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Abstract

Traditional scheduling assumes that the processing time of a job is fixed. Yetthere are
numerous situations that the processing time increases (deteriorates) as thestart time in-
creases. In particular, lots of work has been devoted to jobs with simple linear deterioration.
The processing timepj of job Jj is a simple linear function of its start timesj , precisely,
pj = bjsj , wherebj is the deteriorating rate. In this paper, we study the problem of online
non-preemptive scheduling of jobs with arbitrary release times and simple linear deterio-
rating rates on a single machine to minimize the total general completion time. We present
an algorithm DSDR (Delayed Smallest Deteriorating Rate) and prove that it achieves the
best-possible competitive ratio(1 + bmax)

α for all deterministic online algorithms, where
α is the general index of completion time andα > 0.
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1 Introduction

Scheduling of deteriorating jobs. Scheduling of jobs (with fixed processing time) is a classical
problem [20]. Yet, there are numerous situations that the processing time increases (deterio-
rates) as the start time increases. For example, to schedulemaintenance or cleaning, a delay
often requires additional effort to accomplish the task. Other examples are found in fire fight-
ing, steel production and financial management [12, 16]. Scheduling of deteriorating jobs was
first introduced by Browne and Yechiali [4], and Gupta and Gupta [8] independently. Both
considered scheduling a set of deteriorating jobs on a single machine to minimize makespan.
In [4], the processing time of a job is a monotone linear function of its starting time while non-
linear functions are considered in [8]. Since then, the problem has attracted a lot of attention,
and has been studied in other time dependent models with various objective functions. Com-
prehensive surveys can be found in [1,6,7]. Following most of the existing work, we focus on
non-preemptive scheduling.1

Simple linear deterioration. We focus on jobs with simple linear deterioration, which has
been studied in more detail due to its simplicity while capturing the essence of real life situa-
tions. A job satisfieslinear deteriorationif its processing time is an increasing linear function
of its start time, i.e.,pj = aj + bjsj, whereaj ≥ 0 is the “normal” processing time,bj > 0 is
the deteriorating rate, andsj is the start time. In other words, the processing time differs with
different schedules. Linear deterioration is further saidto besimpleif pj = bjsj. In this case, in
order to avoid trivial solution, it is natural to assume thatthe start time of the first job ist0 > 0
since a start time of zero means that the processing time of all jobs is zero. Mosheiov [15, 16]
justified simple linear deterioration as follows: as the number of jobs increases, the start time
of jobs gets larger, and the actual processing time of infinitely many jobs is no longer affected
by the normal processing time but only by the deteriorating rate.

Release times and online algorithms.The study of scheduling deteriorating jobs has been
focused on the setting where all jobs are available for processing at the very beginning. In prac-
tice, jobs may be released at arbitrary times. We may also have to make decisions based on the
jobs currently presented without information of future jobs. The performance of online algo-
rithms is typically measured by competitive analysis [3]. An online algorithm isc-competitive
if for any input instance, its cost is no more thanc times that of the optimal offline algorithm.
Online algorithms for jobs with release times have been studied extensively for fixed processing
time [21]. Yet, not much is known for deteriorating jobs withrelease times, let alone online
algorithms. Recently, there is some work on online algorithms for linear deteriorating jobs to
minimize makespan [5,24].

Total general completion time. One of the typical objective functions for scheduling prob-
lems is measuring the completion time. Letcj denote the completion time of a jobJj in a
certain schedule. The total completion time of schedulingn jobs is defined as

∑

1≤j≤n cj. Fur-
thermore, the general completion time [10, 13, 23]2 attempts to characterize the scenario that
dissatisfaction increases with delay in processing in a manner of a power function. Motivations
of this objective function have been discussed in [10]. Thegeneral completion timeof Jj is
defined ascαj , whereα > 0 is a constant. The objective of the problem is to minimize thetotal

1Offline preemptive scheduling of deteriorating jobs has been considered on a single machine [18].
2For simplicity, we follow the convention in [13] and call this objective general completion time.
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general completion time, i.e.,
∑

1≤j≤n c
α
j . When the processing time is independent of the start

time (fixed processing time) and jobs have arbitrary releasetimes, it has been shown in [9] that
for the problem of minimizing total completion time, the algorithm DSPT (Delayed Shortest
Processing Time) is an optimal online algorithm with competitive ratio 2. Other2-competitive
algorithms have also been proposed [14, 19]. Liu et al. [13] extended the work by Hoogeveen
and Vestjens [9] to total general completion time and showeda lower bound of2α. They also
claimed that DSPT is2α-competitive, which is proved in [25].3

For simple linear deterioration, Mosheiov [16] has considered the case when all jobs are
available at the beginning and proved that to minimize totalcompletion time, SDR (Smallest
Deteriorating Rate) is an optimal algorithm. Note that SDR isan online-list algorithm as well.4

It remains open to obtain a competitive online algorithm when jobs have arbitrary release times
and the objective is total completion time or total general completion time.

Our contributions. In this paper, we consider non-preemptive scheduling of jobs with simple
linear deterioration and arbitrary release times on a single machine to minimize the total general
completion time. This extends current work in two directions: from all jobs being available at
the very beginning to jobs having arbitrary release times; and from minimizing total completion
time to total general completion time. We first prove that no deterministic online algorithm can
be better than(1 + bmax)

α-competitive, wherebmax is the maximum deteriorating rate of all
jobs. We then present an algorithm DSDR (Delayed Smallest Deteriorating Rate) and prove
that it is(1 + bmax)

α-competitive, matching the lower bound.
Technically speaking, we adopt the approach in [9] for fixed processing time to compare

our online schedule with an optimal offline preemptive schedule. Preemption of jobs with
simple linear deterioration has been formalized in [18]. The major challenge to adopt the fixed
processing time approach is that the preemption of simple linear deteriorating jobs makes the
comparison more difficult and requires more careful accounting. The rough idea is that for any
job J , we find a set of jobs that have been processed by DSDR beforeJ and show that any
algorithm including the optimal offline preemptive algorithm has to process these jobs before
J . Thus the start time and hence the completion time ofJ by DSDR is bounded by a factor
times that by the optimal algorithm.

Remark. Scheduling of linear deteriorating jobs has also been studied in the multiple ma-
chines setting [5,11,17,22,24]. The objective of all thesework is to minimize makespan.

Organization of the paper. In Section 2, we formally define the problem and give some
notations necessary for discussion. We give the lower and upper bounds in Sections 3 and 4,
respectively. We then conclude in Section 5.

2 Preliminaries

We considernon-preemptivejob scheduling on a single machine. Once a job has been pro-
cessed, it cannot be interrupted by any other job until it is finished. The input is a setJ of n
jobs. A jobJj is released at timerj with processing timepj which is a function on the start

3A proof is given in [13] for DSPT being2α-competitive but a flaw in the arguments has been pointed out
in [25], which also gives a proof on the competitive ratio.

4In the online-list model, jobs are available to be processedat the beginning but are presented one by one. Each
job is to be scheduled before the next job is presented.
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time sj. The job has to be processed contiguously forpj time units. In particular, we consider
simple linear deteriorationin which jobs are characterized by a deteriorating ratebj > 0 such
thatpj = bjsj. Denote bybmax the maximum ofbj. We assume that the start time of the first
job is t0 > 0 since a start time of zero means that the processing time of all jobs is zero.

An online algorithmhas to determine at any time which job to run without future informa-
tion about jobs that have not been released yet. For any algorithm A, we useA to denote its
schedule. In a scheduleA, we denote the start time and completion time ofJj by sj(A) and
cj(A), respectively. When the context is clear, we simply usesj andcj. The total completion
time is defined as

∑

j cj. Furthermore, thegeneral completion timeof Jj is defined ascαj , where
α ≥ 0 is a constant. The objective of the problem is to minimize thetotal general completion
time, i.e.,

∑

j c
α
j . The performance of an online algorithm is typically measured by competitive

analysis [3]. An online algorithm is said to bec-competitive if for all input job sets, its total
general completion time is at mostc times that of the optimal offline algorithm.

It has been showed that if all jobs are available at the very beginning, the optimal algorithm
is to schedule according to the rule SDR (Smallest Deteriorating Rate) [16]. Yet we observe that
when jobs have arbitrary release times, one can first releasea jobJ and thenn jobs with very
small deteriorating rate arrive just moment afterJ , this would make SDR no longer competitive
and thus we need a different algorithm.

Optimal offline preemptive algorithm. Following a similar framework as in [9], the analysis
of our online algorithm compares our schedule with that of anoptimal offline preemptive algo-
rithm. We describe here the notion of preemption with resumein the presence of simple linear
deteriorating jobs. We adopt the same idea as in [18]. Suppose a jobJj starts processing ats
and is preempted att. Note that the processing time ofJj when it starts ats equals tos · bj and
its completion time is expected to be ats(1 + bj) if it is not preempted. WhenJj is preempted
at t, we define theremaining deteriorating rateb′j as the value such that the job would be com-
pleted ats(1 + bj) if it is resumed att, i.e., t(1 + b′j) = s(1 + bj). If Jj is to be resumed at
s2 and preempted again later att2, the remaining deteriorating rate is then defined in a similar
way based ons2, t2 andb′j. Note that the definition here is equivalent to that in [18] although
the discussion there uses different formula. The definitionleads to the following lemma.

Lemma 1 ( [18]). Suppose that[tsi , tfi ] for i = 1, · · · , q are q disjoint time intervals, where
0 < tsi < tfi < tsi+1

. Then there is a schedule in whichJj is scheduled in these time intervals

if and only ifrj ≤ ts1 and
∏q

i=1

tfi
tsi

= 1 + bj.

An optimal preemptive algorithm has been presented in [18],which we callSmallest Re-
maining Deteriorating Rate(SRDR). For the sake of completeness, we describe SRDR here
and state its optimality in Lemma 2. Note that SRDR is indeed anonline algorithm.

SRDR (Smallest Remaining Deteriorating Rate): At any time, schedule the job with the
smallest remaining deteriorating rate, in other words, thecurrent job is preempted when a job
with a smaller deteriorating rate is released.

Lemma 2 ([18]). Consider minimizing total generalized completion time of jobs with simple
linear deteriorating rate and arbitrary release times. ThealgorithmSRDRreturns an optimal
preemptive schedule.
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3 General lower bound

In this section, we show a lower bound of(1+ bmax)
α on the competitive ratio of any determin-

istic online algorithm.

Theorem 3. Consider minimizing total generalized completion time of jobs with simple linear
deteriorating rate and arbitrary release times. No deterministic online algorithm is better than
(1 + bmax)

α-competitive.

Proof. Let A be any online algorithm andO be an optimal offline algorithm. The adversary
first releases at timet0 a jobJ1 with deteriorating rateb1. SupposeA schedulesJ1 at timet.
We consider two cases depending on the value oft.

Case 1: t ≥ t0(1 + b1). In this case, the adversary does not release more jobs. The
completion timec1(A) = t(1 + b1) andc1(O) = t0(1 + b1). Therefore,

∑

cαj (A)
∑

cαj (O)
=

tα

tα0
≥ (1 + b1)

α = (1 + bmax)
α .

Case 2:t < t0(1 + b1). In this case, att+ β for some small constantβ > 0, the adversary
releasesn− 1 jobsJ2, · · · , Jn with deteriorating rateǫ. In this case, the completion time ofJj
equalst(1 + b1)(1 + ǫ)j−1. Therefore,

∑

cαj (A) = tα(1 + b1)
α
∑

1≤j≤n

(1 + ǫ)(j−1)α = tα(1 + b1)
α ·

(1 + ǫ)αn − 1

(1 + ǫ)α − 1
.

On the other hand, the optimal offline algorithmO schedulesJ1 last and the completion time
cj(O) = (t+ β)(1 + ǫ)j−1 for 2 ≤ j ≤ n andc1(O) = (t+ β)(1 + ǫ)n−1(1 + b1). Therefore,

∑

cαj (O) = (t+ β)α

(

∑

2≤j≤n

(1 + ǫ)(j−1)α + (1 + ǫ)(n−1)α(1 + b1)
α

)

≤ (t+ β)α
(

(1 + ǫ)αn

(1 + ǫ)α − 1
+ (1 + ǫ)(n−1)α(1 + b1)

α

)

In other words, we have
∑

cαj (A)
∑

cαj (O)
≥ (1 + b1)

α

(

t

t+ β

)α
(1 + ǫ)αn − 1

(1 + ǫ)αn + ((1 + ǫ)α − 1)(1 + ǫ)(n−1)α(1 + b1)α

If we choose an arbitrarily largen and a corresponding smallǫ, the last fraction approaches1.
We can further setβ to be arbitrarily small and have( t

t+β
)α arbitrarily close to 1. Therefore,

∑
cαj (A)

∑
cαj (O)

approaches(1 + b1)
α = (1 + bmax)

α. The theorem then follows.

4 Optimal online algorithm DSDR

DSDR. As mentioned before, when all jobs are available at the beginning, the optimal algo-
rithm is SDR, yet SDR is not competitive when jobs have arbitrary release time. We adapt the
algorithm DSPT (Delayed Shortest Processing Time) in [9] and derive our algorithm DSDR
(Delayed Smallest Deteriorating Rate). Consider an input jobsetJ . DSDR runs as follows.
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Step 1: Consider timet ≥ t0 when the machine is idle. If an unscheduled job is available at
that time, letJj be the one with the smallest deteriorating rate. Ties are broken by taking
the one with the earliest release time5.

Step 2: Ift ≥ t0(1 + bj), then scheduleJj at t; otherwise, wait until timet0(1 + bj) or until a
new job arrives, whichever happens first.

Step 3: If all jobs are scheduled, stop; otherwise, go to Step1.

Without loss of generality, we assume that DSDR and SRDR breakties in the same way.
To illustrate DSDR, we present the following example.

Example 1. Supposet0 = 1. Consider two jobsJ1 andJ2 wherer1 = 1, b1 = 2, r2 = 2, b2 = 1.
At time1, DSDRdoes not processJ1 immediately sincet0(1 + b1) = 3 > t0. It would process
J2 at time2 sinceb2 < b1 andt0(1 + b2) = 2. The processing time ofJ2 is 2 and it completes
at time4, whenDSDRstarts processingJ1 for 8 time units until time12.

Framework of analysis. Our analysis follows a similar framework as that in [9]. Consider
a job setJ . Let A andO be the schedules by DSDR and the optimal algorithm, respectively.
First of all, we observe that it suffices to consider instances such that DSDR schedules jobs
contiguously without idle time. A similar observation was made for jobs with fixed processing
time when the objective is the sum of total completion time [9] and the sum of total general
completion time [13]. We observe that this observation applies to deteriorating jobs as well
(Observation 4). We include the proof here for the sake of completeness.

We then define a pseudo-scheduleA′ from A and construct a new job setJ ′ from A′.
Let Op andO′

p be the optimal preemptive algorithm forJ andJ ′, respectively. Note that
the subscript indicates we refer to the preemptive algorithm. It is relatively easy to relate the
total general completion time ofO, Op andO′

p (Lemma 6). The more tricky analysis is to
relate the general completion time ofA′ andO′

p and it is done via comparing the start time and
completion time of jobs inA′ andO′

p (Corollary 10). Finally, from the definition ofA′ fromA,
we can bound the total general completion time ofA by that ofA′ and hence by that ofO′

p, Op

andO (Theorem 11).
We first show the following observation (extended from [9, 13]) that allows us to focus on

DSDR schedules that consist of no idle time.

Observation 4. The scheduleA consists of a single block: it possibly starts with idle time after
which all jobs are executed contiguously.

Proof. Consider a job instanceJ and letO be the optimal schedule. Suppose thatA contains
some idle time. The jobs scheduled before this idle intervaldo not influence the scheduling
decisions for the jobs scheduled after this idle interval, and vice versa. Let us split the instance
into two independent smaller instancesJ1 andJ2. Denote the cost of the two instances byA
(O resp.) asA1 andA2 (O1 andO2 resp.). Note thatA = A1 +A2. If we restrictO to the jobs
in J1 (J2 resp.), we get a feasible schedule forJ1 (J2 resp.). Therefore,O1 +O2 ≤ O. Then
we haveA

O
≤ A1+A2

O1+O2
≤ max{A1

O1
, A2

O2
}. Therefore, the competitive ratio ofA on the smaller

instances implies the competitive ratio on the original instance.

5Further ties are broken by taking the one with smaller job ID.
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4.1 Modified scheduleA′ and job setJ ′

Consider any job setJ . From now on, we number the jobs inJ asJ1, J2, · · · , Jn according to
the order that DSDR schedules them, i.e.,sj(A) ≤ sj+1(A) for 1 ≤ j < n. By Observation 4,
there is no idle time inA and so we have the following property.

Property 5. For 1 ≤ j < n, sj+1(A) = cj(A) = sj(A)(1 + bj).

We first define a modified scheduleA′ as follows. To simplify discussion, we define a
dummy jobJ0 with deteriorating rateb0 such thatt0(1 + b0) = s1(A). This job is not to be
scheduled although we defines0(A) = t0(1 + b0) = s1(A).

We partition the scheduleA into subblocksV1, V2, · · · , Vk, such that each subblock is a
maximal contiguous sequence of jobs ordered from smallest to largest deteriorating rate, i.e.,
the last job of a subblock (except the last subblock) has larger deteriorating rate than the first
job in the next subblock. We also define a dummy subblockV0 which containsJ0. This means
that in every subblock, jobs are ordered according to the SDRrule. We denote byv(i) the index
of the last job in subblockVi and we setv(0) = 0. Formally,v(i) is defined asv(i) = min{j >
v(i− 1) | bj > bj+1}. For the last subblock,v(k) is defined asn. We further definem(i) to
be the largest index of the job having the largest deteriorating rate in the firsti subblocks, i.e.,
bm(i) = max0≤j≤v(i) bj or bm(i) = max0≤j≤i bv(j).

We now define apseudo-scheduleA′ based on scheduleA. The order of the start time of
the jobs inA′ is the same as inA, yet forJj in subblockVi, the start time is moved forward to

sj(A)

1+bm(i−1)
. That is,

sj(A
′) =

sj(A)

1 + bm(i−1)

and cj(A
′) =

cj(A)

1 + bm(i−1)

. (1)

Note thatA′ is not a genuine schedule forJ since a job may start before its release time and
the execution of jobs may overlap with each other. InA′, Property 5 holds for jobs in the
same subblock inA′ because the denominator in Equation (1) is the same for jobs in the same
subblock. Furthermore, there is no idle time in the scheduleA′.

Property 5a. Consider subblockVi with 1 ≤ i ≤ k. For anyv(i− 1) + 1 ≤ j < v(i), we
havesj+1(A

′) = cj(A
′) = sj(A

′)(1 + bj). Furthermore,sv(i−1)+1(A
′) ≤ cv(i−1)(A

′) and
sv(i−1)+1(A

′) ≤ sv(i−1)(A).

We then constructJ ′ based on the instanceJ and the pseudo-scheduleA′ for J . For each
job Jj, we define a corresponding jobJ ′

j with the same deteriorating rateb′j but the release time
r′j may be moved forward. Precisely,

b′j = bj , r′j = min{rj, sj(A
′)} and J ′ = {J ′

1, J
′
2, · · · , J

′
n} .

We denote byOp andO′
p the optimal preemptive algorithm forJ andJ ′, respectively. It is

easy to observe the following lemma.

Lemma 6. Consider any1 ≤ j ≤ n. (i)
∑

cαj (O
′
p) ≤

∑

cαj (Op). (ii)
∑

cαj (Op) ≤
∑

cαj (O).
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Proof. (i) Since the release time of a job inJ ′ is not later than that of the corresponding
job in J , any valid (preemptive) schedule forJ is also a valid (preemptive) schedule forJ ′.
Therefore, the total general completion time of any preemptive schedule forJ (includingOp)
is at least that ofO′

p for J ′, i.e.,
∑

cαj (O
′
p) ≤

∑

cαj (Op).
(ii) This is due to the fact that an optimal non-preemptive schedule is also a valid preemptive

schedule and thus
∑

cαj (Op) ≤
∑

cαj (O).

4.2 Analysis

In this section, we mainly analyze the total general completion time ofA′ andO′
p. Based on

this, we can then bound the total general completion time ofA in terms ofO. The main result
is that the start time and completion time of a jobJj in A′ is at most those ofJ ′

j in O′
p. We

first observe that to bound the completion time inO′
p, it suffices to bound the start time in

O′
p. For any1 ≤ j ≤ n, cj(A′) = sj(A

′)(1 + bj) andcj(O′
p) ≥ sj(O

′
p)(1 + bj). Therefore,

sj(A
′) ≤ sj(O

′
p) implies thatcj(A′) ≤ cj(O

′
p).

Observation 7. For any1 ≤ j ≤ n, if sj(A′) ≤ sj(O
′
p), thencj(A′) ≤ cj(O

′
p).

It remains to show that for any jobJj, sj(A′) ≤ sj(O
′
p). Roughly speaking, for any job

Jj, we are going to find a set of sufficiently many jobs such that these jobs have higher priority
thanJj according toO′

p, are released after a certain timet and cannot be processed earlier than
t, hence, implying a lower bound on the start time ofJj. More precisely, we show that it is
possible to find a sequence of consecutive subblocksVh∗+1, · · · , Vh such that all the jobs in
these blocks have to be processed inO′

p at or aftersv(h∗)+1(A
′) and that all these jobs have

higher priority thanJj according toO′
p. ThenJj can only start inO′

p after all these jobs are

completed, which is at leastsv(h∗)+1(A
′)
∏j−1

i=v(h∗)+1(1 + bi). We can then show that the start
time property is satisfied byJj. We formalize this by defining the notion “bounding subblock”
of a job. Consider a jobJj in subblockVh, for 1 ≤ h ≤ k. We say that subblockVh∗ is a
bounding subblockof Jj, for some0 ≤ h∗ < h, if the following properties hold for all jobsJi
from subblockVh∗+1 until Jj, i.e., for allv(h∗) + 1 ≤ i ≤ j:

1. r′i ≥ sv(h∗)+1(A
′); and

2. EITHERbi < bj OR bi = bj andr′i ≤ r′j.

Note that the two properties involve the release time ofJ ′
i andJ ′

j in J ′, not the original release
time inJ . The second property implies that ifJ ′

j andJ ′
i are considered byO′

p at some time,J ′
j

would not preemptJ ′
i .

6

We first show in Lemma 8 that if there exists a bounding subblock for Jj, thensj(A′) ≤
sj(O

′
p). Then we show in Lemma 9 that we can find a bounding subblock foreach jobJj.

Lemma 8. If there exists a bounding subblock for the jobJj, thensj(A′) ≤ sj(O
′
p).

Proof. SupposeJj is in subblockVh andVh∗ is a bounding subblock ofJj, where1 ≤ h ≤ k
and0 ≤ h∗ < h. By Property 5, for anyJi with v(h∗) + 1 ≤ i ≤ j, we havesi(A) =
sv(h∗)+1(A)

∏i−1
ℓ=v(h∗)+1(1 + bℓ). Sincem(·) is increasing, we havesi(A′), and hencer′i, is at

6O′

p may still start processingJ ′

j beforeJ ′

i if bi < bj but r′i > r′j .
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mostsv(h∗)+1(A
′)
∏i−1

ℓ=v(h∗)+1(1 + bℓ). In other words,J ′
i is available for process at or before

sv(h∗)+1(A
′)
∏i−1

ℓ=v(h∗)+1(1 + bℓ).
By the first property of bounding subblock, all jobsJ ′

v(h∗)+1, · · · , J
′
j must be processed in

O′
p at or aftersv(h∗)+1(A

′). We claim thatO′
p starts processingJ ′

i beforeJ ′
j for all v(h∗) + 1 ≤

i < j. By the second property of bounding subblock,J ′
j has a lower priority thanJ ′

i according
toO′

p and would not preemptJ ′
i . The claim then impliessj(O′

p) ≥ sv(h∗)+1(A
′)
∏j−1

i=v(h∗)+1(1+

bi) ≥ sj(A
′); the latter inequality is due to Property 5a. Then the lemma follows.

We now proceed to proving the claim. To simplify the discussion, we lett1 = sv(h∗)+1(A
′),

t2 = sv(h∗)+1(A
′)
∏j−1

i=v(h∗)+1(1 + bi), andJ ′
j = {J ′

v(h∗)+1, · · · , J
′
j−1}. Note thatJ ′

j does not
containJ ′

j. Consider any timet wheret1 ≤ t ≤ t2. We define the notiondensityat t to be

den(t) =
t1
t





∏

x:r′x≤t, J ′

x∈J
′

j

(1 + bx)



 .

Intuitively, den(t) indicates whether there is any job inJ ′
j that are available for process att in

any preemptive schedule. By Lemma 1, in any preemptive schedule, t1
∏

x:r′x≤t, J ′

x∈J
′

j
(1+bx) is

the completion time if we run all these jobs contiguously from t1. If this value is larger thant,
it means that by the timet, we still have jobs available to process. In other words, at time t, if
den(t) > 1, no matter how one schedule these jobs, there are at least some jobs still available
to be processed and henceO′

p would not startJ ′
j because of its lower priority.

We now prove that at any timet ∈ [t1, t2), den(t) > 1. As we have shown earlier, for any
J ′
i ∈ J ′

j , r
′
i ≤ t1

∏i−1
ℓ=v(h∗)+1(1 + bℓ). For i = v(h∗) + 1, this means that for anyt ∈ [t1, t1(1 +

bv(h∗)+1)), t1
∏

x:r′x≤t, J ′

x∈J
′

j
(1 + bx) ≥ t1(1 + bv(h∗)+1) > t, and hence den(t) > 1. In general,

for any t ∈ [t1
∏i−1

ℓ=v(h∗)+1(1 + bℓ), t1
∏i

ℓ=v(h∗)+1(1 + bℓ)), we have
∏

x:r′x≤t, J ′

x∈J
′

j
(1 + bx) ≥

t1
∏i

ℓ=v(h∗)+1(1+ bℓ) > t, implying den(t) > 1. Therefore, for any timet ∈ [t1, t2), den(t) > 1
and the claim follows.

Lemma 9. For any1 ≤ j ≤ n, we can find a bounding subblock forJj.

Proof. SupposeJj is in subblockVh. We consider two cases.

Case 1:bj ≥ bℓ for all 1 ≤ ℓ ≤ j. In this case, we seth∗ = 0 and hence,sv(h∗)+1(A
′) = t0

and r′i ≥ t0 for all i. The first property of bounding subblock thus holds. For the second
property, we only need to consider whenbi = bj andi < j. Since DSDR schedulesJi before
Jj, we haveri ≤ rj. Furthermore, by Property 5a,sj(A) ≥ si(A)(1 + bi) and hencesj(A′) ≥
si(A)(1+ bi)/(1+ bm(h−1)) ≥ si(A) ≥ si(A

′). The second inequality is due to the fact thatbj,
and hencebi, is the largest deteriorating rate so far. Therefore,r′j ≥ r′i.

Case 2: bj < bℓ for some1 ≤ ℓ ≤ j. In this case, there is at least a subblockVh∗ with
1 ≤ h∗ ≤ h− 1 such thatbv(h∗) > bj. We assumeh∗ is the largest such number, and leti be an
integer such thatv(h∗) < i ≤ j. In other words,bv(h∗) > bi. Furthermore,bj ≥ bi, otherwise it
violates the definition ofh∗ being the largest number withbv(h∗) > bj.

Consider the first property of bounding subblock. SinceA schedulesJv(h∗) beforeJi, we
haveri > sv(h∗)(A). Note thatsv(h∗)+1(A

′) = sv(h∗)(A)(1 + bv(h∗))/(1 + bm(h∗)) ≤ sv(h∗)(A)
becausebv(h∗) ≤ bm(h∗). Therefore, we haveri > sv(h∗)+1(A

′). Sincebv(h∗) > bi for all

8



v(h∗) < i ≤ j, m(x) = m(h∗) for all h∗ ≤ x < h. Then we havesi(A′) = si(A)
1+bm(h∗)

≥
sv(h∗)+1(A)

1+bm(h∗)
= sv(h∗)+1(A

′). As a result,r′i = min{ri, si(A
′)} ≥ sv(h∗)+1(A

′) ≥ r′v(h∗)+1. The
first property is satisfied.

For the second property, we have observed thatbi ≤ bj and thus we only need to consider
the case whenbi = bj and i < j. Since DSDR schedulesJi beforeJj, we haveri ≤ rj.
As observed in the proof of the first property, the start time of both J ′

i andJ ′
j in A′ is the

corresponding value inA divided by1 + bm(h∗). Therefore,si(A′) ≤ sj(A
′). Together with

ri ≤ rj, we haver′i ≤ r′j and the property holds.

With Lemmas 8 and 9 and Observation 7, we have the following corollary.

Corollary 10. For any1 ≤ j ≤ n, sj(A′) ≤ sj(O
′
p) andcj(A′) ≤ cj(O

′
p).

We can then prove the following theorem on the competitive ratio of DSDR.

Theorem 11. The online algorithmDSDR is (1 + bmax)
α-competitive.

Proof. By Observation 4, we only need to consider instances where theDSDR scheduleA has
a single block without idle time. We first claim thatb0 ≤ bmax. By the definition of DSDR,
the start time of the first jobJ1 in A is t0(1 + b1). The definition of the dummy job satisfies
t0(1 + b0) = s1(A) = t0(1 + b1), therefore,b0 = b1 ≤ bmax.

We then relate
∑

cαj (A) and
∑

cαj (O). Consider any jobJj in subblockVh. By definition,
cj(A) = cj(A

′)(1 + bm(h−1)) ≤ cj(A
′)(1 + bmax) ≤ cj(O

′
p)(1 + bmax). The last inequality is

due to Corollary 10. Then by Lemma 6, we have
∑

1≤j≤n

cαj (A) ≤ (1 + bmax)
α
∑

1≤j≤n

cαj (O
′
p) ≤ (1 + bmax)

α
∑

1≤j≤n

cαj (O) .

By Theorems 3 and 11, we conclude with the following corollary.

Corollary 12. AlgorithmDSDRachieves the best-possible competitive ratio of(1 + bmax)
α.

5 Summary and future work

In this paper, we study online single machine scheduling of jobs with simple linear deteriorating
rate and arbitrary release times. The objective is to minimize the total general completion
time. We show that the algorithm DSDR is an optimal online algorithm with competitive ratio
(1 + bmax)

α.
A future direction is to consider more general deterioration like pj = aj + bjsj, non-linear

deterioration, or other time dependent functions [7], e.g., decrease in processing time as start
time increase captures the learning effect. A related objective function is weighted completion
time for which jobs with fixed processing time have been studied in [2], showing that the online
algorithm DSWPT (Delayed Shortest Weighted Processing Time) is 2-competitive (the best
possible). For jobs with simple linear deteriorating rates, the offline setting has been studied
in [16]. Extension from [2,16] to the online setting for deteriorating jobs would be of interest.

9



We study scheduling on a single machine. It is desirable to extend the study to multiple
machines. Furthermore, online makespan scheduling of deteriorating jobs has been consid-
ered [5,24]. It is interesting to consider other objective functions about waiting time, tardiness,
lateness, deadline feasibility, throughput, etc.
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