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Abstract. We study a combinatorial problem arising from the microar-
rays synthesis. The objective of the BMP is to place a set of sequences
in the array and to find an embedding of these sequences into a common
supersequence such that the sum of the “border length” is minimized.
A variant of the problem, called P-BMP, is that the placement is given
and the concern is simply to find the embedding.
Approximation algorithms have been proposed for the problem [21] but
it is unknown whether the problem is NP-hard or not. In this paper, we
give a comprehensive study of different variations of BMP by presenting
NP-hardness proofs and improved approximation algorithms. We show
that P-BMP, 1D-BMP, and BMP are all NP-hard. In contrast with the
result in [21] that 1D-P-BMP is polynomial time solvable, the interest-
ing implications include (i) the array dimension (1D or 2D) differentiates
the complexity of P-BMP; (ii) for 1D array, whether placement is given
differentiates the complexity of BMP; (iii) BMP is NP-hard regardless of
the dimension of the array. Another contribution of the paper is improv-
ing the approximation for BMP from O(n1/2 log2 n) to O(n1/4 log2 n),
where n is the total number of sequences.

1 Introduction

In this paper, we study an optimization problem called (asynchronous) border
minimization problem (BMP), arising from a biological problem of microarray
synthesis. We first describe the BMP (formal definition is given in Section 2)
and then explain its relation with the biological problem. The input is a set of
sequences S = {s1, s2, · · · , sn}. We want to find a common supersequence D of
S and an embedding εi for each sequence si into D, where εi is obtained by
inserting spaces into si up to length |D| with a constraint that the j-th position
of εi is either the character at the j-th position of D or a space. The border
length of si with respect to sj is the number of non-space positions of εi that are
different from εj . We then have to “place” the sequences into a

√
n×√

n array
such that the total border length is minimized (the total border length is the
sum of the border length between every two sequences that are neighbors in the
array). We study the complexity of BMP and give an approximation algorithm.
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Motivation. DNA and peptide microarrays [7, 12] are important research
tools used in gene discovery, multi-virus discovery, disease and cancer diagnosis.
Apart from measuring the amount of gene expression [27], microarrays are an
efficient tool for making a qualitative statement about the presence or absence
of biological target sequences in a sample, e.g., peptide microarrays are used for
detecting tumor biomarkers [6,23,29]. Microarray design raises a number of chal-
lenging combinatorial problems, such as probe selection [15, 22, 28], deposition
sequence design [18,24] and probe placement and synthesis [3–5,14,16,17].

A microarray is a plastic or glass slide consisting of thousands of sequences
called probes. The synthesis process [11] consists of two components: probe place-
ment and probe embedding. In the probe placement the goal is to place each probe
to a unique array cell. In the probe embedding we want to find a common su-
persequence of all sequences, called the deposition sequence, and a sequence of
2D arrays, called masks. The cells of a mask can be either opaque or transparent
allowing the deposition of the character associated with the mask. For any cell,
concatenating the characters for which the cell is transparent has to be the same
as the probe in that cell of the microarray. See Figure 1(a) for an example. The
embedding of a probe placed in a cell c is a sequence in which the ith character
is “−” if cell c is opaque in the ith mask, or the ith character of the deposition
sequence if transparent (Figure 1(b)).

Due to diffraction, the cells on the border between the masked and the un-
masked regions are often subject to unintended illumination [11], and can com-
promise experimental results. As the microarray chip is expensive to synthesize,
unintended illumination should be minimized. The magnitude of unintended il-
lumination can be measured by the border length of the masks used, which is
the number of borders shared between masked and unmasked regions, e.g., in
Figure 1(a), the border length of M1,M3,M4 is 2 and M2 is 4.

A synchronous variant of the problem was first studied [14] in which each
deposition character can only be deposited to the i-th position of the probe
sequences. Once the placement is fixed, the border length is unique and is pro-
portional to the Hamming distance of neighboring probes. Thus the only prob-
lem is the placement of the probes. The synchronous version is NP-hard [19],
O(

√
n)-approximable [20] and there are also some experimental results [4,16,17].

Previous work on asynchronous BMP. The Asynchronous Border Mini-
mization Problem (BMP) was introduced by Kahng et al. [16]. The problem
appears to be difficult as they studied a special case in which the deposition se-
quence is given and the embeddings of all but one probes are known. A polyno-
mial time dynamic programming algorithm was proposed to compute the optimal
embedding of this single probe. This algorithm is used as the basis for several
heuristics [3–5, 16, 17] that are shown experimentally to reduce unintended il-
lumination. The dynamic programming [16] computes the optimal embedding
of a single probe in time O(ℓ|D|), where ℓ is the length of a probe and D is
the deposition sequence. The algorithm can be extended to an exponential time
algorithm to find the optimal embedding of all n probes in O(2nℓn|D|) time.
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Fig. 1. (a) Asynchronous synthesis of a 2 × 2 microarray. The deposition sequence
D = CTAC corresponds to four masks M1, M2, M3, and M4. The corresponding
embeddings are −−AC, −TA−, CT−−, and C−A−. The masked regions are shaded.
The borders between the masked and unmasked regions are represented by bold lines.
(b) Different embeddings of probe p = CT into deposition sequence D = (ACGT)2.

To find both the placement and the embedding, Li et al. [21] proposed the first
randomized approximation algorithm with approximation ratio O(

√
n log2 n),

based on their O(log2 n)-approximation when placement is given. On a one-
dimensional array, they improved the approximation ratio to 3/2. If the place-
ment is given, the one-dimensional problem can be solved optimally in polyno-
mial time. It is however unknown whether the general problem is NP-Hard or
not. This leaves several open questions. Let us denote by P-BMP the problem
with placement already given.

– So far, only approximation algorithms for BMP have been proposed. An
open question is whether BMP is NP-Hard.

– P-BMP problem on 1D array can be solved optimally in polynomial time [21]
while approximation algorithms and exponential time optimal algorithms
have been proposed on 2D array. Two related questions are: Is 1D-BMP
NP-Hard? Is P-BMP on 2D array NP-Hard?

– Is it possible to improve the approximation algorithms for BMP or P-BMP?

Our contributions. We give a comprehensive study of different variations of
the asynchronous border minimization problem. We answer the above questions
affirmatively by giving several NP-Hardness proofs and better approximation
algorithms. Our contributions are listed below (see Table 1 also):

1. For P-BMP, we show that the Shortest Common Supersequence problem [25]
can be reduced to P-BMP, implying that P-BMP is NP-Hard.
This means that the dimension differentiates the complexity of P-BMP as
we have seen in [21] that 1D-P-BMP is polynomial time solvable.

2. For 1D-BMP (placement not given), we give a reduction from the Hamming
Traveling Salesman Problem [8], implying the NP-Hardness of 1D-BMP.
This result implies that when the array is one dimensional, whether place-
ment is given differentiates the complexity of BMP (as 1D-P-BMP is poly-
nomial time solvable [21]).

3. We then show that 1D-BMP can be reduced to BMP, i.e. BMP is NP-Hard.
This means that BMP is NP-Hard regardless of the dimension of the array.

4. We observe that the randomized approximation ratio for P-BMP can be
improved from O(log2 n) to O(log n). More interestingly, we improve the

ratio for BMP from O(n
1
2 log2 n) to O(n

1
4 log2 n).
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Setting 2D 1D

BMP NP-Hard∗ NP-Hard∗

O(n1/4 log n)-approximate∗ 3

2
-approximate [21]

P-BMP NP-Hard∗ polynomial time solvable [21]
O(log n)-approximate∗

Table 1. Results on BMP and P-BMP. Results in this paper are marked with an ∗.

We note that the reductions for (1) and (2) work for constant alphabet size.
An interesting implication of (1) is that with placement already given, the syn-
chronous problem [14] is trivial as the border length equals the Hamming dis-
tance. Nevertheless, the asynchronous problem is NP-hard. This indicates that
the difficulty of the asynchronous problem is due to both the asynchronicity and
the need to find a placement. Furthermore, our approximation algorithm also
gives a O(n

1
4 ) approximation for the synchronous problem.

Technically speaking, the results for (1) and (4) are more challenging. The
reduction for the NP-hardness proof of P-BMP proves that the Shortest Common
Supersequence problem on binary alphabets can be solved with polynomially
many calls to P-BMP. As for the approximation algorithm for BMP, we continue
to use the observation in [21] that if we can find a good placement, then we can
find a good embedding. Our improvement stems from a better placement, by
defining a metric and using the randomized algorithm in [9] for “embedding”
the metric into a tree distribution. This is a crucial step, since in this way we
can control both the border length on the rows and the border length on the
columns. An idea is to use an embedding in other metrics (e.g. Euclidean), but
it is not at all clear how this can yield a better approximation algorithm.

Organization of the paper. Section 2 gives definitions and preliminaries.
Sections 3 and 4 give the hardness results for P-BMP and BMP, respectively.
Section 5 discusses approximation for BMP. We conclude in Section 6.

2 Preliminaries

We give the definition of the abstracted problem. We are given a set of n se-
quences S = {s1, s2, . . . , sn} to be placed on a

√
n×√

n array, where
√
n is an

integer. We denote the t-th character of a sequence si by si[t]. Two cells in the
array (x1, y1) and (x2, y2) are said to be neighbors if |x1 − x2| + |y1 − y2| = 1,
i.e., they are on the left/right/top/bottom of each other (diagonal cells are not
neighbors). For each cell v, we denote the set of neighbors of v by N (v).

Deposition sequence, placement and embedding. A placement of S is a
bijective function φ that maps each sequence to a unique cell in the array. A
deposition sequence D is a common supersequence of the sequences in S. An
embedding of S into D is denoted by ε = {ε1, ε2, . . . , εn}, where εi is a length-
|D| sequence such that (1) εi[t] is either D[t] or a space “− ”; and (2) removing
all spaces from εi gives si. For example, there are four possible embeddings of
the sequence ACT into the deposition sequence ACGTACGT: AC−T− − −−,
AC−−−−−T, A−−−−C−T, and −−−−AC−T.
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The border length of si with respect to sj , denoted by borderε(si, sj), is
the number of non-space positions p’s of εi that are different from εj , i.e., (i)
εi[p] 6= ‘−’, and (ii) εi[p] 6= εj [p]. Condition (ii) means that εj [p] = ‘−’. Note
that borderε(si, sj) 6= borderε(sj , si).

Border length and BMP. The border length of a placement φ and an em-
bedding ε is defined as the sum of borders over all pairs of probe sequences

BL(φ, ε) =
∑

si, sj :
φ(sj) ∈ N (φ(si))

borderε(si, sj) . (1)

The BMP is to find a placement φ and an embedding ε that minimizes BL(φ, ε).
When the placement is given, we call the problem P-BMP. We also consider the
BMP when the array is one dimensional, named 1D-BMP.

WMSA and MRCT. As shown in [21], P-BMP can be reduced to the
weighted multiple sequence alignment problem (WMSA), which in turn can be
reduced to the minimum routing cost tree problem (MRCT). In WMSA [2,
10, 13, 26], we are given k sequences S = {s1, s2, · · · , sk}. An alignment is
S ′ = {s′1, s′2, · · · , s′k} such that all s′i have the same length and s′i is formed
by inserting spaces into si. The problem is to minimize the weighted sum-of-pair
score. In MRCT [1], we are given a graph with weighted edges. In a spanning
tree, the routing cost between two vertices is the sum of weights of the edges
on the unique path between the two vertices in the spanning tree. The MRCT
problem is to find a spanning tree with minimum routing cost, which is defined
as the sum of routing cost between every pair of two vertices. The reduction
results in [21] imply the following lemma.

Lemma 1 ([21]). A c-approximation for MRCT implies a c-approximation for
P-BMP.

It is stated in [21] that Bartal’s algorithm [1] finds a routing spanning tree by
embedding a metric space into a distribution of trees with expected distortion
O(log2 n), implying MRCT is O(log2 n)-approximable [1]. Meanwhile, the ratio
is improved to O(log n) by Fakcharoenphol, Rao and Talwar [9]. With Lemma 1,
we have the following corollary. (Notice that we use the term embedding in
two contexts, probe embedding refers to finding the deposition sequence while
embedding a metric to trees is to obtain an approximation. This should be clear
from the context and should not cause confusion.)

Corollary 1. There is a randomized algorithm that is O(log n)-approximate for
the P-BMP.

3 P-BMP: Finding embedding when placement is given

We give a reduction from the Shortest Common Supersequence (SCS) to the
P-BMP.

Shortest Common Supersequence problem. Given n sequences of charac-
ters, a common supersequence is a sequence containing all n sequences as subse-
quences. The Shortest Common Supersequence problem is to find a minimum-
length common supersequence.
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(a)

$ $ $ $ $ $ $
000 000 000 000 000 000 000
$ 010 $ 100 $ 00 $

111 111 111 111 111 111 111
$ $ $ $ $ $ $
$ $ $ $ $ $ $
$ $ $ $ $ $ $

(b)

$ $ $ $ $ $ $
0 0 0 0 0 0 0
$ 010 $ 100 $ 00 $
1 1 1 1 1 1 1
$ $ $ $ $ $ $
$ $ $ $ $ $ $
$ $ $ $ $ $ $

Table 2. s1 = “010”, s2 = “100”, s3 =“00”. (a) The supersequence D = “010011” is
an optimal deposition sequence for I(3, 3). Ignoring the mask for the dummy strings
“$”, the optimal border length equals 2(p∗ + q∗)(2k + 1) + 2L = 100, where p∗ =
q∗ = k = 3 and L = 8. (b) The shortest common supersequence D = “0100” is an
optimal deposition for I(1, 1). The optimal border length equals to (2 × 7 + 2 × 7 +
2 × 3 + 2 × 2) + 2 × 8 = 54 (the first four terms refer to border length with top
and bottom boundaries and the last term with left and right). On the other hand,
2(p∗ + q∗)(2k + 1) + 2L = 44 < 54, where p∗ = q∗ = 1, k = 3 and L = 8.

The reduction is from the SCS problem over binary alphabets, which is known
to be NP-Hard [25]. Suppose that the binary alphabet is {0, 1}. Consider an
instance of the SCS problem with a set S of k binary strings s1, · · · , sk. Let ℓi
be the length of si, ℓ = max1≤i≤k ℓi and L =

∑
1≤i≤k ℓi. For any 1 ≤ p, q ≤ ℓ,

we define an instance of P-BMP, denoted by I(p, q). As we show later, a shortest
common supersequence can be found by computing the optimal solutions for a
polynomial number of instances I(p, q).

The input I(p, q). We construct a (2k + 1) × (2k + 1) array. The probe
sequences are over the alphabet {0, 1, $}, where $ is a character different from 0
or 1. (Tables 2 (a) and (b) show examples of I(3, 3) and I(1, 1), respectively.)

– Except for row 2-4, each cell of rows 1, 5, 6, 7, 8, · · · , (2k + 1) of the array
contains the string “$”. We call these rows dummy-rows.

– All the cells of row 2 contain the same string “0p”. We call this row all-0-row.
– All the cells of row 4 contain the same string “1q”. We call this row all-1-row.
– Row 3 contains s1, s2, · · · , sk in alternate cells, and the rest of the cells

contain the string “$”, precisely, row 3 contains “$”, s1, “$”, s2, “$”, · · · ,
“$”, sk, “$”. We call this row seq-row.

Common supersequence and deposition sequence.Given an instance I(p, q),
we need at least one mask for the dummy strings “$”, and the best is to use
precisely one mask, say M$ for all these strings. We compute the border length
induced by M$. Row 1 (dummy-row) incurs a border length of 2k + 1 on the
bottom boundary with all-0-row, and row 5 (dummy-row) incurs 2k + 1 on the
top boundary with all-1-row. For seq-row, the border length on top boundary
with all-0-row is k + 1, on bottom boundary with all-1-row is also k + 1, and
within the seq-row on the left and right boundaries is 2k. Therefore, the border
length of M$ is 4(2k+ 1). The total border length for I(p, q) equals to the bor-
der length of M$ plus that of the remaining deposition sequence, which in turn
is related to a common supersequence of the sequences in S. Since the border
length of M$ is present in all embeddings, we ignore this quantity when we
discuss the border length for I(p, q). Lemma 2 states a relationship between a
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common supersequence and an embedding of the probe sequences. Table 2(a)
gives an example.

Lemma 2. If D is a common supersequence of the sequences in S and the num-
ber of 0’s and 1’s in D is p∗ and q∗, respectively, then D is an optimal deposition
sequence for I(p∗, q∗) and the resulting optimal embedding has a border length of
2(p∗ + q∗)(2k + 1) + 2L.

Proof (Sketch). First of all, it is not difficult to observe that D is a deposition
sequence for I(p∗, q∗) since it is a common supersequence and has the same
number of 0’s and 1’s in the all-0-row and all-1-row of the array in I(p∗, q∗),
respectively. Notice that p∗ is at least the number of 0’s in each of si and similarly
q∗ is at least the number of 1’s. By examining each row, one can show that the
total border length equals 2(p∗ + q∗)(2k + 1) + 2L.

We then argue that this is the minimum border length for I(p∗, q∗). In any
deposition sequence, the number of 0’s and 1’s is at least p∗ and q∗, respectively.
Therefore, the all-0-row and the cells with ‘0’ on the seq-row together incur a
border length of at least 2p∗(2k + 1), and similarly, the all-1-row and the cells
with ‘1’ on the seq-row incur at least 2q∗(2k+1). The cell on the seq-row incurs
2L with the left and right boundaries. Therefore, no matter how we deposit
characters, the total border length is at least 2(p∗ + q∗)(2k + 1) + 2L. ⊓⊔

Lemma 2 implies that if p + q is large enough, we have a formula for the
optimal border length of the instance I(p, q) in terms of p, q, and L. The following
lemma considers the situation when p+ q is small. Table 2(b) gives an example.
Due to space limit, we leave the proof in the full paper.

Lemma 3. If D is a shortest common supersequence of the sequences in S and
the number of 0’s and 1’s in D is p∗ and q∗, respectively, then for any p1, q1 such
that p1 + q1 < p∗ + q∗, the optimal embedding for I(p1, q1) has a border length
greater than 2(p1 + q1)(2k + 1) + 2L.

Using Lemmas 2 and 3, we can find the optimal solution for SCS from optimal
solutions for P-BMP as follows. For all pairs of 1 ≤ p ≤ ℓ and 1 ≤ q ≤ ℓ, we find
the optimal solution to I(p, q). If the border length of the optimal solution equals
to 2(p+ q)(2k+1)+ 2L, then there is a common supersequence of length p+ q.
Among all such pairs of p and q, those with the minimum p + q correspond to
shortest common supersequences. Notice that there polynomially many, precisely
ℓ2, pairs of p and q to be checked. We then have the following theorem.

Theorem 1. The P-BMP is NP-Hard.

4 BMP: Finding placement and embedding

4.1 1D-BMP: BMP on a 1D array

The Hamming TSP. The input consists of a set of strings s1, s2, . . . sn over the
alphabet {0, 1}. We denote by ham(s1, s2) the Hamming distance between s1
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and s2 (i.e. the number of positions on which s1 and s2 differ). The goal is to
find a permutation (we also call this permutation a tour) π : {1, 2, . . . , n} →
{1, 2, . . . , n} such that the sum

∑n−1
i=1 ham(sπ(i), sπ(i+1)) is minimized. Ernvall

et al. prove that the Hamming TSP problem is NP-Hard [8].
Reduction. Consider a Hamming TSP instance with n binary strings s1, . . . sn.

We construct an instance of 1D-BMP with n sequences to be placed on an array
of size 1× n. We now define the alphabet Σ and the probe sequences S.
1. Alphabet: Σ = {0, 1, $}, where $ is a special character serving as a delimiter.
2. Probe sequences: for each string s = x1x2 . . . xk in the Hamming TSP in-

stance, where xi ∈ {0, 1}, we construct the probe sequence s′ = x1$
2nℓx2$

2nℓ

. . . $2nℓxk, where ℓ is the length of the longest string si.

Theorem 2. The 1D-BMP is NP-Hard if the size of the alphabet is at least 3.

4.2 BMP on 2D array

In this section, we reduce the BMP on an 1 × n array to BMP on an n × n
array. This implies that the BMP is NP-Hard. Consider an instance I1 for the
1D-BMP where there are n sequences s1, s2, · · · , sn over an alphabet Σ, and
the length of si is ℓi. Let ℓ = max1≤i≤n ℓi and let k > ℓ be a large integer to
be determined later. We construct an instance I2 for BMP which contains two
types of sequences on the alphabet Σ′ = Σ ∪{x1, x2, · · · , xn}∪{$}, namely, the
given sequence and the dummy sequence.

– Dummy sequences: we create n2 − n dummy sequences each containing one
character $.

– Given sequences: for each si, we create a length k sequence xk−ℓi
i · si.

We claim that the best way is to put the given sequences on the top row.
The optimal solution for I1 would give an optimal solution for I2 and vice versa.
Due to space limit, we leave the proof to the full paper.

Theorem 3. The (two-dimensional) BMP is NP-Hard.

5 A O(n
1

4 log2
n) approximation algorithm for the BMP

In this section we present a O(n
1
4 log2 n) randomized approximation algorithm

for the BMP, improving the previous O(n
1
2 log2 n) approximation. As mentioned

in Corollary 1 (Section 2), there is a O(log n) approximation for the P-BMP in
which the placement of the sequences is given. Therefore, to obtain an approxi-
mation for the BMP, it suffices to find a “good” placement of the sequences.

The intuitive ideas of our approximation algorithm are as follows. We first
define a distance function d(si, sj) for any pair of sequences si and sj , and this
gives a lower bound on border(si, sj) + border(sj , si) (this is similar to [21]). A
placement can be viewed as a permutation π. We define a function p(π) based
on d(si, sj) and show that p(π) is a lower bound on the border length of any
embedding (including the optimal one) for the permutation π. Therefore, if we
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can find an embedding such that the border length is at most a certain factor
of p(π), then we have an approximation for BMP. We then observe that it is
difficult to find in polynomial time a permutation optimizing the value p(π) on
the general metric and turn to embedding the metric into a tree (distribution)
such that (in expectation) the distance on the tree dT (si, sj) satisfies the property
d(si, sj) ≤ dT (si, sj) ≤ O(log n)d(si, sj). Finally, we show that using an Euler
tour on the embedded tree as a permutation to place the sequences on the array
gives us a O(n

1
4 ) approximation on pT (π), which is the counter part of p(π)

with d(·) replaced by dT (·). Combining all the arguments above, we obtain a

O(n
1
4 log2 n) approximation for BMP. Details are as follows.
The function p(π). We first derive a lower bound on the border length be-

tween two sequences si and sj of length ℓi and ℓj , respectively. Let LCS(si, sj)
denote the longest common subsequence between si and sj and |LCS(si, sj)|
denote its length. For any embedding ε, the maximum number of common depo-
sition nucleotides between si and sj is |LCS(si, sj)|. Then, the border length is
at least ℓi + ℓj − 2|LCS(si, sj)| and we denote this quantity as d(si, sj). There-
fore, the sum of distances d(si, sj) is a lower bound on the optimal border length
of a given placement. We observe that this distance d(·) is a metric.

We further derive a lower bound on the overall border length of a placement.
A placement can be viewed as a permutation π : {1, . . . , n} → {1, . . . , n} such
that the sequences π(1), . . . , π(

√
n) are placed on the first row of the array in this

order, π(
√
n+1), . . . , π(2

√
n) on the second row and so on. Then any embedding

for a placement π has a border length at least p(π), which is defined as:

p(π) =
n−1∑

i=1

d(π(i), π(i+ 1))−
√
n−1∑

i=1

d(π(i
√
n), π(i

√
n+ 1))

+

√
n∑

i=1

√
n−1∑

j=1

d(π(i+ (j − 1)
√
n), π(i+ j

√
n)) .

We name the problem to minimize this “proxy” value p(π) the Proxy prob-
lem. Note that the border length for a placement π can be much larger than
p(π) as the embeddings needed to achieve d(si, sj) for all si and sj may not be
compatible with each other. Yet, using a similar argument as in [21], one can
show that given a placement π, the P-BMP approximation algorithm returns
an embedding with the border length less than O(log n)p(π) (c.f. Corollary 1).
Therefore, if we can place the sequences into the array such that the sum of the
distances between any neighbors is within a factor c of p(π), then we can apply
the O(log n) approximation algorithm for the P-BMP and obtain a O(c log n)
approximation for the BMP. We summarize this in the following proposition.

Proposition 1. A c-approximation algorithm for the Proxy problem implies a
O(c log n) approximation algorithm for the BMP.

Tree embedding and Euler tour to approximate p(π). We optimize the
value p(π) by embedding the metric into a distribution of trees, with O(log n)
distortion using the algorithm of Fakcharoenphol, Rao and Talwar [9]. This ran-
domized embedding algorithm takes the input sequences as tree vertices and
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returns a tree with a metric dT (·) defined by a tree such that in expectation
d(si, sj) ≤ dT (si, sj) ≤ O(log n)d(si, sj). The distance dT (si, sj) on the tree is
the sum of distances along the unique path between si and sj . Notice that the
resulting tree may have vertices in addition to the n input sequences. Using the
metric dT (si, sj), we define a counter part of pT (π) by replacing d(si, sj) with
dT (si, sj). Then a c-approximation to pT leads to a O(c log n) approximation to
p. Together with Proposition 1, we have the following proposition.

Proposition 2. If we can approximate the Proxy problem on a tree (i.e., ap-
proximate pT ) within a factor of c, then we have a O(c log2 n) approximation to
the BMP.

We now present how to approximate pT . Our approximation algorithm for the
Proxy problem on trees is very simple: we consider the ordering of the vertices
given by an Euler tour of the tree (we ignore the additional vertices which do

not correspond to input sequences). We then prove that this is a O(n
1
4 ) approx-

imation algorithm for pT . Then, by Proposition 2 we are guaranteed to have a
O(n

1
4 log2 n) approximation algorithm for the BMP problem (see Algorithm 1).

Algorithm 1 The O(n
1
4 log2 n) approximation algorithm for the BMP

1: Input: The strings s1, s2, . . . , sn.
2: Define d(si, sj) = ℓi + ℓj − 2|LCS(si, sj)|
3: Embed the metric given by this distance and the set of input vertices into a tree

T using the algorithm from [9].
4: Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be the ordering of the sequences according to

an Euler tour of the tree T from which the additional vertices have been removed.
5: Place the sequences in the array according to π: π(1), . . . , π(

√
n) are placed on the

first row in this order, π(
√
n + 1), . . . , π(2

√
n) on the second row and so on. (See

Figure 2.)
6: Apply the P-BMP approximation algorithm in [21].
7: Output: The placement of the sequences on the array based on the Euler tour and

the embeddings given by the P-BMP approximation algorithm.

Theorem 4. The placement of the sequences in the
√
n×√

n array in the order
given by the Euler tour gives a O(n

1
4 log2 n) approximation to the BMP problem.

6 Concluding remarks

We give a comprehensive study of different variations of the Border Minimiza-
tion Problem and present NP-hardness proofs and approximation algorithms.
Contrasting with the previous result in [21] that the 1D-P-BMP is polynomial
time solvable, our hardness results show that (i) the dimension differentiates the
complexity of the P-BMP; (ii) for 1D array, whether placement is given differ-
entiates the complexity of the BMP; (iii) the BMP is NP-Hard regardless of the
dimension of the array.
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(a) (b)

Fig. 2. (a) Suppose the embedding in [9] returns such a tree for 9 sequences. The ver-
tices that are mapped to input strings are labeled with numbers and the additional
vertices introduced by the embedding algorithm are labeled with letters. (b) The place-
ment of these sequences on the array according to an Euler tour of the tree, e.g.,
1, a, 2, 8, 3, 4, b, 5, 9, 6, 7. After removing the additional vertices a and b the ordering of
n the vertices corresponding to input sequences is: 1, 2, 8, 3, 4, 5, 9, 6, 7.

Moreover, our techniques can be used to improve the approximation ratio
for the synchronous case from O(n1/2) to O(n1/4) using the placement method
given by Algorithm 1 (where the metric is defined by the Hamming distance
between the probes). Once a placement is found, the synchronous embedding
can be computed exactly in polynomial time.

Note that the NP-hardness reduction for the P-BMP works for alphabets of
size 3. In contrast, the hardness result for the BMP uses non-constant alphabets.
An open problem is to prove that the BMP is hard also on constant alphabets
(intuitively the BMP is harder than the P-BMP) but this does not seem to be
easy.

Another natural open question is to further improve approximation algo-
rithms for the BMP and the P-BMP and/or to derive inapproximability results.
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