
1

Semiglobal Sequence Alignment with Gaps
Using GPU

Thomas C. Carroll1, Jude-Thaddeus Ojiaku2, and Prudence W.H. Wong1

1Department of Computer Science, University of Liverpool, Liverpool, UK
{thomas.carroll,pwong}@liverpool.ac.uk

2ASML BV, Veldhoven, The Netherlands
jude.ojiaku@asml.com

Abstract—In this paper we consider the pair-wise semiglobal sequence alignment problem with gaps, which is motivated by the
re-sequencing problem that requires to assemble short reads sequences into a genome sequence by referring to a reference sequence.
The problem has been studied before for single gap and bounded number of gaps. For single gap, there is a GPU-based algorithm
proposed (Barton et al., 2015). In our work we propose a GPU-based algorithm for the bounded number of gaps case, called
GPUGapsMis. We implement the algorithm and compare the performance with the CPU-based algorithm, called CPUGapsMis; The
algorithm has two distinct stages: the alignment phase, and the backtrack phase. We investigate several different approaches, in order to
determine the most favourable for this problem, by means of a Hybrid model or a wholly-GPU based model, as well as the alignment of
single text sequences or multiple text sequences on the GPU at a time. We show that the alignment phase of the algorithm is a good
candidate for parallelisation, with peak speedup of 11 times. We show that although the backtracking phase is sequential, it is more
beneficial to perform it the GPU, as opposed to returning to the CPU and performing there. When performing both phases on the GPU,
GPUGapsMis achieves a peak speedup of 10.4 times against CPUGapsMis. Our data parallel GPU algorithm achieves results which are
an improvement on those of an existing GPU data parallel implementation (Ojiaku, 2014).

Index Terms—Graphics processors; Parallel programming; Data communications aspects; Bioinformatics (genome or protein)
databases;

F

1 INTRODUCTION

IN THIS paper we consider the pair-wise semiglobal se-
quence alignment problem with gaps, which is motivated

by the re-sequencing problem that requires to assemble short
reads sequences into a genome sequence by referring to a
reference sequence. The problem has been studied before
for single gap and bounded number of gaps. For single gap,
there is a task parallel GPU-based algorithm proposed [1],
and there is a data parallel GPU-based algorithm [24] for
the bounded number of gaps case. In our work we propose
a new data parallel GPU-based algorithm for the bounded
number of gaps case. We implemented the algorithm and
compare the performance with the CPU-based algorithm;
The algorithm has two distinct stages: the alignment phase,
and the backtracking phase. We investigate several different
approaches, in order to determine the most favourable for
this problem, by means of different methods of batching
work on the GPU and different methods of performing
the backtracking phase of the algorithm. We show that the
alignment phase of the algorithm is a good candidate for

Thomas C. Carroll is funded by and Engineering and Physical Sciences
Research Council scholarship (grant number 1510931). This work is supported
in part by the Networks Sciences & Technologies (NeST) initiative, School
of EEE & CS, University of Liverpool. A preminimary version of this paper
appeared in Proceedings of IEEE International Conference on Custer Computing
(Workshop on Heterogeneous and Unconventional Cluster Architectures and
Applications) 2015 [5]. Source files for programs used are available at:
https://github.com/thomasccarroll/GPUGapsMis

parallelisation, with peak speedup of 11 times. We show
that despite the backtracking phase being a bad candidate
for parallelisation, it is more beneficial to perform it on the
GPU, as opposed to performing on the CPU. We achieve a
peak speedup of 10.4 times when the backtracking is also
performed. Our results are comparable to the task parallel
GPU implementation [1] for the single gap case, and show
improvement on the data parallel GPU implementation for
the multiple gaps case [24].

1.1 Sequence Alignment Problem

The problem of finding alignment between two biological
sequences has been extensively studied, with the two most
famous alignment algorithms being the Smith-Waterman
algorithm [30] and the Needleman-Wunsch algorithm [21].
An alignment allows highlight of common areas between
sequences, on the premise that homology between two
sequences can show some sort of connection, or in the case
of an unknown gene sequence, can indicate what gene the
sequence is most related to. Roughly speaking, aligning
a short pattern sequence to a longer text sequence is to
determine whether the pattern exists in the text and if so the
positions where it occurs.

With the advances in sequencing technologies, the
amount of data that requires alignment has increased dras-
tically. For example, the Illumina HiSeqX Ten sequencer
can produce three billion reads (sequences) of length 250 bp

2

(base pairs) in less than three days. The re-sequencing problem
is to assemble short reads produced by the sequencer (an
equipment that takes a physical biological sample and
outputs the sequence of nucleobases as a character string)
into a genome sequence by referring to a reference genome,
requiring “mapping” or “aligning” short reads back to
reference sequences. The task is challenging due to the vast
amount of data and the large genome sizes.

There is a wide range of short-read alignment tools
available, e.g., Bowtie [11], BWA [12], GenomeMapper [28],
MAQ [13], SOAP2 [14], SHRiMP [27], Stampy [18], REAL [8],
addressing different aspects of the problem. Due to the
data size, faster tools are needed. This asserts not just
speed requirement on the processors but also leads to high
power/energy requirements; furthermore, this potentially
causes too high temperature that may damage the processors.
To solve this problem, it is nowadays common to exploit
multi-processors such as the GPU. There are many alignment
tools available, which use the GPU in order to achieve
increase in speed and SOAP3 [16] is currently among the
best short-read alignment tools available.

Because of mutations and other biological mechanisms, it
is common that sequences in comparison may not be exact
match but may have some mismatches. It is important to take
into account mismatches otherwise some vital information
may be missing. However, allowing mismatches greatly
increases the complexity of the problem and algorithms
detecting mismatches are significantly slower than their
counterparts that detect exact matches. Existing short-read
alignment tools including those mentioned above usually
only allow a small number of mismatches or do not allow
any mismatches because of this.

Differences may appear in the form of a gap, which is
a consecutive region that appears in the text but not in the
pattern or vice versa (i.e., a consecutive sequence of insertions
or deletions of letters in the text or the pattern). It has been
claimed that it can be desirable to penalise the occurrence of
gap as a whole instead of individual alternations [3]. Gaps
may occur because of mutation event that a segment of DNA
sequence is copied or inserted, replication process that a
segment is missing, or genetic transposition that a segment
changes position on chromosomes. For example, suppose we
have two sequences TCGTTA and TCTA. If we do not allow
gap, we can align TCGT with TCTA with two matches. If we
allow a gap of any length, we can align TCGTTA with TC**TA
with four matches, where * represents a gap character. If
we allow two gaps, we can align TCGTTA with TC*T*A, also
with four matches.

Because of the importance of gaps, the alignment problem
has been considered in the presence of gaps [3]. In addition
to allowing mismatches in the form of edit distance or score,
the problem also allows for a bounded number of gaps
(of any length). In [3], a single gap is allowed and the
algorithm GapMis is proposed; the case of multiple gaps
is also considered and the algorithm GapsMis is proposed.
Usually the number of gaps allowed is a small constant
independent of the length of the text or pattern. Dynamic
programming algorithms have been proposed to find the
alignment with the best alignment “score” with a bounded
number of gaps. The algorithms GapMis and GapsMis have
been implemented and are shown to perform well against

other approaches like EMBOSS water [26] and EMBOSS
needle [26]. With single gap, a tool called libgapmis using
GPU and a task parallel approach has been developed in [1]
for which an 11× speedup has been reported. With multiple
gaps, there is a data parallel algorithm [24] for which a
5 times speedup has been reported, and a data parallel
algorithm previously presented by the authors [5], yet this
was subsequently found to not compute the optimal solution.
Note that GapsMis is not a replacement for Bowtie [11] or
BWA [12] but its significance has been established through
comparison with EMBOSS water [26] and EMBOSS needle.

1.2 The GPU

We briefly discuss the nVidia Compute Unified Device
Architecture (CUDA) [23] GPUs, as these are the most
popular for scientific computing. The GPU is a massively
parallel device, with many low powered processing elements.
It is often used as a coprocessor for scientific applications and
is connected by the PCIe bus to the CPU. On the GPU, there
is the chip, and various units of global memory. The global
memory is often in the order of gigabytes in size with access
possible both from the CPU and the GPU.

Within the chip, there is a number of streaming multiproces-
sors (SM) (this number depends on the model of GPU). The
SM is, from a programming perspective, the main component
of the GPU; therefore is quite important to understand. Each
SM has lanes of processing elements (PE), along with a shared
memory unit, accessible only to the PEs on that SM. The
programmer writes kernels (analogous to methods) in the
CUDA C programming language, and uses the CUDA API
to send both data and the kernel to the GPU. The programmer
specifies the launch configuration of the kernel, as a grid of
thread blocks on the GPU. First, the program data and input
data is sent to the GPU over the PCIe bus. These transfers
are the slowest of the entire program. After these have been
transferred, the execution of the kernel will begin.

A thread block is a collection of threads which work
in cooperation and are run on a single SM, in a single
instruction multiple data (SIMD) fashion, with inter-thread
communication only possible via shared memory, accessible
only to the threads of the thread block. The thread block
conceptually runs concurrently, yet in reality is divided into
warps, which are arrays of 32 threads, each run in lock step
with one another. The instructions of the kernel for each warp
are placed in an instruction queue, and are scheduled for
execution on lanes of CUDA cores. Once the instruction has
executed, there may be the need to wait on a shared memory
request or a global memory request. Once the request has
been serviced, the next instruction is ready to be scheduled
for execution. When a shared memory request is placed by
a warp, it is serviced in unit time should each address be
within distinct banks. If this is not the case, then a bank
conflict occurs, and the request is serialised by the hardware
into as few non-conflicting requests as possible. When a
global memory request is placed by the warp, then it is put
into as few memory-block-wide transactions as possible. If
all requests by the warp are for addresses within the same
memory block, then this is serviced by a single transaction,
this is known as memory coalescing. Accessing global memory
is very expensive, taking up to 800 cycles per block, therefore

3

it is wise to access global memory with as much coalescing
as possible, otherwise the global memory access can throttle
a programs performance.

Once an operation has been executed by a warp, the next
instruction (possibly for a different warp) in the instruction
queue is then scheduled for execution. It is possible to have
multiple thread blocks resident on a single SM, provided
there are enough shared memory resources for them to
execute. CUDA has several generations of architectures, with
the devices used for experiments in this paper being from
the Kepler architecture [22]. In the Kepler architecture, the
maximum amount of thread blocks able to be resident on
an SM is 16. If a program is then able to hold 16 blocks on
an SMX, it is said to have full occupancy. This then means
that there are many warps available to execute whist other
long-latency operations are being serviced, which will go
to hide the latency of these said long latency operations.
Due to the way that the instruction queue is populated
with ready-state instructions, it is important to ensure that
each warp is independent of the rest. It is however possible
to synchronise the threads within the thread block, using
barrier operations. Likewise, blocks must be independent of
one another, though currently, the best way to synchronise
blocks with one another is to terminate a kernel and relaunch.

1.3 AGPU Model
Most of the existing work on using GPU evaluates these
algorithms empirically. Recently, Koike and Sadakane [10]
proposed a theoretical model for GPUs called the Abstract
GPU model (AGPU). Since known parallel computational
models such as the PRAM model are not appropriate
for evaluating GPU-based algorithms, it is necessary to
have new theoretical model to capture the essence of GPU
architectures. Using the AGPU model, it is possible to analyse
the asymptotic time complexity of GPU algorithms.

In the AGPU model, GPU algorithms are measured
by time complexity, I/O complexity, the amount of global
memory used, and the amount of shared memory used. The
time complexity measures the number of instructions each
multiprocessor executes. Should there be thread divergence
within a multiprocessor, all paths are counted for the time
complexity. Where the time complexity of multiple multipro-
cessors vary, the largest complexity is used. The I/O complexity
measures the total number of global memory blocks accessed
by all multiprocessors. Because the amount of parallelism
for memory requests to be fulfilled is dependent on the
bandwidth of the architecture, the I/O Complexity is defined
as the summation of all global memory block requests
from all multiprocessors. The amount of global and shared
memory used measures the memory usage of the algorithm.
If the amount of shared memory used varies amongst the
multiprocessors, the largest value is taken.

We analyse the performance of GPUGapsMis based on
the AGPU model and present it in Theorem 1.

1.4 Biological Problems on GPU
A GPU program must operate in an SIMD fashion, meaning
that the same operation is performed in parallel upon
different data items. This can lend itself favourably to various
bioinformatics tasks, particularly some forms of sequence

alignment, where the operations required for each cell follow
a strict pattern, and the data dependencies for each cell are
in the same relative location to the current cell. It is also
important to be able to draw out enough parallelism from
the problem, which can be obtained either in a task parallel
manner, whereby many tasks are parallelised in a thread
block, or in a data parallel manner, whereby a single tasks is
parallelised by a thread block.

Various bioinformatics problems have been tackled using
GPU-based algorithms, including BLAST (the Basic Local
Alignment Search Tool) [32, 34], the Smith-Waterman global
alignment algorithm [15, 17, 19, 31], Needleman-Wunsch
local alignment [7, 25] ([29] studies GPU implementation
of Smith-Waterman and Needleman-Wunsch with focus
towards a hybrid model) and others [4, 9, 33].

1.5 Our Contribution

Our contribution is a study of our proposed data-parallel
GPU-based algorithm for the pair-wise sequence alignment
problem with multiple gaps. The algorithm, which we
call GPUGapsMis, is based on the GapsMis and GapsPos
algorithms in [3], each for the alignment and backtracking
functionality, respectively. We give analysis of GPUGapsMis
on the AGPU model, and give analysis of of observed results
with respect to the different approaches.

To achieve greater improvement over the CPU, we try to
maximise the amount of parallelism by using appropriate
data structures to store the data and hence decrease the
I/O to shared and global memory, which could cause a
bottleneck in performance. To allow flexibility of dealing
with real data, we also extend the algorithm to allow
the use of scoring matrix in addition to the Hamming
distance that is considered in GapsMis [3]. We implement our
algorithm and a modified version of the sequential algorithm
GapsMis with the scoring matrix; we call the extended
algorithm CPUGapsMis. We also enable the functionality
to compute the optimal alignment, as in GapsPos [3], and
investigate using a Hybrid backtracking method and a GPU
backtracking method. Further to this, we investigate allowing
a single text and multiple text sequences to be aligned on the
device at one time, with different batching methods.

We compare the performance of GPUGapsMis and
CPUGapsMis and the speed up is 11 times in computing the
alignment score matrix, and 10.4 times when the backtracking
is also computed. We show that by lowering the amount of
communication and data transfer between the GPU and CPU,
we are able to yield the most improvement. We also show
that despite the backtracking being sequential and inefficient
on the GPU (when compared to performing the backtracking
on the CPU), it is more beneficial to perform this on the
GPU, rather than returning to the CPU for performing the
backtracking.

Organisation of Paper. The remainder of this paper is
organised as follows: Section 2 gives notations required
and the problem definition; Section 3 details our proposed
solution; Sections 4 and 5 detail experimental evaluation and
discuss the results obtained; Finally, Section 6 concludes the
paper.

4

2 PROBLEM DEFINITION AND PRELIMINARIES

2.1 Notations
We introduce some notations required for the definition of
the problem. Consider an alphabet Σ. A string a is a substring
of string b if there exist two (possibly empty) strings s1 and
s2 such that s1as2 = b. Furthermore, a is a prefix (suffix resp.)
of b if s1 (s2 resp.) is an empty string.

Let ∗ represent the gap character and Σ′ = Σ ∪ {∗}.
An aligned pair is a pair of letters (x, y) such that (x, y) ∈
Σ′ × Σ′ \{∗, ∗}. In other words, an aligned pair may involve
at most one gap character. An alignment of two stringsX and
Y is a string of aligned pairs (x1, y1), (x2, y2), · · · , (x`, y`)
such that removing all the gap characters ∗ from x1x2 · · ·x`
gives X (similarly for Y). Note that there are ` − |X| gap
characters in the alignment. In the alignment of X and Y ,
we say that xi matches yi if xi = yi; xi is substituted by yi if
xi 6= yi and both are not ∗; yi is inserted if xi = ∗; xi is deleted
if yi = ∗.

A sequence of ` aligned pairs (x1, y1), (x2, y2), · · · ,
(x`, y`) is called a gap sequence if either all xi equal ∗ or all yi
equal ∗. The sequence is called a gap-free sequence if none of
the xi nor yi equals to ∗. In other words, an alignment can
be viewed as z0g0z1g1...zα−1gα−1zα where z0 is a possibly
empty gap-free sequence, z1...zα are non-empty gap-free
sequences, and g0...gα−1 are gap sequences. In this case, the
alignment has α gaps.

Given two strings X and Y , we can measure the quality
of an alignment of X and Y by a score function δ(·). For
any letters x and y in Σ ∪ {∗}, δ(x, y) gives the score value
which measures the similarity between them. We assume that
δ(x, x) is higher than δ(x, y) for x 6= y. The score between
two strings X and Y , denoted by δ(X,Y) is defined as the
sum of δ(xi, yi) over all i. For example setting δ(x, x) = 1
and δ(x, y) = 0 for x 6= y simply counts how many matches
we have.

In addition we distinguish one gap of a certain length
and two gaps with the same total length by introducing a
gap opening penalty and a gap extension penalty, where the
gap opening penalty is applied for the first gap character
to be inserted in a gap sequence, and the gap extension
penalty is applied for each subsequent gap character inserted
to the gap sequence. We assert that the gap opening penalty
δP < 0 is less than the gap extension penalty, δE < 0, and
that: ∀σ ∈ Σ : δ(σ, ∗) = δ(∗, σ) = δE . For a gap of length l,
the gap penalty is calculated as δP + δE(l − 1) The score of
an alignment is calculating by adding the scores of all gap
sequences and gap-free sequences in the alignment.

2.2 Problem Definition
Now we are ready to define the pair-wise sequence alignment
problem with bounded number of gaps.

Definition 1. Given a text T of length n, a pattern X of
length m < n, and an integer k > 0, the problem is to find
all prefixes T ′ of T where the corresponding alignment of T ′

and X in the form z0g0z1g1...zα−1gα−1zα satisfies the property
that α ≤ k and the score is the maximum.

Figure 1 shows example alignments. We are required
to find the prefixes of text T which satisfy the properties
described, because we use the seed and extend strategy [2]

for alignment, whereby a high quality alignment seed (at
the start of the sequences) is matched, and the alignment is
then extended. This involves aligning prefixes of the text
T with the entirety of the pattern X , known as a semi-
global alignment. This is as opposed to a global alignment,
which aligns the entirety of T and P , and opposed to a local
alignment, which aligns substrings of both T and P .

2.3 Dynamic Programming Algorithm
Adapting the dynamic programming algorithm in [3] to
allow general score function, our algorithm is based on the
following dynamic programming framework. We keep a
matrix Gq[i, j], which stores the maximum alignment score
between the prefixes t1t2 · · · ti of the text T and x1x2 · · ·xj
of the pattern X , allowing up to q gaps, where 0 ≤ q ≤ k. We
assume that the gap extension penalty is the same regardless
of which letter is aligned with the gap character, i.e., there
exists a constant δE such that δ(x, ∗) = δ(∗, x) = δE for all
x ∈ Σ.

Note that the restriction on the number of gaps can be
observed by calculating the matrix up to Gk.

G0[i, j] =

0 if i = j = 0

G0[i− 1, j − 1] + δ(ti, xj) if 1 ≤ i = j ≤ m
−∞ if i 6= j and 0 ≤ i ≤ n and 0 ≤ j ≤ m

Gq[i, j] = max

0 if i = j = 0

δP +
j−2∑
l=0

δ(∗, xl) if i = 0 and 1 ≤ j ≤ m

δP +
i−2∑
l=0

δ(tl, ∗) if j = 0 and 1 ≤ i ≤ n

j−1
max
r=1

(Gq−1[i, j − r] + δP +
j∑

l=j−r+2
δ(∗, xl))

if 1 ≤ i ≤ n and 1 ≤ j ≤ m
i−1
max
r=1

(Gq−1[i− r, j] + δP +
i∑

l=i−r+2
δ(tl, ∗))

if 1 ≤ i ≤ n and 1 ≤ j ≤ m
Gq[i− 1, j − 1] + δ(ti, xj)

if 1 ≤ i ≤ n and 1 ≤ j ≤ m

A naı̈ve implementation of the dynamic programming
recurrences would result in an algorithm of O(knm(n +
m)) time, yet it was demonstrated in [3] that storing the
information of the gap insertion points (the value of r which
maximises the scores on lines 3 and 4 of the recurrence)
would make the look-up possible in O(1) time, giving an
improved time complexity of O(knm).

We keep a matrix Hq which stores information on gap
length and placement (at which position and in which
sequence does the gap occur), for the alignment up to and
including the pair (ti, xj) which includes at most q gap
sequences, for 0 ≤ q ≤ k. The cells are populated as shown
in the recurrence, with Hq[i, j] being populated after Gq[i, j]
has been calculated.

Hq[i, j] =

0 (ti, xj) in alignment
r > 0 (ti, ∗) in alignment, gap of r
r < 0 (∗, xj) in alignment, gap of r

5

T C G T T A
| | – –
T C T A

(a) 0-gap alignment, score 10

T C G T T A
| | | |
T C * * T A

(b) 1-gap alignment, score 16

T C G T T A
| | | |
T C * T * A

(c) 2-gap alignment, score 14

Fig. 1: Valid alignments for text TCGTTA and pattern TCTA, where δP = −3, δE = −1, δ(i, i) = 5, δ(i, j) = 0, where
i 6= j.

Gq-1
Gq

Fig. 2: The dependencies whilst calculating cell Gq[i, j]
(hatched) are shown in solid filled cells.

Gq-1 Gq

Fig. 3: The dependencies whilst calculating the row Gq[i, ∗]
(hatched) are shown in solid filled cells.

The alignment is retrieved using the linear time algorithm
GapsPos [3]. Starting from the position of the alignment
score reported by GapsMis, the alignment is built backwards,
moving towards the start of the sequences. The value within
each cell of Hq dictates how the row and column indices are
adjusted; either both are decremented by one in the case of
no gap, or the column index (row index) is decreased by the
absolute value of the cell to give a gap in the pattern (text).

3 OUR SOLUTION

In the following section we describe GPUGapsMis, our so-
lution to the semi-global sequence alignment with bounded
gaps problem. We also give theoretical analysis of the
proposed solution on the AGPU model.

3.1 Idea of Parallelisation
As the recurrence in Section 2.3 shows, the dependencies
for the cell Gq[i, j] lie within the cell Gq[i − 1−, j − 1] and
the range of cells Gq−1[0...i, 0...j], therefore as shown in
Figures 2 and 3, we are able to express parallelism along
each row of the dynamic programming matrix in order to
create a data-parallel solution. As the dependencies required
for calculating cells within Gq all lie either in Gq or Gq−1,
we only require the current and previous one G matrix for
computation to be stored.

We keep the following data in the global memory: text
sequence data, pattern sequence data, score data and matrices
Gq, Gq−1, H data for each sequence pair being aligned.
Pointers kept in private memory, which point to Gq and

Gq−1 in global memory, are updated at each iteration of the
number of gaps calculated, and the H matrix is only used
on the final iteration, as for q gaps, only the data in Hq is
required when computing the optimal alignment.

The shared memory space contains the pattern
data, the text character for current matrix row i, and
the buffers required for our aggressive double-buffer
technique. This double buffer technique is laid out as
follows: currRow, prevRow hold rows i, i − 1 of Gq ,
prevGprevRow, prevGcurrRow hold rows i, i− 1 of Gq−1,
along with maxIV al,maxILoc,maxJV al,maxJLoc
hold the information relating to optimal gap insertion
points from Gq−1. As with the global memory pointers,
currRow, prevRow, prevGprevRow, prevGcurrRow are
updated at each row iteration, and filled with any required
data. In order to maximise use of global memory access
bandwidth, we need to use vectorised memory access
operations. In order for vectorised memory accesses to
be made possible, we pad with dummy data the shared
memory row caches, the patterns, and the matrix rows.

We now explain the intuition behind the parallelisation
for a single sequence pair, executed by a single thread block
on the GPU. This is repeated for additional sequence pairs in
a separate thread block per sequence pair. Initially, the pattern
sequence is fetched from global memory into the shared memory.
We calculate matrix G0 followed by G1, G2, ..., Gk, Hk, for
up to k gaps. Each matrix is calculated in a row-wise, data
parallel fashion, with parallelism being expressed along each
row. As each matrix is being calculated, the row number is
iterated, and the number of gaps is iterated.

To calculate a row of Gq , we fetch the text character
from the global memory, and the relevant gap insertion data
relating to Gq−1 . We then initialise the first cell of the row,
and proceed to iterate across the row for all threads in a
tiling fashion. The data required for the calculation is held in
shared memory. At the end of row calculation, we copy the
values to global memory and retain in shared memory for
the next row, discarding the previous row. At the end of a
matrix calculation, the pointers to the current G matrix and
previous G matrix are updated, so we using a double buffer
approach on several levels.

For a number of gaps 0 < q ≤ k, we calculate the matrices
Gq (Hq) in the following way, which is explained visually in
Figure 4:

• Initialise the first row (Gq[0, ∗]) by storing the values
into shared memory previousRow, hRow, with each
warp of the block taking a tile.

• Store data of previousRow, hRow in global memory.
• Fetch data of Gq−1[0, ∗] from global memory into

shared memory prevGprevRow, in preparation for
calculating the subsequent rows of Gq

• Loop for each row 1 ≤ i ≤ n

6

prevGcurrRow

maxJV al

maxJLoc

(a)

. . . prevGprevRow

maxJV al

maxJLoc

(b)

. . .
comparison

prevRow

currRow

hRow

comparison

(c)

prevG

currG

H

Fig. 4: Idea of parallelisation for GapsMis. (a) Best gap
insertion points in pattern are found. (b) Best gap insertion
points in text are updated, if needed (c) Best score is
calculated, and placed into global memory.

a) Fetch Gq−1[i, ∗] into shared memory
prevGcurrRow.

b) Calculate the best gap insertion point into the
pattern, for each position 0 ≤ j ≤ m, in
O(logm) time. We use a tree-based method
for finding the maximal gap insertion point
from prevGprevRow. The maximal gap in-
sertion point for Gq[i, j] exists in the range
Gq−1[i, 0, ..., j − 1]. We are able to calculate
the maximal insertion points for an entire
row in the same routine. We calculate, for
each position 0 < j < m the alignment
score and location of the best point, upto but
not including j itself. We modify a parallel
prefix scan algorithm to use the max operator
as opposed to the summation operator to
calculate this.

c) Update the gap insertion points into the text,
if this is required, by comparing maxIV al,
maxILoc, prevGprevRow.

d) Compare values in shared memory, for the
three options of alignment: continue the
current alignment (prevRow), insert gap in
text (maxIV al,maxILoc), or insert gap in
pattern (maxJV al,maxJLoc). Place optimal
value into currRow and relevant gap value
into hRow. Now place currRow, hRow into
Global Memory.

e) Update the pointers of
(prevGcurrRow, prevGprevRow)
(prevRow, currRow) in preparation for
calculating row i+ 1

The algorithm GapsPos calculates the optimal alignment
path for the two sequences, which we refer to as backtracking.
GapsPos is performed sequentially using a single thread.

Difference from existing data-parallel implementation.
Ojiaku [24] proposed a data-parallel solution to this problem,
reporting a 5 times speedup against a single thread of the
CPU. We evaluate GPUGapsMis using a similar environment
as that used in [24]. Our solution differs in that we reduce

the amount of host device communication by running for
all k gaps in a single kernel run, therefore not requiring any
global synchronisation or data transfer between subsequent
gap numbers. We also use a parallel tree-based method for
finding the optimal gap insertion point, where as [24] uses a
sequential method. Further to this, we investigate several ap-
proaches to calculating the backtracking, by performing this
on the GPU. This is opposed to calculating the backtracking
on the CPU only, as in [24].

3.2 AGPU Analysis
We now give analysis of GPUGapsMis using the AGPU
model [10] which has been discussed in Section 1.3. We
present AGPU Pseudocode in Algorithm 1 for GPUGapsMis
aligning one sequence pair on a single multiprocessor. This
is replicated for all sequence pairs in the input set, with
Algorithm 1 corresponding to code run by a single CUDA
thread block. Theoretical results are presented in Theorem 1.

The AGPU captures a Host (CPU) and a Device (GPU).
The device consists of:

• p cores.
• one global memory unit.
• h multiprocessors

The h multiprocessors contain the following:

• b cores
• a shared memory unit of size M words, divided

amongst b memory banks

Global memory is accessed with the ⇐ operator and
shared memory is accessed with the ← operator. Let
CORE[1, ..., b] be the set of cores within each multiprocessor,
T = T1, T2, ..., Tq be the set of texts - each of length n,
P = P1, P2, ..., Pr be the set of patterns - each of length m,
where n ≥ m, k > 0 be max number of gaps, OPEN be
the gap opening penalty, and EXT be the gap extension
penalty.

Theorem 1. The performance of GPUGapsMis on the AGPU
model satisfies the following properties.

(i) The time complexity is O(knmb).
(ii) The I/O complexity is O(qrknmb).

(iii) The global memory usage is O(hnm).
(iv) The shared memory usage is O(m).

Proof. We now give a proof of the claims in Theorem 1, with
line references to Algorithm 1.

(i) We see that the “Gaps” loop (lines 5-42) iterates k times
in total with an additional procedure for initialising G0. We
see that the “row” loop (lines 15-41) is iterated n times in total,
for all matrices G0 → Gk. When we examine the contents of
the “row” loop, we see that there are several smaller loops
each with O(mb) iterations, and the procedure of finding the
best gap insertion point takes time O(logm). The variable b
corresponds to the number of cores present in the ATGPU
multiprocessor, is dictated by the architecture in use, and is
typically much smaller than m. Therefore O(mb) ≥ O(logm),
meaning the “row” loop interior is O(mb).

Thus, a single multiprocessor executes in O(knmb) time.
(ii) We see that a multiprocessor accesses the entire

pattern, meaning m
b blocks are accessed. Further, for each

7

Algorithm 1 AGPU Pseudocode for GPUGapsMis
1: for all MPρ ∈MP [0, ..., h− 1] do in parallel
2: for all coreε ∈ CORE[0, ..., b− 1] do in parallel
3: Point prevG to Gq−1 and currG to Gq
4: Initialise G0 into prevG
5: // Calculate Gq for q = 1→ k gaps
6: for q = 1→ k do
7: // Initialise Gq [0, ∗]
8: if ε == 0 then
9: prevRow[0]← 0

10: for (j = ε+ 1; j ≤ m; j+ = b) do
11: prevRow[j]← OPEN + (j − 1)EXT
12: // Place prevRow into currG
13: currG[0, j]⇐ prevRow[j]
14: // Initialise maxILoc and maxIV al
15: maxIV al[j]← prevRow[j]
16: maxILoc[j]← 0

17: // Calculate Gq [i, ∗]
18: for (i = 1; i ≤ n+ 1; i+ +) do
19: t⇐ t[i] //Get Text Char
20: for (j = ε+ 1; j ≤ m; j+ = b) do
21: //Fetch Gq−1[i, ∗]
22: prevGCurrRow[j]⇐ prevG[i, j]
23: //Update maxILoc and maxIV al if needed
24: p[ε]←(i−maxILoc[j]− 1) ∗ EXT
25: if maxIV al[j] + p[ε] < prevGPrevRow[j] then
26: maxIV al[j]← prevGPrevRow[j]
27: maxILoc[j]← i− 1

28: //Initialise maxJLoc and maxJV al
29: maxJLoc[j]← j
30: maxJV al[j]← prevGCurrRow[j]

31: Use Tree based method to calculate the Max values
32: //Calculate the values to place into the cells
33: Initialise cell Gq [i, 0]
34: if ε==0 then
35: currRow[0]← ((i− 1) ∗ EXT) +OPEN

36: for (j = ε+ 1; j ≤ m; j+ = b) do
37: Look in prevRow[j − 1] to continue alignment
38: Look in maxJV al for gap in Pattern, applying penalty
39: Look in maxIV al gap in Text, applying penalty
40: Place max in currRow[j]
41: Calculate hRow[j]

42: Copy currRow to currG[i, ∗], hRow to H[i, ∗]
43: Update currRow and prevRow pointers
44: Update prevGPrevRow and prevGCurrRow pointers
45: Update currG and prevG pointers
46: end parallel for
47: end parallel for
48: Report alignment score: max0≤γ≤nGk[γ,m]

individual row, we see that there are 4mb + 1 blocks of
global memory accessed (for the text character, for fetch-
ing prevGCurrRow, for storing currRow and for storing
hRow). Therefore, we see that each multiprocessor accesses
kn4mb + kn blocks of global memory. Across the entire
algorithm aligning qr sequence pairs, qrkn4mb + qrkn =
O(qrknmb) global memory blocks are accessed.

(iii) We see that for a multiprocessor aligning a sequence
pair, the amount of global memory used is 2(n+1)(m+1) for
the two G matrices, plus n ints for the text and m ints for the
pattern, therefore for h multiprocessors aligning h sequence
pairs, the amount of global memory used is O(hnm).

(iv) We see that for the shared memory data structures,
no index over the value of m is ever read or written in any
multiprocessor, this makes the complexity of shared memory
used to be O(m).

4 EXPERIMENTAL SETTING

Sequence alignment tools are typically used to search
databases of known sequences, in order to find the best
match for a query sequence, or set of query sequences.

Multiple Pairwise Sequence Alignment. In order to
simulate a database search for the most optimal alignment
for a set of query sequences, we align a set of query (pattern)
sequences with a set of target (text) sequences.

Let T = t1, t2, ..., tq be the set of text sequences, and
P = p1, p2, ..., pr be the set of pattern sequences. We want
to simulate searching in a database for the text sequence
which gives the best alignment score for each individual
pattern sequence. Let S = s1, s2, ..., sqr be the set of sequence
pairs, that is S = T × P . For each si ∈ S , we solve the
Semiglobal Sequence alignment with a bounded number of
gaps problem, with either GPUGapsMis or CPUGapsMis -
a sequential implementation of GapsMis on a single CPU
thread.

Input Data. The sequence data used is taken from the
NCBI DNA sequence database GenBank [20]. From the
database, we choose from a selection of genomic data, namely
e.coli and Ralstonia solancearum. We randomly select sequences
from the database and further process each sequence by
randomly removing some bases such that the length of
the sequence becomes the length of the specific experiment
sequence pair. This process produces synthetic data, yet since
it is taken from real data, it is more realistic than that which
is randomly generated (it is much more difficult to generate
accurate and realistic patterns). The synthetic data used will
give a good view of the performance of GPUGapsMis with
real sequence data, as all data is treated identically by the
algorithm.

For our experiments, we consider different input sets
of text sequences and pattern sequences and for each set
of sequences, we measure the performance of aligning all
the sequence pairs in the set. E.g., for an input set of q
text sequences and r pattern sequences, we align all q × r
sequence pairs.

The sequences are stored in text files containing one se-
quence per line. There are eight input files for text sequences;
each file contains 16, 32, 64, ..., 2048 sequences, and each text
sequence is 250bp in length. There are four input files for
pattern sequences; the length of pattern sequences in each
file is 50, 100, 150, 200 bp, and each pattern file contains 100
pattern sequences. Each input set is formed by taking one
text sequence file and one pattern sequence file.

Approaches. For evaluating the most effective way to
use the GPU device as a co-processor for GPUGapsMis,
we use several approaches detailed below, summarised in
Table 1. We run control experiments with two versions of
CPUGapsMis; CPU-A computes the alignment scores only,
and CPU-B computes the alignment with backtracking.

There are in total six distinct approaches used in experi-
ments with GPUGapsMis. The approaches for GPUGapsMis
consist of a batching method and, where appropriate, a
backtracking method. GPU-A computes the alignment scores
only. Two approaches are considered for the batching method
used when computing the alignment; single text batching
method denoted by -S, and multiple text batching method
denoted by -M. There are two approaches considered when
we compute backtracking: GPU-B computes alignment with
backtracking entirely on the GPU (we refer to this as the GPU
backtracking method), and GPU-H computes the alignment
scores on the GPU and computes backtracking on the CPU

8

Batching Backtracking
CPU-A - -
CPU-B - On CPU
GPU-S-A Single Text -
GPU-M-A Multiple Text -
GPU-S-H Single Text Hybrid
GPU-M-H Multiple Text Hybrid
GPU-S-B Single Text GPU
GPU-M-B Multiple Text GPU

TABLE 1: Summary of approaches.

(we refer to this as the Hybrid backtracking method).

Single Text Batching Method. In the single text batching
method, single text sequence is sent to the GPU, along with
all pattern sequences. It is then aligned with all pattern
sequences, before the next text is sent to the GPU for
alignment with all pattern sequences. More precisely, the
text data for ti ∈ T is sent to the GPU, along with all pattern
data. The kernel is run, and any output data is returned
to the host. This is repeated for subsequent text sequences,
meaning sequence data requires O(qrm) words transferred
to the GPU, and O(rm) space allocated on the GPU. Single
text batching method is denoted by (s) against the algorithm
name.

Multiple Text Batching Method. In the multiple text
batching method, we send multiple text sequences, along
with all pattern sequences to the GPU, then allocate space
in the GPU memory for ` sequence pairs to be aligned. The
sequence data requires O(qn + rm) words transferring to
the GPU and O(qn+ rm) space allocated on the GPU. The
qr alignment tasks required for aligning all sequence pairs
in S are executed in d qr` e batches to ensure enough global
memory is available to store the required matrices. The kernel
is run for each batch, returning any output data to the host.

GPU Backtracking Method. In the GPU backtracking
method, the backtracking algorithm GapsPos is performed
on the GPU inside the same Kernel as the alignment scores
calculation, by a single thread. The calculated data of size
O(qrg) is then returned to the host.

Hybrid Backtracking Method. In the hybrid backtrack-
ing method, the alignment score calculation is performed on
the GPU. The backtracking H matrices of size O(qrnm) are
returned to the host asynchronously at the end of the kernel
execution for each thread block, and GapsPos is performed
on the CPU.

Verification of Correctness. Testing was carried out,
whereby output matrices were compared between the CPU
and GPU in order to verify the correctness of the calculations.
This verification was done using 16 text sequences of length
250bp and 100 pattern sequences of each available length.

Performance Measurement. To evaluate the perfor-
mance, we compare three measurements. Latency is measured
as the total time taken. Throughput is a measure of how
fast the data matrices are filled and is measured in Mega
Cell Updates per Second (MCUPS). Precisely throughput is
calculated by dividing the total number of cells of G and
H matrices to be updated in the entire execution, by the
time taken to compute them. Improvement ratio is calculated
as CPULatency

GPULatency , yet as this compares the performance of

CPUGapsMis and GPUGapsMis, it could be calculated using
throughput to obtain identical values. If this improvement
ratio value is greater than 1, then GPUGapsMis has yielded
an improvement against CPUGapsMis.

Hardware. We run the experiments on a custom built
system of the following specification: AMD A10-5800K APU,
NVIDIA NVIDIA GTX 680 GPU, 16 GB RAM, Ubuntu 16.04
OS, CUDA 8. The block size for the CUDA experiments
was set at max(32,m− (m mod 32)), with a maximum size
of 256. This value was found empirically to give the best
performance. The A10-5800K APU has 4 cores and a base
clock rate of 3.8 GHz. The GTX 680 GPU has 8 Streaming
Multiprocessors, 1536 CUDA cores and 2GB device memory,
a base clock rate of 1006 MHz, and is of the nVidia Kepler
architecture family. This is a similar hardware setting to
that used by Ojiaku [24], yet Ojiaku used an Intel i7-3930k
CPU with 6 cores and a clock rate of 3.2 GHz. As we only
consider single thread execution on the CPU, the different
number of cores of the two CPU does not make comparison
unfair. The CPU used for our evaluation has a faster clock
rate (3.8 GHz) than that used by Ojiaku (3.2 GHz), meaning
the improvement ratio reported using the AMD APU may
be lower than if the Intel CPU was used due to the CPU
reference program having lower latency on the AMD APU.
Also of note is that our machine runs Ubuntu 16.04, whereas
the machine used by Ojiaku was running Windows 7. This is
of importance because the proprietary nVidia drivers used on
the Ubuntu system are different from those used in Windows,
so performance could be affected. We also use an nVidia
GTX650 GPU on the same system, in order to investigate
how GPUGapsMis scales on different hardware.

5 RESULTS

In this section, we present and discuss results from ex-
periments carried out as described in Section 4. Following
from the AGPU analysis in Section 3.2, we expect that the
latency of GPUGapsMis is lower than CPUGapsMis, that
latency increases linearly as input size increases, and that
the improvement ratio of GPUGapsMis against CPUGapsMis
decreases as the pattern length increases, because the amount
of shared memory used corresponds with the pattern length,
thereby affecting the occupancy level on the GPU.

We look to evaluate the performance change of
GPUGapsMis as the input size increases, and to validate
the AGPU analysis given in Section 3.2. We carry out all
experiments described in Section 4, with all results presented
in the supplementary material. In order to look closely
at the trends, we focus in this section discussion on two
settings: (i) increasing number of sequence pairs with pattern
length fixed at 200bps; and (ii) increasing pattern length with
number of sequence pairs fixed at 204800. Both settings inves-
tigate the effect of increasing data size. The results presented
here appear in tables (see the supplementary material) as
either the final rows, or the bottom-right sub tables. These
results are representative of all other experiment results
obtained. We also compare the performance of GPUGapsMis
against the algorithm presented in [24]

Each figure in this section is made up of three subfigures;
(a) latency results; (b) calculated throughput; (c) calculated
improvement ratio.

9

5.1 Single Text Batching Method Results
First, we investigate results achieved by GPUGapsMis using
the single text batching approach. Sections 5.1.1 and 5.1.2 dis-
cuss computing alignment scores only, and computing align-
ment scores with backtracking, respectively. Section 5.1.3
gives a summary.

5.1.1 Alignment Scores Only

Results. Figures 5 and 6 show that the latency of CPU-A
(black solid curve) and GPU-S-A (red dotted curve) increase
linearly with the increase in size of input data. GPU-S-A
has smaller latency than CPU-A in all cases and therefore
outperforms CPU-A in all cases.The rate of increase in latency
is 7.3 higher for CPU-A than for GPU-S-A.

This agrees with the AGPU analysis given in Section 3.2.
Figure 5 shows that the throughput of CPU-A stays

constant while the improvement ratio and the throughput
of GPU-S-A decrease as the pattern length increases. The
throughput drops from 86.3 MCUPS at pattern length 50,
to 74.5 MCUPS at pattern length 200, with improvement
dropping from 8.4 to 7.3 times. Figure 6 shows that for
increasing number of sequence pairs, the throughput (around
74 MCUPS) and the improvement ratio (around 7.6) of
GPU-S-A remain stable.

Discussion. We see that the throughput and improve-
ment ratio of GPU-S-A relative to CPU-A is sensitive to
increasing pattern length, yet not sensitive to increasing
number of sequence pairs to align. These performance
metrics are less stable for increase in pattern length because
shared memory use increases with pattern length, lowering
the occupancy rate. This means less warps are available for
hiding the latency of global memory access operations. In
turn, input sets will take longer to process as the number of
sequence pair alignment tasks concurrently run on the SM is
decreased.

Comparison against existing work. The blue dotted
curve in Figures 5 and 6 show the performance of the
algorithm proposed in [24], GPU-O. We see that for some
smaller pattern lengths, there is no improvement achieved,
however as the pattern length is increased, we see that the
performance level of GPU-O drops. GPU-S-A is less sensitive
to increase in pattern length and for pattern lengths 150
or greater, GPU-S-A out performs GPU-O. Figure 5a shows
the trend of GPU-S-A latency is the less steep of all. At its
peak, GPU-S-A achieves throughput 23MCUPS higher than
GPU-O, and a greater speedup of 7.59 against 5.29 of GPU-O.

To further confirm the trend of improvement of GPU-S-A
against GPU-O, we give comparison of the approaches
aligning 204800 longer sequence pairs, where the text length
is fixed at 500bps, and the pattern length is between 50 and
450. The results in Figure 7 show that the trend of GPU-S-A
outperforming GPU-O for pattern lengths of 150 or greater
continues when we align longer sequences.

5.1.2 Alignment Scores with Backtracking

Results. Figures 8 and 9 show that when backtracking is also
calculated, similar trends occur.

When we compare GPU-B and GPU-H, we see that the
GPU backtracking approach (GPU-B) always outperforms

the hybrid backtracking approach (GPU-H). In more details,
Figure 8 shows when the pattern length increases, GPU-H
achieves an improvement ratio of about 3.1 times while
GPU-B achieves 7.0-7.8 times. With increasing number of
sequence pairs, Figure 9 shows the improvement ratios of
GPU-H and GPU-B are 3.1 times and 7.2 times, respectively.

Discussion. We note that when backtracking is included,
the throughput achieved is higher; see GPU-S-A vs GPU-S-B
in Figures 6b and 9b and CPU-A vs CPU-B in Figures 5b
and 8b. This is because the additional requirement to
populate the H matrices require less work per cell than
when populating the G matrices. Each row of the G matrices
requires O(logm) computation by the multiprocessor, yet
only O(1) additional computation is required to calculate the
values for each row of the H matrices.

The improvement ratio achieved by GPU-S-B was
slightly lower than GPU-S-A, as shown in Figure 10. The
backtracking algorithm GapsPos is a serial computation
which has not been parallelised, and is not efficient on the
GPU. Therefore it is faster on the CPU than on the GPU,
giving rise to the lower improvement ratio exhibited by
GPU-S-B compared to GPU-S-A.

Figures 8 and 9 show that GPU-S-H achieved lower
throughput than all other GPUGapsMis approaches, and
exhibit lower sensitivity to increasing pattern length. The
reason for this is the higher amount of data transfer between
the CPU and the GPU. The cost associated with data transfer
between CPU and GPU is very high, and can create a
bottleneck in a GPU program.

5.1.3 Summary
In summary, taking into account of all experimental results
presented in the supplementary material, GPU-S-A is on
average 7.7 times faster than CPU-A. The peak improvement
ratio is 8.4 times, when the pattern length is 50 and number of
sequence pairs is 204800. Note that the throughput achieved
in this setting is 86.4 MCUPS. On the other hand, when
backtracking is considered, the peak throughput is increased
to 121 MCUPS, though the improvement ratio is 7.8 times
which is lower than the 8.4 times without backtracking.
This peak occurs at the same input setting as above. This
higher throughput but lower improvement ratio is due to
less work required to calculate the additional cells during
the backtracking phase, and the sequential backtracking
algorithm being inefficient on the GPU.

On average, over all experiment settings we see that the
throughput increases by 33.4 MCUPS when backtracking is
considered, compared to the alignment scores only counter-
part. The improvement ratio of GPU-S-B decreases by 0.4 on
average, when compared to GPU-S-A. The improvement ra-
tio of GPU-S-H decreases by 4.3 on average, when compared
to GPU-S-B.

5.2 Multiple Text Batching Results
We now investigate results achieved by GPUGapsMis using
the multiple text batching approach.

5.2.1 Alignment Scores Only
As shown in Figures 11 and 12, there are similar trends
in latency, throughput and improvement ratio exhibited

10

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200

La
te

nc
y

(S
ec

on
ds

)
Pattern Length

CPU-A
GPU-S-A

GPU-O

(a) Latency

 0

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Pattern Length

CPU-A
GPU-S-A

GPU-O

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200

Sp
ee

du
p

Pattern Length

GPU-S-A GPU-O

(c) Improvement vs CPU

Fig. 5: Result for GPU-S-A and GPU-O, for input sets containing 204800 sequence pairs.

 0

 500

 1000

 1500

 2000

 2500

 16 256 512 1024 2048

La
te

nc
y

(S
ec

on
ds

)

Num Seqs (x 100)

CPU-A
GPU-S-A

GPU-O

(a) Latency

 0
 10
 20
 30
 40
 50
 60
 70
 80

 16 256 512 1024 2048

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Num Seqs (x 100)

CPU-A
GPU-S-A

GPU-O

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 16 256 512 1024 2048

im
pr

ov
em

en
t

Num Seqs (x 100)

GPU-S-A GPU-O

(c) Improvement

Fig. 6: Result for GPU-S-A and GPU-O, for input sets containing patterns of length 200.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 50 100 150 200 250 300 350 400 450

La
te

nc
y

(S
ec

on
ds

)

Pattern Length

CPU-A GPU-S-A GPU-O

Fig. 7: Latency of GPU-S-A and GPU-O, for input sets
containing 204800 sequence pairs with texts of length 500.

by GPU-M-A to those exhibited by GPU-S-A discussed in
Section 5.1.1.

By examining Figures 11b and 12b closer, we see that
GPU-M-A achieves greater throughput than GPU-S-A. This
is because GPU-M-A requires less host device communication
than GPU-S-A. In Section 5.1.3 GPU-S-H was negatively
affected by increased host device data transfer and therefore
exhibited lower sensitivity to increasing pattern length with
fixed number of sequence pairs, being shown as a flatter
and lower trend in throughput and improvement ratio when
compared to GPU-S-B. This is a similar scenario, as GPU-S-A
has a greater host device data transfer requirement than
GPU-M-A. This is amplified by the lower number of host
device synchronisations required by GPU-M-A compared to
GPU-S-A.

5.2.2 Alignment Scores with Backtracking
We see in Figures 13 and 14 that GPU-M-B and GPU-M-H
exhibit trends similar to their respective single text batching
counterparts, GPU-S-B and GPU-S-H.

Similar to Section 5.2.1, the multi text batching GPU-M-B
and GPU-M-H perform consistently better than the single
text counterpart GPU-S-B and GPU-S-H, respectively. This
is because each of the multi text approaches require less
host device communication and data transfer than their
single text counterpart. As previously explained, the data
transfer between host and device is very expensive and can
be detrimental to the performance, therefore reducing the
amount of this type of data transfer as much as possible
would benefit the improvement ratio against the CPU, as has
been demonstrated here.

An interesting result is the throughput and improvement
ratio of GPU-M-H, which monotonically increases as pattern
length is increased, as shown in Figures 13b and 13c. This
is the only GPU approach to exhibit such a characteristic.
GPU-M can schedule at most qr threadblocks on the GPU in
a single batch, whereas GPU-S is more limited and can only
schedule up to r threadblocks in a single batch. Therefore
when H matrices are returned asynchronously to the host
upon termination of the kernel, there are more threadblocks
ready for execution in GPU-M-H than GPU-S-H, meaning
GPU-S-H is not able to hide the latency of asynchronous
data transfer as effectively as GPU-M-H.

5.2.3 Summary
In summary, taking into account of all experimental results
presented in the supplementary material, we see that the
peak performance of GPU-M-A and GPU-M-B occur in the

11

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200

La
te

nc
y

(S
ec

on
ds

)
Pattern Length

CPU-B
GPU-S-B

GPU-S-H

(a) Latency

 0

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Pattern Length

CPU-B
GPU-S-B

GPU-S-H

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200

Im
pr

ov
em

en
t

Pattern Length

GPU-S-B GPU-S-H

(c) Improvement vs CPU

Fig. 8: Result for GPU-S-B and GPU-S-H, for input sets containing 204800 sequence pairs.

 0

 500

 1000

 1500

 2000

 2500

 16 256 512 1024 2048

La
te

nc
y

(S
ec

on
ds

)

Num Seqs (x 100)

CPU-B
GPU-S-B

GPU-S-H

(a) Latency

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 16 256 512 1024 2048

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Num Seqs (x 100)

CPU-B
GPU-S-B

GPU-S-H

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 16 256 512 1024 2048

Im
pr

ov
em

en
t

Num Seqs (x 100)

GPU-S-B GPU-S-H

(c) Improvement vs CPU

Fig. 9: Result for GPU-S-B and GPU-S-H, for input sets containing patterns of length 200.

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200

Im
pr

ov
em

en
t

Pattern Length

GPU-S-B GPU-S-A

 0

 2

 4

 6

 8

 10

 12

 16 256 512 1024 2048

Im
pr

ov
em

en
t

Num Seqs (x 100)

GPU-S-B GPU-S-A

Fig. 10: Comparison of improvement ratio between GPU-S-A
and GPU-S-B.

same setting; when pattern length is 50, for 204800 sequence
pairs. GPU-M-A is on average 10.1 times faster than CPU-A
and increases the improvement ratio on average by 2.3
compared to GPU-S-A. The peak improvement ratio is
11 times, when the pattern length is 50 and number of
sequence pairs is 204800. Note that the throughput achieved
in this setting is 113.2 MCUPS. On the other hand, when
backtracking is computed, the peak throughput is increased
to 161 MCUPS, though the improvement ratio is 10.4 times
which is lower than the 11 times without backtracking. As
with single text batching, this higher throughput but lower
improvement ratio is due to less work required to calculate
the additional cells for backtracking, and the sequential
backtracking algorithm being inefficient on the GPU.

The improvement ratio of GPU-M-H decreases by 6.1 on
average, when compared to GPU-M-B. On average, GPU-M-H
causes an increase in improvement ratio by 0.6 and an
increase in throughput by 9.8 MCUPS when compared to

GPU-S-H.
We see that GPU-M-B increases throughput yet low-

ers the improvement ratio achieved, when compared to
GPU-M-A. Throughput of GPU-M-B increases on average by
45.8 MCUPS compared to GPU-M-A, and the improvement
ratio decreases by 0.3 on average. GPU-M-H achieved higher
throughput and higher improvement ratio than GPU-S-H,
yet does not outperform GPU-B.

5.3 Improvement on Different GPU Devices
By running GPUGapsMis on GPUs with more resources,
it is expected that a higher level of improvement against
CPUGapsMis would be achieved, however some parallel
algorithms are not able to take advantage of extra resources
past a certain point, due to excessive communication over-
head. We wish to investigate whether a GPU with more
resources is negatively affected in performance gained, when
compared to a lower specification GPU, due to finite global
memory access bandwidth and costly access latency. The
increased number of alignment tasks (threadblocks) running
concurrently on the GPU could create a communication
bottleneck when serving global memory requests.

We test this by investigating how results of GPUGapsMis
on GTX680 (already discussed) compare to results on GTX650.
GTX650 and GTX680 has 2 and 8 SMs, clock speed of 1.2GHz
and 1 GHz, and global memory of 1GB and 2GB, respectively.
GTX680 has more Streaming Multiprocessors than GTX650,
so it can run more alignment tasks concurrently than GTX650.
Therefore we expect GTX680 to outperform GTX650 when
running GPUGapsMis. Assuming that all data fits on the
GPU memory, we must decide how much we expect GTX680
to outperform GTX650. GTX680 has 4 times the resources

12

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200

La
te

nc
y

(S
ec

on
ds

)
Pattern Length

CPU-A
GPU-M-A

GPU-S-A

(a) Latency

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200

Th
ro

ug
hp

ut
 (M

C
U

PS
)

Pattern Length

CPU-A
GPU-M-A

GPU-S-A

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200

Im
pr

ov
em

en
t

Pattern Length

GPU-M-A GPU-S-A

(c) Improvement

Fig. 11: Result for GPU-M-A, performing alignment scores phase only with multiple text batching, for input sets containing
204800 sequence pairs.

 0

 500

 1000

 1500

 2000

 2500

 16 256 512 1024 2048

La
te

nc
y

(S
ec

on
ds

)

Num Seqs (x 100)

CPU-A
GPU-M-A

GPU-S-A

(a) Latency

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 16 256 512 1024 2048

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Num Seqs (x 100)

CPU-A
GPU-M-A

GPU-S-A

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 16 256 512 1024 2048

Im
pr

ov
em

en
t

Num Seqs (x 100)

GPU-M-A GPU-S-A

(c) Improvement

Fig. 12: Result for GPU-M-A, performing alignment scores phase only, with multiple text batching, for input sets containing
patterns of length 200.

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200

La
te

nc
y

(S
ec

on
ds

)

Pattern Length

CPU-B
GPU-S-B
GPU-S-H

GPU-M-B
GPU-M-H

(a) Latency

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 50 100 150 200

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Pattern Length

CPU-B
GPU-S-B
GPU-S-H

GPU-M-B
GPU-M-H

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200

Im
pr

ov
em

en
t

Pattern Length

GPU-S-B
GPU-S-H

GPU-M-B
GPU-M-H

(c) Improvement

Fig. 13: Result for GPU-M-B and GPU-M-H, with multiple text batching, for input sets containing 204800 sequence pairs.

of GTX650, but a clock speed that is only 83% of GTX650.
Therefore we can estimate that GTX680 will be around 3.3
times faster than GTX650. The global memory bandwidth
of GTX680 is only 2.4 times of GTX650, so there is potential
for some applications to encounter a bottleneck in global
memory access on GTX680, yet not GTX650.

We run the best performing approach of GPUGapsMis,
GPU-M-B on GTX650. If GPUGapsMis has 3.3 or greater
improvement on GTX680, compared to GTX650, then we
should expect that running GPUGapsMis on a Kepler GPU
with specifications higher than GTX680 would yield greater
improvement still. The results obtained achieved are sum-
marised in Table 2.

GTX680 outperforms GTX650 in all cases, by a ratio of
3.5 times. This ratio remains constant throughout increase
in pattern length and throughout increase in number of

GPU GTX650 GTX680
Num SM 2 8

Clock Speed 1.2GHz 1GHz
Resource Ratio 1 4

Expected Improvement 1 3.3
Observed Improvement 1 3.5

TABLE 2: Summary of GTX650 and GTX680 comparative
resources and comparative performance of GPU-M-B.

sequence pairs. Figures 15 and 16 demonstrate that the
performance of GPU-M-B exhibits similar trends on GTX650
as on GTX680, and show the ratio of improvement between
the two GPUs unaffected by input data size.

We are able to conclude that GPUGapsMis adapts to a
GPU of different specification well, and that any commu-
nication overhead is not exaggerated by a disproportionate

13

 0

 500

 1000

 1500

 2000

 2500

 16 256 512 1024 2048

La
te

nc
y

(S
ec

on
ds

)
Num Seqs (x 100)

CPU-B
GPU-S-B
GPU-S-H

GPU-M-B
GPU-M-H

(a) Latency

 0
 20
 40
 60
 80

 100
 120
 140

 16 256 512 1024 2048

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Num Seqs (x 100)

CPU-B
GPU-S-B
GPU-S-H

GPU-M-B
GPU-M-H

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 16 256 512 1024 2048

Sp
ee

du
p

Num Seqs (x 100)

GPU Single
Hybrid Single

GPU Multi
Hybrid Multi

(c) Improvement

Fig. 14: Result for GPU-M-B and GPU-M-H, with multiple text batching, for input sets containing patterns of length 200.

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200

La
te

nc
y

(S
ec

on
ds

)

Pattern Length

CPU-B GTX680 GTX650

(a) Latency

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 50 100 150 200

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Pattern Length

CPU-B GTX680 GTX650

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200

Im
pr

ov
em

en
t

Pattern Length

GTX680 vs CPU
GTX650 vs CPU

GTX680 vs GTX650

(c) Improvement

Fig. 15: Result for GPU-M-B, with multiple text batching, running on GTX 650 for input sets containing 204800 sequence
pairs.

 0

 500

 1000

 1500

 2000

 2500

 16 256 512 1024 2048

La
te

nc
y

(S
ec

on
ds

)

Num Seqs (x 100)

CPU-B GTX680 GTX650

(a) Latency

 0

 20

 40

 60

 80

 100

 120

 140

 16 256 512 1024 2048

Th
ro

ug
hp

ut
 (M

C
U

Ps
)

Num Seqs (x 100)

CPU-B GTX680 GTX650

(b) Throughput

 0

 2

 4

 6

 8

 10

 12

 16 256 512 1024 2048

Im
pr

ov
em

en
t

Num Seqs (x 100)

GTX680 vs CPU-B
GTX650 vs CPU-B

GTX680 vs GTX650

(c) Improvement vs CPU

Fig. 16: Result for GPU-M-B, with multiple text batching running on GTX 650 for input sets containing patterns of length
200.

amount, as resources available are increased. Therefore,
we are able to have confidence that proportionally better
speedup would be possible, should higher specification
GPUs be used to run GPUGapsMis.

6 CONCLUSION

We present a study on a GPU-based algorithm to solve
the pairwise semi-global sequence alignment with bounded
number of gaps problem, using a data-parallel approach. We
analyse our algorithm GPUGapsMis on the AGPU model,
with theoretical analysis confirmed by observed results. We
achieve greater speedup compared to a previous data-parallel
approach.

• We achieve peak speedup against the CPU of 11
times when only alignment scores are computed, and

10.4 times when backtracking is also computed. We
achieve greater speedup compared to a previous data-
parallel approach [24].

• We show that the best performance is achieved by
GPU-M-B, with multi text batching and backtracking
computed on the GPU. Of all approaches considered,
GPU-M-B requires the least host device communica-
tion.

• We show that the performance scales well on a GPU
of better specification.

In the future, it would be interesting investigate different
data-parallel approaches to lower the amount of shared mem-
ory required, as well as investigate task parallel methods.
In addition to this, it would also be interesting to look at
ways to improve the performance of the backtracking phase,
possibly by using a task-parallel GPU kernel. We use only a

14

single GPU device in this paper, so it would be interesting
to investigate using multiple GPU devices to test further
scalability, as well as to use higher specification GPUs to
verify the improved speedup claim. Our results show that the
amount of data transfer required can have a tangible effect
on the performance of the algorithm, yet this is not captured
in the analysis given by the AGPU model. Recently, the
authors propose the Abstract Transferring GPU (ATGPU) [6],
an improved abstract GPU model including data transfer,
so it would be particularly interesting to analyse different
approaches of GPUGapsMis using the ATGPU. Furthermore,
it would be interesting to consider GPU variants for other
alignment problems, e.g. those that may replace BWA or
Bowtie.

REFERENCES

[1] Nikolaos Alachiotis, Simon Berger, Tomáš Flouri,
Solon P Pissis, and Alexandros Stamatakis. libgapmis:
extending short-read alignments. BMC Bioinformatics,
14(Suppl 11):S4, 2013.

[2] Stephen F Altschul, Warren Gish, Webb Miller, Eu-
gene W Myers, and David J Lipman. Basic local
alignment search tool. Journal of Molecular Biology,
215(3):403–410, 1990.

[3] Carl Barton, Tomáš Flouri, Costas S Iliopoulos, and
Solon P Pissis. Global and local sequence alignment
with a bounded number of gaps. Theoretical Computer
Science, 582:1–16, 2015.

[4] Alhadi Bustamam, Kevin Burrage, and Nicholas A
Hamilton. Fast parallel Markov clustering in bioin-
formatics using massively parallel computing on GPU
with CUDA and ELLPACK-R sparse format. IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
9(3):679–692, 2012.

[5] Thomas C Carroll, Jude-Thaddeus Ojiaku, and Prudence
W H Wong. Pairwise Sequence Alignment with Gaps
with GPU. In Proceedings of the IEEE International Con-
ference on Cluster Computing (Workshop on Heterogeneous
and Unconventional Cluster Architectures and Applications),
2015.

[6] Thomas C Carroll and Prudence W H Wong. An
Improved Abstract GPU Model with Data Transfer.
In Proceedings of the International Conference on Parallel
Processing Workshops, 2017.

[7] Reza Farivar, Harshit Kharbanda, Shivaram Venkatara-
man, and Roy H. Campbell. An algorithm for fast edit
distance computation on GPUs. 2012 Innovative Parallel
Computing, pages 0–8, 2012.

[8] Kimon Frousios, Costas S. Iliopoulos, Laurent
Mouchard, Solon P. Pissis, and German Tischler. REAL:
an efficient REad ALigner for next generation sequenc-
ing reads. Proceedings of the First ACM International
Conference on Bioinformatics and Comptuational Biology,
pages 154–159, 2010.

[9] Kai J Kohlhoff, Marc H Sosnick, William T Hsu, Vi-
jay S Pande, and Russ B Altman. CAMPAIGN: an
open-source library of GPU-accelerated data clustering
algorithms. Bioinformatics, 27(16):2321–2322, 2011.

[10] Atsushi Koike and Kunihiko Sadakane. A Novel
Computational Model for GPUs with Application to IO

Optimal Sorting Algorithms. In 2014 IEEE International
Parallel and Distributed Processing Symposium Workshhops,
pages 614–623, 2014.

[11] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven
Salzberg. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome
biology, 10(3):R25, 2009.

[12] Heng Li and Richard Durbin. Fast and accurate
short read alignment with Burrows-Wheeler transform.
Bioinformatics, 25(14):1754–1760, 2009.

[13] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun
Wang. SOAP: short oligonucleotide alignment program.
Bioinformatics, 24(5):713–714, 2008.

[14] Ruiqiang Li, Chang Yu, Yingrui Li, Tak Wah Lam,
Siu Ming Yiu, Karsten Kristiansen, and Jun Wang.
SOAP2: An improved ultrafast tool for short read
alignment. Bioinformatics, 25(15):1966–1967, 2009.

[15] Lukasz Ligowski, Witold Rudnicki, Łukasz Ligowski,
and Witold Rudnicki. An efficient implementation of
Smith Waterman algorithm on GPU using CUDA, for
massively parallel scanning of sequence databases. In
IEEE International Symposium on Parallel & Distributed
Processing, pages 1–8. IEEE, 2009.

[16] Chi Man Liu, Thomas Wong, Edward Wu, Ruibang Luo,
Siu Ming Yiu, Yingrui Li, Bingqiang Wang, Chang Yu,
Xiaowen Chu, Kaiyong Zhao, Ruiqiang Li, and Tak Wah
Lam. SOAP3: ultra-fast GPU-based parallel alignment
tool for short reads. Bioinformatics, 28(6):878–879, 2012.

[17] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt.
CUDASW++3.0 accelerating Smith-Waterman protein
database search by coupling CPU and GPU SIMD
instructions. BMC Bioinformatics, 14(117), 2013.

[18] Gerton Lunter and Martin Goodson. Stampy: A statisti-
cal algorithm for sensitive and fast mapping of Illumina
sequence reads. Genome Research, 21(6):936–939, 2011.

[19] Svetlin A Manavski and Giorgio Valle. CUDA compat-
ible GPU cards as efficient hardware accelerators for
Smith-Waterman sequence alignment. BMC Bioinformat-
ics, 9(Suppl 2):S10, 2008.

[20] NCBI. NCBI Genbank. https://www.ncbi.nlm.nih.gov/
genbank/.

[21] S B Needleman and C D Wunsch. A general method
applicabe to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[22] NVidia. Kepler Architecture. http://
international.download.nvidia.com/pdf/kepler/
NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.
pdf.

[23] nVidia. Programming Guide:: CUDA Toolkit
Documentation. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/, aug 2017.

[24] Jude-Thaddeus Ojiaku. A Study of Time and Energy Effi-
cient Algorithms for Parallel and Heterogeneous Computing.
PhD thesis, University of Liverpool, Dec 2014.

[25] Sooraj Puthoor, Ashwin M Aji, Shuai Che, Mayank
Daga, Wei Wu, Bradford M Beckmann, and Gregory
Rodgers. Implementing directed acyclic graphs with
the heterogeneous system architecture. In Proceedings
of the 9th Annual Workshop on General Purpose Processing
using Graphics Processing Unit, pages 53–62. ACM, 2016.

15

[26] Peter Rice, Ian Longden, and Alan Bleasby. EMBOSS:
The European Molecular Biology Open Software Suite.
Trends in Genetics, 16(1):276–277, 2000.

[27] Stephen M. Rumble, Phil Lacroute, Adrian V. Dalca,
Marc Fiume, Arend Sidow, and Michael Brudno.
SHRiMP: Accurate mapping of short color-space reads.
PLoS Computational Biology, 5(5):1–11, 2009.

[28] Korbinian Schneeberger, Jörg Hagmann, Stephan Os-
sowski, Norman Warthmann, Sandra Gesing, Oliver
Kohlbacher, and Detlef Weigel. Simultaneous alignment
of short reads against multiple genomes. Genome Biology,
10(9):R98, 2009.

[29] Mohammed A Shehab, Abdullah A Ghadawi, Luay
Alawneh, Mahmoud Al-Ayyoub, and Yaser Jararweh. A
hybrid cpu-gpu implementation to accelerate multiple
pairwise protein sequence alignment. In 8th International
Conference on Information and Communication Systems,
pages 12–17. IEEE, 2017.

[30] T F Smith and M S Waterman. Identification of Common
Molecular Subsequences. Journal of Molecular Biology,
147:195–197, 1981.

[31] Gregory M Striemer and Ali Akoglu. Sequence align-
ment with GPU: Performance and design challenges. In
IEEE International Symposium on Parallel & Distributed
Processing, pages 1–10. IEEE, 2009.

[32] Panagiotis D Vouzis and Nikolaos V Sahinidis. GPU-
BLAST: using graphics processors to accelerate protein
sequence alignment. Bioinformatics, 27(2):182–188, 2011.

[33] Ling Sing Yung, Can Yang, Xiang Wan, and Weichuan
Yu. GBOOST: a GPU-based tool for detecting gene–
gene interactions in genome–wide case control studies.
Bioinformatics, 27(9):1309–1310, 2011.

[34] Kaiyong Zhao and Xiaowen Chu. G-BLASTN: accel-
erating nucleotide alignment by graphics processors.
Bioinformatics, 30(10 2014):1384–1391, 2014.

Thomas C. Carroll received his BSc degree in
Computer Science from University of Liverpool,
UK in 2014. He is currently studying towards
his PhD, also at the University of Liverpool. His
research interests are on parallel programming
in particular in GPU optimisation, and in abstract
modelling of GPU.

Jude-Thaddeus Ojiaku is a Design Engineer
at ASML, The Netherlands. He received his
PhD in Computer Science from University of
Liverpool, UK in 2016. His research interests
are on parallel programming in particular GPU
optimisation. He has been involved in the follow-
ing projects: Intrafield Corrections for Dedicated
Chuck Overlay, Introduction of NXT:1980Di ma-
chine, Reticle Shape Correction at Reticle Stage,
Cross-Matching Compensation and calibration
test software owner for machine focus calibration.
Prudence W.H. Wong is a professor in the De-
partment of Computer Science, University of
Liverpool, UK. She received her PhD from The
University of Hong Kong in 2003. Her research
interests are on design and analysis of algorithms,
combinatorial optimisation with applications to
other discipline including computational biology.
She is on the Editorial Board of Information
Processing Letters, The Computer Journal, Al-
gorithms.

