a short wait time
that may arrive during the interval when J is virtually scheduled. Assume the
work of jobs is in [1,∆]. A number of queues are maintained each for jobs with
different work. The queue for jobs of work in (2`, 2`+1] is denoted by Q`. The
adapted randomized algorithm Ran is given as follows. We assume that the
processor runs at speed 1/E

1
α−1 .

When a job J arrives
Suppose the work of J , i.e., w(J), is in (2`−1, 2`].
If the system is idle, or if another job J ′ is virtually scheduled
where w(J ′) ≤ 2`−1,

With probability 1
dlog ∆e+1−` we schedule J ,

otherwise virtually schedule J .
Else place J in Q`.



When a scheduled or virtually scheduled job finishes at time t
Let Q` be the non-empty queue with the largest ` possible.

Let J be the job having the smallest wait(J, t)1 ≥ 0 in Q`.
Remove J from Q`.
With probability 1

dlog ∆e+1−` we schedule J ,
otherwise virtually schedule J .

In the followings, we state a property of Ran and the performance of Ran
against the optimal non-preemptive schedules at fixed speeds. Since Ran always
schedules jobs at speed 1/E

1
α−1 and it completes each job it ever schedules, it

always gives schedules with energy efficiency exactly E.

Fact 1 Ran always gives schedules with energy efficiency exactly E.

Let RANs be the expected throughput of Ran and OPTn
s (resp. OPT p

s )
the throughput of the optimal non-preemptive (resp. preemptive) schedule for a
processor with a fixed speed s. Goldman et al. [8] proved that OPTn

s is at most
6(dlog ∆e+ 1) times of Rans.

Theorem 3 ([8]). 6(dlog ∆e+ 1)RANs ≥ OPTn
s .

By slightly amending the analysis of Goldman et al., we can prove that the
throughput of the optimal non-preemptive schedule with a fixed speed twice that
of Ran, i.e., OPTn

2s, is at most 8(dlog ∆e+ 1) times of RANs.

Theorem 4. 8(dlog ∆e+ 1)RANs ≥ OPTn
2s.

4.1 Performance of the randomized algorithm

Although Ran always gives non-preemptive schedules, we analyze Ran in both
non-preemptive and preemptive models, i.e., against the optimal non-preemptive
and the optimal preemptive schedules with energy efficiency at least E.

Non-preemptive model. For a processor with variable speed, we show that the
throughput of the optimal non-preemptive energy-efficient schedule is at most
14(dlog ∆e + 1) times the expected throughput of the schedules produced by
Ran. Recall from Section 3.1 that, in the optimal non-preemptive energy-efficient
schedule, S and M denote the amount of work finished with speed ≤ 1/E

1
α−1

and ≤ 2/E
1

α−1 , respectively. (Note that the results in Section 3.1 applies to both
non-preemptive and preemptive models.) Moreover, by Lemma 2, the throughput
of the optimal non-preemptive energy-efficient schedule is at most S +M . Obvi-
ously, S and M are no more than the maximum throughput using fixed speeds
1/E

1
α−1 and 2/E

1
α−1 , respectively, with no energy concern. Thus, S ≤ OPTn

s

and M ≤ OPTn
2s where s = 1/E

1
α−1 . Therefore, by Theorems 3 and 4, we

have S ≤ 6(dlog ∆e + 1)RANs and M ≤ 8(dlog ∆e + 1)RANs, and hence the
throughput of the optimal non-preemptive energy-efficient schedule is at most
14(dlog ∆e+ 1)RANs. We have the following theorem.
1 Recall that wait(J, t) is defined in Section 3.1 to be lst(J) − t where lst(J) is the

latest start time of the job J such that J can still be completed on time.



Theorem 5. Ran is 14(dlog ∆e+ 1)-competitive in the non-preemptive model.

Preemptive model. For a processor with variable speed, we show that the through-
put of the optimal preemptive energy-efficient schedule is at most 70(dlog ∆e+1)
times the expected throughput of the schedules produced by Ran. Similar to
the non-preemptive case, in the optimal preemptive energy-efficient schedule, M

and S denote the amount of work finished with speed ≤ 1/E
1

α−1 and ≤ 2/E
1

α−1 ,
respectively. We can establish the relations S ≤ OPT p

s and M ≤ OPT p
2s where

s = 1/E
1

α−1 (recall that the superscript p refers to the optimal preemptive
schedule).

The key to obtain the claimed competitive ratio of Ran in the preemp-
tive model is to relate OPT p

s and OPTn
s , i.e., the throughput of the optimal

preemptive and non-preemptive schedules of a processor at fixed speed s. We
can show that 5OPTn

s ≥ OPT p
s and we give the analysis in next section. We

continue to derive the competitive ratio of Ran as follows. By Lemma 2, the
throughput of the optimal preemptive energy-efficient schedule is at most S+M .
Together with the relations S ≤ OPT p

s and M ≤ OPT p
2s where s = 1/E

1
α−1 ,

and 5OPTn
s′ ≥ OPT p

s′ for any fixed speed s′, we have the throughput of the
optimal preemptive energy-efficient schedule at most 5OPTn

s + 5OPTn
2s. Fur-

ther applying Theorems 3 and 4, we can bound this optimal throughput by
70(dlog ∆e+ 1)RANs. Hence, we have the following theorem.

Theorem 6. Ran is 70(dlog ∆e+ 1)-competitive in the preemptive model.

4.2 Comparing non-preemptive and preemptive optimal schedules
at fixed speed

We prove the claim 5OPTn
s ≥ OPT p

s we used in the previous section, i.e., we
show that, for any job sequence, with a processor at a fixed speed the throughput
of the optimal preemptive schedule is at most 5 times that of the optimal non-
preemptive schedule. In fact, we achieve this ratio by comparing the optimal
preemptive schedule with a non-preemptive schedule S (not necessarily optimal)
we constructed below.

Without loss of generality, we assume that the processor is at unit speed, i.e.,
s = 1. An (offline) non-preemptive schedule is constructed as follows. The idea
is to mark a potential job that could be run in S. At any time, at most one job
is marked. A marked job may be unmarked, and further be marked again later.
When a job has been marked continuously for a time period equal its work, we
put the job in the non-preemptive schedule. The details of construction are given
below.

When a job J arrives
If there is no marked job, or if another job J ′ is marked
with w(J ′) ≤ w(J)/2 , unmark J ′ and mark J .

When a job J is marked continuously for w(J) units of time
Unmark J and put J in the non-preemptive schedule.



Mark the job J ′ with the largest w(J ′) and lst(J ′) not passed yet,
if one exists.

The starting and finishing times of a job J in the schedule are the starting and
ending times that the job is marked continuously for w(J) units of time. It is
clear that the schedule obtained above is non-preemptive since every job J in
the schedule runs continuously for w(J) units of time.

Before we compare the throughput of the non-preemptive schedule and the
optimal preemptive schedule, we give some definitions and identify some prop-
erties of the non-preemptive schedule. Recall that S denotes the set of jobs in
the non-preemptive schedule. For each job J ∈ S, let J1, J2, . . . , Jk (= J) be
the sequence of jobs such that Ji is marked continuously for less than w(Ji)
time units and then unmarked because of the arrival and marking of Ji+1 where
w(Ji) ≤ w(Ji+1)/2, and finally Jk is marked continuously for w(Jk) time units.
Define an interval I(J) = [a, b + 2w(J)] where a is the time that J1 is initially
marked in this sequence and b is the time that Jk (= J) has been marked for
w(Jk) time units. We give some properties of the intervals as follows.

Fact 2 For any time t if there is a job being marked at t, then t ∈ I(J) for some
job J ∈ S.

Lemma 6. For any job J ∈ S, the length of the interval I(J) is at most 4w(J).

Proof. Consider the sequence of jobs J1, J2, . . . , Jk (= J) defined by J . We have
I(J) = [a, b+2w(J)] where J1 is initially marked at time a in this sequence and
b is the time that Jk (= J) has been marked for w(Jk) (= w(J)) time units. By
the definition, b− a ≤ w(J) + w(J)/2 + w(J)/22 + . . . ≤ 2w(J). Hence, we have
I(J) = b + 2w(J)− a ≤ 4w(J). ut

In the following lemma, we prove that the total work of all jobs in the optimal
preemptive schedule but not in S is at most the sum of lengths of I(J) for all
jobs J ∈ S. By this and the previous lemma, we can easily bound the throughput
of the optimal preemptive schedule, as shown in Theorem 7.

Lemma 7. The total work of all jobs in the optimal preemptive schedule but not
in S is at most the sum of length of I(J) for all jobs J ∈ S.

Proof. We prove the lemma by showing for all J ′ /∈ S and for all r(J ′) ≤ t ≤
d(J ′) that, t ∈ I(J) for some job J ∈ S. In other words, all the time that J ′ can
be scheduled falls in the union of interval I(J) for all J ∈ S. Therefore, the total
work of all jobs J ′ in the optimal preemptive schedule but not in S is bounded
by the total length of the interval I(J) for all J ∈ S.

Let J ′ be a job in the optimal preemptive schedule but not in S. First, we
show for any time r(J ′) ≤ t ≤ lst(J ′) that, t ∈ I(J) for some J ∈ S. Since J ′ /∈ S,
there must be some job being marked during [r(J ′), lst(J ′)], as otherwise J ′ can
be marked. Thus, by Fact 2, for any r(J ′) ≤ t ≤ lst(J ′), we have t ∈ I(J) for
some job J ∈ S.



Then, we also show for any time lst(J ′) < t ≤ d(J ′) that, t ∈ I(J) for some
J ∈ S. Suppose lst(J ′) ∈ I(X) = [a, b + 2w(X)] for the job X ∈ S where
I(X) has the maximum value of a. We claim that (i) 2w(X) > w(J ′) and (ii)
a ≤ lst(J ′) ≤ b. Hence, for lst(J ′) < t ≤ d(J ′), we have t ∈ [a, b + 2w(X)] as
d(J ′)− lst(J ′) = w(J ′) < 2w(X). Claim (i) is true because otherwise J ′ will be
marked instead of X. Claim (ii) is true because if b < lst(J ′) ≤ b + 2w(X), J ′

or other jobs can be marked at lst(J ′) and hence there exists another interval
I(Z) = [a′, b′+2w(Z)] that includes lst(J ′) and a′ > a, which is a contradiction.
In conclusion, we have for any time r(J ′) ≤ t ≤ d(J ′) that, t ∈ I(J) for some
J ∈ S, and the lemma follows. ut

Theorem 7. The throughput of the optimal preemptive schedule is at most 5
times that of the optimal non-preemptive schedule, i.e., 5OPTn

s ≥ OPT p
s , for a

processor at a fixed speed s where s can be any constant greater than 0.

Proof. By Lemma 7, the total work of jobs in the optimal preemptive schedule
but not in S is at most the sum of length of I(J) for all jobs J ∈ S, which
is at most 4 times the throughput of the non-preemptive schedule according to
Lemma 6. Therefore, the throughput of the optimal preemptive schedule is at
most 5 times the throughput of the non-preemptive schedule. As the through-
put of the non-preemptive schedule must be at most that of the optimal non-
preemptive schedule, the theorem follows. ut

5 Without demanding jobs

We study the special case in which there are no demanding jobs that cannot
be finished before deadline using unit speed. In other words, for every job J ,
w(J) ≤ d(J)− r(J). Because of the limited pages, we only the state the lemmas
and theorems in this section without proofs. First we give a lower bound for this
special case with no demanding jobs. The proof of which is similar to that of
Theorem 1.

Theorem 8. Without demanding jobs, if E ≥ 1, any deterministic online algo-
rithm is at least ∆-competitive on throughput, where ∆ is the max-min ratio of
the work of the jobs.

Therefore, we only consider the case where E < 1 in the rest of this section.
Without demanding jobs, we use the algorithm EfficiencyE (as defined in
Section 3), which by Lemma 1, gives schedules with energy efficiency at least E.
By Lemma 3, we only need to bound the ratio `/w(A) to obtain the competitive
ratio of EfficiencyE . Recall the definition of I, A, N in Section 3. Similar to
Lemma 4 and since jobs are not demanding, we can derive the following lemma.

Lemma 8. For any X ∈ N , w(r(X), t) > (1/E
1

α−1 − 1)(t − r(X)), for any
r(X) < t ≤ d(X).

By repeating the argument for proving Lemma 5 and replacing the use of
Lemma 4 by Lemma 8, we have the following lemma.



Lemma 9. w(A) > (1/E
1

α−1 − 1)`.

By Lemmas 3 and 9, we have a constant competitive ratio for EfficiencyE .

Theorem 9. Without demanding jobs, EfficiencyE is 2+ 3

1−E
1

α−1
-competitive

on throughput, for any efficiency threshold E < 1.
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