Online Scheduling of Simple Linear Deteriorating Jobs
to Minimize Total General Completion Time

Sheng Yu T Prudence W. H. Worig

School of Business Administration, Zhongnan University obEomics and Law,
Wuhan, China.
yusheng@znufe.edu.cn
‘Department of Computer Science, University of Liverpooldrpool, UK.
pwong@liverpool.ac.uk

November 18, 2012

Abstract

Traditional scheduling assumes that the processing time of a job is fixethéeretare
numerous situations that the processing time increases (deteriorates)starthiene in-
creases. In particular, lots of work has been devoted to jobs with simple degsioration.

The processing timg; of job J; is a simple linear function of its start timg, precisely,

pj = bjs;j, whereb; is the deteriorating rate. In this paper, we study the problem of online
non-preemptive scheduling of jobs with arbitrary release times and simple te&srio-
rating rates on a single machine to minimize the total general completion time. Watprese
an algorithm DSDR (Delayed Smallest Deteriorating Rate) and prove thdtigvas the
best-possible competitive rat{@ + bax)® for all deterministic online algorithms, where

« is the general index of completion time and> 0.

Keywords: Online scheduling, competitive analysis, simple linear deterioration, total gen-
eral completion time, single machine, release time

*The work is partly done while Sheng Yu was visiting Universif Liverpool.

1 Introduction

Scheduling of deteriorating jobs. Scheduling of jobs (with fixed processing time) is a cladsica
problem [20]. Yet, there are numerous situations that tloegssing time increases (deterio-
rates) as the start time increases. For example, to schadufgenance or cleaning, a delay
often requires additional effort to accomplish the taskhedexamples are found in fire fight-
ing, steel production and financial management [12, 16]e8aling of deteriorating jobs was
first introduced by Browne and Yechiali [4], and Gupta and @Up{ independently. Both
considered scheduling a set of deteriorating jobs on aeimgichine to minimize makespan.
In [4], the processing time of a job is a monotone linear fiorcof its starting time while non-
linear functions are considered in [8]. Since then, the j@mbhas attracted a lot of attention,
and has been studied in other time dependent models witbugaaobjective functions. Com-
prehensive surveys can be found in [1, 6, 7]. Following mésthe existing work, we focus on
non-preemptive schedulirfyg.

Simple linear deterioration. We focus on jobs with simple linear deterioration, which has
been studied in more detail due to its simplicity while caipi the essence of real life situa-
tions. A job satisfiesinear deteriorationif its processing time is an increasing linear function
of its start time, i.e.p; = a; + b;s;, wherea; > 0 is the “normal” processing time,; > 0 is
the deteriorating rate, ang is the start time. In other words, the processing time diffeith
different schedules. Linear deterioration is further saidesimpleif p; = b;s;. In this case, in
order to avoid trivial solution, it is natural to assume ttie start time of the first job i > 0
since a start time of zero means that the processing time jobal is zero. Mosheiov [15, 16]
justified simple linear deterioration as follows: as the hemof jobs increases, the start time
of jobs gets larger, and the actual processing time of ielyimany jobs is no longer affected
by the normal processing time but only by the deterioratatg.r

Release times and online algorithms.The study of scheduling deteriorating jobs has been
focused on the setting where all jobs are available for gsiog at the very beginning. In prac-
tice, jobs may be released at arbitrary times. We may alse ttemake decisions based on the
jobs currently presented without information of futuregol@he performance of online algo-
rithms is typically measured by competitive analysis [3h @nline algorithm is:-competitive
if for any input instance, its cost is no more thahmes that of the optimal offline algorithm.
Online algorithms for jobs with release times have beenstuektensively for fixed processing
time [21]. Yet, not much is known for deteriorating jobs wittlease times, let alone online
algorithms. Recently, there is some work on online algorgtiar linear deteriorating jobs to
minimize makespan [5, 24].

Total general completion time. One of the typical objective functions for scheduling prob-
lems is measuring the completion time. Letdenote the completion time of a jof in a
certain schedule. The total completion time of scheduliabs is defined a3, ;. ¢;. Fur-
thermore, the general completion time [10, 13228&empts to characterize the scenario that
dissatisfaction increases with delay in processing in anmeaaf a power function. Motivations
of this objective function have been discussed in [10]. Gbaeral completion timef J; is
defined ag, wherea > (is a constant. The objective of the problem is to minimizetttel

10offline preemptive scheduling of deteriorating jobs hasoemnsidered on a single machine [18].
2For simplicity, we follow the convention in [13] and call thbbjective general completion time.

general completion time, i.eElSjgn . When the processing time is independent of the start
time (fixed processing time) and jobs have arbitrary rel¢éiases, it has been shown in [9] that
for the problem of minimizing total completion time, the atghm DSPT (Delayed Shortest
Processing Time) is an optimal online algorithm with contpet ratio 2. OtherR-competitive
algorithms have also been proposed [14, 19]. Liu et al. [x8reded the work by Hoogeveen
and Vestjens [9] to total general completion time and shoavémver bound oR®. They also
claimed that DSPT i8*-competitive, which is proved in [25].

For simple linear deterioration, Mosheiov [16] has consdethe case when all jobs are
available at the beginning and proved that to minimize totahpletion time, SDR (Smallest
Deteriorating Rate) is an optimal algorithm. Note that SDRri®nline-list algorithm as wefl.

It remains open to obtain a competitive online algorithm wjus have arbitrary release times
and the objective is total completion time or total genecathpletion time.

Our contributions. In this paper, we consider non-preemptive scheduling af yaith simple
linear deterioration and arbitrary release times on a singlchine to minimize the total general
completion time. This extends current work in two direciofrom all jobs being available at
the very beginning to jobs having arbitrary release timad;feom minimizing total completion
time to total general completion time. We first prove that etedministic online algorithm can
be better thar{l + b,,.,)*-competitive, wheré,,., is the maximum deteriorating rate of all
jobs. We then present an algorithm DSDR (Delayed Smallestrideating Rate) and prove
that it is (1 + bnax)“-competitive, matching the lower bound.

Technically speaking, we adopt the approach in [9] for fixeacpssing time to compare
our online schedule with an optimal offline preemptive scied Preemption of jobs with
simple linear deterioration has been formalized in [18]e Tijor challenge to adopt the fixed
processing time approach is that the preemption of simp&al deteriorating jobs makes the
comparison more difficult and requires more careful acaagniThe rough idea is that for any
job J, we find a set of jobs that have been processed by DSDR béfared show that any
algorithm including the optimal offline preemptive algbnt has to process these jobs before
J. Thus the start time and hence the completion timg &fy DSDR is bounded by a factor
times that by the optimal algorithm.

Remark. Scheduling of linear deteriorating jobs has also been stush the multiple ma-
chines setting [5,11,17,22,24]. The objective of all thesek is to minimize makespan.
Organization of the paper. In Section 2, we formally define the problem and give some

notations necessary for discussion. We give the lower apénipounds in Sections 3 and 4,
respectively. We then conclude in Section 5.

2 Preliminaries

We considemon-preemptivgob scheduling on a single machine. Once a job has been pro-
cessed, it cannot be interrupted by any other job until itnsfied. The input is a st of n
jobs. A job J; is released at time; with processing timg; which is a function on the start

3A proof is given in [13] for DSPT bein@~-competitive but a flaw in the arguments has been pointed out
in [25], which also gives a proof on the competitive ratio.

“4In the online-list model, jobs are available to be procesgdie beginning but are presented one by one. Each
job is to be scheduled before the next job is presented.

time s;. The job has to be processed contiguouslygfotime units. In particular, we consider
simple linear deteriorationn which jobs are characterized by a deteriorating bate 0 such
thatp; = b;s;. Denote byb,,.. the maximum ob;. We assume that the start time of the first
jobisty > 0 since a start time of zero means that the processing timé jobalis zero.

An online algorithmhas to determine at any time which job to run without futuferima-
tion about jobs that have not been released yet. For anyitdgoi, we useA to denote its
schedule. In a schedulé, we denote the start time and completion time/pby s,(.A) and
c;(A), respectively. When the context is clear, we simply sisandc;. The total completion
time is defined a3 _; ¢;. Furthermore, thgeneral completion timef J; is defined as{, where
a > 0 is a constant. The objective of the problem is to minimizetttal general completion
time, i.e.,Zj . The performance of an online algorithm is typically measusy competitive
analysis [3]. An online algorithm is said to lsecompetitive if for all input job sets, its total
general completion time is at mastimes that of the optimal offline algorithm.

It has been showed that if all jobs are available at the vegynioéng, the optimal algorithm
is to schedule according to the rule SDR (Smallest Detdimgy&ate) [16]. Yet we observe that
when jobs have arbitrary release times, one can first rekegd®e./ and them: jobs with very
small deteriorating rate arrive just moment affethis would make SDR no longer competitive
and thus we need a different algorithm.

Optimal offline preemptive algorithm. Following a similar framework as in [9], the analysis
of our online algorithm compares our schedule with that obaiimal offline preemptive algo-
rithm. We describe here the notion of preemption with resimibe presence of simple linear
deteriorating jobs. We adopt the same idea as in [18]. Supagsb.J; starts processing at
and is preempted at Note that the processing time @f when it starts at equals tos - b; and
its completion time is expected to best + b;) if it is not preempted. Whet; is preempted
att, we define theemaining deteriorating raté’ as the value such that the job would be com-
pleted ats(1 + b;) if it is resumed at, i.e.,t(1 + b.) = s(1 + b;). If J; is to be resumed at
so and preempted again latertaf the remaining deteriorating rate is then defined in a simila
way based oy, t, andb’. Note that the definition here is equivalent to that in [18haligh
the discussion there uses different formula. The definigads to the following lemma.

Lemma 1 ([18]). Suppose thait,,,ts,]| for i = 1,--- ,q are ¢ disjoint time intervals, where
0 <t, <ty <ts,, . Thenthereis a schedule in whidhis scheduled in these time intervals

it and only ifr; < ¢, and[J7, {* = 1 +b,.

An optimal preemptive algorithm has been presented in [@8]ch we callSmallest Re-
maining Deteriorating RatéSRDR). For the sake of completeness, we describe SRDR here
and state its optimality in Lemma 2. Note that SRDR is indeedrdime algorithm.

SRDR (Smallest Remaining Deteriorating Rate): At any time, schedule the job with the
smallest remaining deteriorating rate, in other words clmeent job is preempted when a job
with a smaller deteriorating rate is released.

Lemma 2 ([18]). Consider minimizing total generalized completion time disjovith simple
linear deteriorating rate and arbitrary release times. Talgorithm SRDRreturns an optimal
preemptive schedule.

3 General lower bound

In this section, we show a lower bound(af+ b,,,.)* on the competitive ratio of any determin-
istic online algorithm.

Theorem 3. Consider minimizing total generalized completion time b&jwith simple linear
deteriorating rate and arbitrary release times. No deteristic online algorithm is better than
(1 + bimax)“-competitive.

Proof. Let A be any online algorithm an€@ be an optimal offline algorithm. The adversary
first releases at timg a job J; with deteriorating raté,. Supposed schedules/; at timet.
We consider two cases depending on the value of

Case 1:t > to(1 + by). In this case, the adversary does not release more jobs. The
completion timer; (A) = ¢(1 + by) andc; (O) = to(1 + by). Therefore,
) e
~ a/M 1« 2 (1+bl)a: (1+bmaX>a .
2.¢5(0)
Case 2:t < to(1 + b1). In this case, at + 3 for some small constarnt > 0, the adversary
releases. — 1 jobs J,, - - -, J, with deteriorating rate. In this case, the completion time df
equalst(1 + b1)(1 + €)/~. Therefore,

S EA) = (L b)” S (L)h = (1)

1<j<n

(146 —1
(1+e—1 "~

On the other hand, the optimal offline algoritithschedules/; last and the completion time
cj(0)=(t+B)(1+e)y ' for2 <j<nandc(O)=(t+ B)(1+¢)" (1 +b). Therefore,

Y o) = (t+/8)a<z(1—|—e)(j_1)°‘+(1+e)(”_1)°‘(1+bl)a)

2<j<n

< (@+p)° ((flﬁ%ﬂlﬂﬂ“)a(ubl)“)
In other words, we have
> ¢ (A) of t " (1+e)om—1
Sero) = U <t+6) (Lo + (1+e)* = 1)(1+e)m=Da(1+by)

If we choose an arbitrarily large and a corresponding smallthe last fraction approachés
We can further sef to be arbitrarily small and hav(gj—ﬁ)a arbitrarily close to 1. Therefore,
> ¢

% approachesl + by)* = (1 + byax)®. The theorem then follows. O

4 Optimal online algorithm DSDR

DSDR. As mentioned before, when all jobs are available at the Im&ggy) the optimal algo-
rithm is SDR, yet SDR is not competitive when jobs have aabjtrelease time. We adapt the
algorithm DSPT (Delayed Shortest Processing Time) in [9] derive our algorithm DSDR
(Delayed Smallest Deteriorating Rate). Consider an inpus@ily. DSDR runs as follows.

4

Step 1. Consider time > t, when the machine is idle. If an unscheduled job is available a
that time, letJ; be the one with the smallest deteriorating rate. Ties arkdorby taking
the one with the earliest release time

Step 2: Ift > t,(1 + b;), then scheduld; at¢; otherwise, wait until time, (1 + b;) or until a
new job arrives, whichever happens first.

Step 3: If all jobs are scheduled, stop; otherwise, go to $tep

Without loss of generality, we assume that DSDR and SRDR hiieakn the same way.
To illustrate DSDR, we present the following example.

Example 1. Supposé, = 1. Consider two jobs; and.J, wherer; = 1,b; = 2,1, = 2,by = 1.
At time1l, DSDRdoes not proces$; immediately sincéy(1 + b;) = 3 > t,. It would process
Jy at time2 sinceb, < by andty(1 + by) = 2. The processing time ok is 2 and it completes
at time4, whenDSDR starts processing; for 8 time units until timel 2.

Framework of analysis. Our analysis follows a similar framework as that in [9]. Calesi
a job set7. Let. A andO be the schedules by DSDR and the optimal algorithm, resgbgti
First of all, we observe that it suffices to consider instangach that DSDR schedules jobs
contiguously without idle time. A similar observation waaae for jobs with fixed processing
time when the objective is the sum of total completion timed@8d the sum of total general
completion time [13]. We observe that this observation igsplio deteriorating jobs as well
(Observation 4). We include the proof here for the sake ofgletaness.

We then define a pseudo-scheduléfrom 4 and construct a new job set’ from A'.
Let Op and O, be the optimal preemptive algorithm fgf and 7', respectively. Note that
the subscript indicates we refer to the preemptive algaritht is relatively easy to relate the
total general completion time @, O, and O, (Lemma 6). The more tricky analysis is to
relate the general completion time.df and(, and it is done via comparing the start time and
completion time of jobs id” andO;, (Corollary 10). Finally, from the definition ofl’ from A,
we can bound the total general completion timeddby that of.4" and hence by that @?;, O,
andO (Theorem 11).

We first show the following observation (extended from [9)1Bat allows us to focus on
DSDR schedules that consist of no idle time.

Observation 4. The schedulel consists of a single block: it possibly starts with idle tinfiea
which all jobs are executed contiguously.

Proof. Consider a job instancg and letO be the optimal schedule. Suppose tHatontains
some idle time. The jobs scheduled before this idle intedieahot influence the scheduling
decisions for the jobs scheduled after this idle intervad] wice versa. Let us split the instance
into two independent smaller instanc&sand . 7;. Denote the cost of the two instances Ay
(O resp.) as4; and A, (O; andOs resp.). Note thatl = A; + A,. If we restrictO to the jobs
in J1 (J> resp.), we get a feasible schedule far(.7; resp.). Therefore),; + O, < O. Then
we have3 < 4tbd2 < max{AL 22} Therefore, the competitive ratio of on the smaller

. . 01+0, 017 0277, .. .
instances implies the competitive ratio on the originalanse. n

SFurther ties are broken by taking the one with smaller job ID.

5

4.1 Modified scheduled’ and job set. 7’

Consider any job sef. From now on, we number the jobsinas.J,, Js, - - - , J, according to
the order that DSDR schedules them, ise(,A) < s,+1(A) for 1 < j < n. By Observation 4,
there is no idle time ind and so we have the following property.

Property 5. For1 < j < n, s;41(A) = ¢;(A) = s;(A) (1 + b;).

We first define a modified schedul4 as follows. To simplify discussion, we define a
dummy job.J, with deteriorating raté, such thatt,(1 + by) = s1(.A). This job is not to be
scheduled although we defing(.A) = to(1 + by) = s1(A).

We partition the schedulgl into subblocksly, V4, - - | Vi, such that each subblock is a
maximal contiguous sequence of jobs ordered from smaldelstrgest deteriorating rate, i.e.,
the last job of a subblock (except the last subblock) hastaigteriorating rate than the first
job in the next subblock. We also define a dummy subbldcWhich contains/,. This means
that in every subblock, jobs are ordered according to the BIER We denote by(7) the index
of the last job in subblock; and we set(0) = 0. Formally,v(¢) is defined a®(i) = min{j >
v(i—1) | b; > bj+1}. For the last subblock;(k) is defined as.. We further definen(i) to
be the largest index of the job having the largest detefiggatte in the first subblocks, i.e.,
bim(i) = MaXo<j<o(i) bj OF by(i) = MaXo<j<i by (j)-

We now define @pseudo-scheduld’ based on scheduld. The order of the start time of
the jobs inA’ is the same as inl, yet for .J; in subblockV;, the start time is moved forward to

s;(A) :
m That is,

55 (A/) o S (A)

_ 2\ AN CJ(A)
T b and ¢;(A)

= 2 1
L+ bii-1))

Note thatA’ is not a genuine schedule fgf since a job may start before its release time and
the execution of jobs may overlap with each other. A Property 5 holds for jobs in the
same subblock ipd’ because the denominator in Equation (1) is the same for jotheeisame
subblock. Furthermore, there is no idle time in the schediile

Property 5a. Consider subbloclk/ with 1 < i < k. Foranyov(i —1) +1 < j < v(i), we
haves; 1 (A) = ¢;(A") = s;(A")(1 + b;). Furthermore,s,;_1y4+1(A") < cu-1)(A’) and
5v(i—l)+l(-’4/) < Sv(i—l)(A)-

We then construcl/’ based on the instan¢g and the pseudo-schedulg for 7. For each

job J;, we define a corresponding jok with the same deteriorating raiebut the release time
r; may be moved forward. Precisely,

Vy=b;, ry=min{r;,s;(4A)} and T ={J, S5, T} .

We denote byO, and O, the optimal preemptive algorithm fQf andJ’, respectively. It is
easy to observe the following lemma.

Lemma 6. Consider anyl < j < n. (i) >_ ¢ (Op) < > cf(Op). (ii) Y- c5(Op) < > c5(0).

Proof. (i) Since the release time of a job i’ is not later than that of the corresponding
job in 7, any valid (preemptive) schedule fgf is also a valid (preemptive) schedule {@r.
Therefore, the total general completion time of any prearagichedule fot7 (including Op)
is at least that 0, for 7', i.e., > ¢ (Op) < > c5(Op).

(i) Thisis due to the fact that an optimal non-preemptivieesitule is also a valid preemptive
schedule and thus ¢ (Op) < > c3(O). O

4.2 Analysis

In this section, we mainly analyze the total general conmutetime of A" andO,,. Based on
this, we can then bound the total general completion timd of terms ofO. The main result
is that the start time and completion time of a j@pin A’ is at most those of; in O;. We
first observe that to bound the completion timedk, it suffices to bound the start time in
Op- Foranyl < j < n, ¢;(A) = s;(A)(1 + b;) ande;(Op) > s;(Op)(1 + b;). Therefore,
sj(A’) < 5;(0p) implies thatc;(A') < ¢;(Op).

Observation 7. For any1 < j < n, if 5;(A") < s;(0y), thenc;(A’) < ¢;(Op).

It remains to show that for any jol;, s;(A’) < s;(Op). Roughly speaking, for any job
J;, we are going to find a set of sufficiently many jobs such thesétjobs have higher priority
than.J; according ta0,, are released after a certain tithend cannot be processed earlier than
t, hence, implying a lower bound on the start timeJof More precisely, we show that it is
possible to find a sequence of consecutive subbldgks,, - - - ,V; such that all the jobs in
these blocks have to be processecﬂpat or afters,+)+1(A’) and that all these jobs have
higher priority thanJ; according toO,. ThenJ; can only start inO; after all these jobs are
completed, which is at least)1 (A") [T, -1, (1 + b:). We can then show that the start
time property is satisfied by;. We formalize this by defining the notion “bounding subbfbck
of a job. Consider a joly; in subblockV;, for1 < h < k. We say that subblock}- is a
bounding subblockf .J;, for some0 < h* < h, if the following properties hold for all jobs;
from subblockV,- 1 until J;, i.e., forallv(h*) +1 <i < j:

1. ’/’; > Sy(h*)+1(A,); and
2. EITHERD, < b; ORb; = b; andr’ < /.

Note that the two properties involve the release timg/aind./} in J', not the original release
time in J. The second property implies thatif and.J; are considered b§; at some time,/;
would not preempy’.°

We first show in Lemma 8 that if there exists a bounding subdbfoc .J;, thens,;(A’) <
5j(Op). Then we show in Lemma 9 that we can find a bounding subblocidoh jobJ;.

Lemma 8. If there exists a bounding subblock for the jéj thens;(A’) < s;(O,).

Proof. SupposeJ; is in subblockl;, andV},- is a bounding subblock of;, wherel < h < k
and0 < h* < h. By Property 5, for any/; with v(h*) + 1 < i < j, we haves;(A) =
Su(hty+1(A) z;i(h*)ﬂ(l + by). Sincem(-) is increasing, we have;(A’), and hence’, is at

6(9;, may still start processing; before.J; if b; < b; butr; > 7.

7

MOSt s, (+)+1(A) Z;i(h*)ﬂ(l + b¢). In other words,J; is available for process at or before

Su(ne)+1(A’) Z;qu(h*)ﬂ(l + be).

By the first property of bounding subblock, all jold3,. ., - - ,J; must be processed in
Oy at or afters,,-);1(A’). We claim thaiO;, starts processing; beforeJ; for all v(h*) + 1 <
i < j. By the second property of bounding subblogkhas a lower priority than/; according
to O} and would not preemp/. The claim then implies; (O}) > s,)41 (A) [T, oy (1
b;) > s;(A'); the latter inequality is due to Property 5a. Then the lemotiaws.

We now proceed to proving the claim. To simplify the discassive lett; = s, (,+)+1(A’),
ty = sune) 41 (A) T eysr (1 + b:), @nd T} = {J} 041, -+ 5 Jj_1}. Note thatJ; does not
containJ;. Consider any time wheret; < t < ty. We define the notiodensityatt to be

dert)="1 [T[] (1)

x:rh <t, J;EJJ(

Intuitively, der(t) indicates whether there is any job jfj that are available for processtan
any preemptive schedule. By Lemma 1, in any preemptive sétedi], ., ., c7(1+0;) IS
the completion time if we run all these jobs contiguouslyrirg. If this value is Ie]trger than,

it means that by the timg we still have jobs available to process. In other wordsinag t, if
dent) > 1, no matter how one schedule these jobs, there are at leastjebmstill available
to be processed and hen@ would not start/; because of its lower priority.

We now prove that at any timee [t;,t,), dent) > 1. As we have shown earlier, for any

Jie I <t [o(hey1 (14 be). Fori = v(h*) + 1, this means that for anye [t1,¢1(1 +
bu(hey+1))s t1] L. <, J,ej,(l +b;) > t1(1 4 byney41) > t, and hence den) > 1. In general,

for anyt € [t TTy=ygeysr (1 4 be), 1 [Ty a (1 + b2)), we have[[,,, -, segr(1+ba) >

21 ngv(h*)ﬂ(l +by) > t, implying der{t) > 1. Therefore, for any time € [t,,t>), den(t) > 1
and the claim follows. O

Lemma 9. Forany1 < j < n, we can find a bounding subblock fdy.

Proof. SupposeJ/; is in subblockV},. We consider two cases.

Case 1:b; > beforall 1 < £ < j. In this case, we sét* = 0 and hences,(,-)+1(A") = to
andr, > t, for all i. The first property of bounding subblock thus holds. For theosd
property, we only need to consider whgn= b; and: < j. Since DSDR scheduleg before
J;, we haver; < r;. Furthermore, by Property 58;(A) > s;(A)(1 + b;) and hence;(A") >
5i(A)(140;) /(1 + byyn—1)) = si(A) > s;(A’). The second inequality is due to the fact that
and hencé,, is the Iargest deteriorating rate so far. Therefofes r;.

Case 2:b; < b forsomel < £ < j. In this case, there is at least a subbldGk with
1 < h* < h—1suchthab,-) > b;. We assumé™ is the largest such number, andddte an
integer such that(h*) < i < j. In other wordsh,,+) > b;. Furthermore); > b;, otherwise it
violates the definition ok* being the largest number With -y > b;.

Consider the first property of bounding subblock. Sinﬁbechedulesfv(h*) before J;, we
haver; > s,x+)(A). Note thats,,+)+1(A") = Sypne) (A) (1 + byie)) /(1 + bnsy) < S (A)
becausé,(,y < byn+). Therefore, we have;, > s,p+)41(A’). Sincebyp-y > b; for all

v(h*) < i < j, m(z) = m(h*) for all h* < x < h. Then we havey;(A’) = 13(“‘(‘2*) >
% = Syhy+1(A'). As aresulty; = min{r;, s;(A)} > sypn41(A) = 1. 4 The

first property is satisfied.

For the second property, we have observed that b; and thus we only need to consider
the case whei; = b; and: < j. Since DSDR scheduleg before J;, we haver; < r;.
As observed in the proof of the first property, the start timéath J; and J; in A’ is the
corresponding value il divided by1 + b,,(,-). Therefore,s;(A’) < s;(A’). Together with
r; < r;, we haver]; < r} and the property holds. n

With Lemmas 8 and 9 and Observation 7, we have the followimglizwy.
Corollary 10. Forany1 < j <n, s;(A’) < s;(0p) andc;(A") < ¢;(Op).

We can then prove the following theorem on the competitive et DSDR.
Theorem 11. The online algorithnrDSDRIs (1 + by,)*-cOmpetitive.

Proof. By Observation 4, we only need to consider instances whel@8i2R scheduled has
a single block without idle time. We first claim thé < b,,... By the definition of DSDR,
the start time of the first job; in A is ty(1 + b;). The definition of the dummy job satisfies
to(1 4 bg) = s1(A) = to(1 + by), thereforepy = by < bpax-

We then relate _ c¢(A) and} ¢§(O). Consider any joly; in subblockV,. By definition,
ci(A) = i (A)(1 + bngn1)) < (AL + bmax) < ¢;(Op)(1 + bimax). The last inequality is
due to Corollary 10. Then by Lemma 6, we have

37 A < (1 b)Y (O0) < (1+buw)™ Y 4(O)

1<j<n 1<j<n 1<j<n

By Theorems 3 and 11, we conclude with the following corollary

Corollary 12. AlgorithmDSDRachieves the best-possible competitive rati¢lof b,)*.

5 Summary and future work

In this paper, we study online single machine schedulinglag wvith simple linear deteriorating
rate and arbitrary release times. The objective is to mienthe total general completion
time. We show that the algorithm DSDR is an optimal onlineoathm with competitive ratio
(1 4 bmax)®.

A future direction is to consider more general deterioratike p; = a; + b;s;, non-linear
deterioration, or other time dependent functions [7],,elgcrease in processing time as start
time increase captures the learning effect. A related dilgetunction is weighted completion
time for which jobs with fixed processing time have been stddh [2], showing that the online
algorithm DSWPT (Delayed Shortest Weighted Processing Jlime-competitive (the best
possible). For jobs with simple linear deteriorating rateg offline setting has been studied
in [16]. Extension from [2, 16] to the online setting for deteating jobs would be of interest.

9

We study scheduling on a single machine. It is desirable tenekthe study to multiple
machines. Furthermore, online makespan scheduling ofideggng jobs has been consid-
ered [5, 24]. Itis interesting to consider other objectuedtions about waiting time, tardiness,
lateness, deadline feasibility, throughput, etc.

6 Acknowledgments

This work is partially supported by NSF of China under Grant971123, 60736027 and
60921003.

References

[1] B. Alidaee and N. K. Womer. Scheduling with time dependagicessing times: Review
and extensionslournal of the Operational Research Socjé&§(7):711-720, 1999.

[2] E. J. Anderson and C. N. Potts. Online scheduling of a simghchine to minimize total
weighted completion time.Mathematics of Operation Resear®9(3):686—697, Aug.
2004.

[3] A. Borodin and R. El-Yaniv.Online Computation and Competitive AnalystzZambridge
University Press, Cambridge, 1998.

[4] S. Browne and U. Yechiali. Scheduling deteriorating joinsa single processofpera-
tions Researc8(3):495-498, 1990.

[5] M. B. Cheng and S. J. Sun. A heuristic MBLS algorithm for the tsemi-online parallel
machine scheduling problems with deterioration joldsurnal of Shanghai University
11(5):451-456, 2007.

[6] T. C. E. Cheng, Q. Ding, and B. M. T. Lin. A concise survey of edhling with time-
dependent processing time&uropean Journal of Operational Reseaydb2(1):1-13,
2004.

[7] S. Gawiejnowicz. Time-Dependent Schedulin§pringer-Verlag, Berlin, 2008.

[8] J. N. D. Gupta and S. K. Gupta. Single facility schedulimgh nonlinear processing
times. Computers and Industrial Engineering4(4):387-393, 1988.

[9] J. Hoogeveen and A. Vestjens. Optimal on-line algorgtor single-machine scheduling.
In W. Cunningham, S. McCormick, and M. Queyranne, editBreceedings of the Fifth
Conference on Integer Programming and Combinatorial Opttingn, volume 1084 of
Lecture Notes in Computer Scienpages 404—-414. Springer, 1996.

[10] A. Janiak, T. Krysiak, C. P. Pappis, and T. G. Voutsinas.scheduling problem with
job values given as a power function of their completion sm&uropean Journal of
Operational Researgii93(3):836-848, 2009.

10

[11] A. Kononov. Scheduling problems with linear increagprocessing times. In e. a. Zim-
mermann U, editoiQperations Research Proceedings 1996. Selected Papédre &yim-
posium on Operations Research (SOR, pages 208—-212, Berlin, 1997. Springer.

[12] A. S. Kunnathur and S. K. Gupta. Minimizing the makespdth late start penalties
added to processing times in a single facility schedulirapjam. European Journal of
Operational Research17(1):56-64, 1990.

[13] M. Liu, C. Chu, Y. Xu, and J. Huo. An optimal online algomthfor single machine
scheduling to minimize total general completion tim#urnal of Combinatorial Opti-
mization to appear. http://dx.doi.org/10.1007/s10878-010-9348

[14] X. Lu, R. A. Sitters, and L. Stougie. A class of online sdhkng algorithms to minimize
total completion timeOperations Research Lettei®1:232—-236, 2003.

[15] G. Mosheiov. V-shaped policies for scheduling deteriimg jobs. Operations Research
39:979-991, November 1991.

[16] G. Mosheiov. Scheduling jobs under simple linear detation. Computers and Opera-
tions Researc?21(6):653—659, 1994.

[17] G. Mosheiov. Multi-machine scheduling with linear daoration. INFOR: Information
Systems and Operational Resear8f(4):205-214, 1998.

[18] C.T.Ng, S. S.Li, T.C. E. Cheng, and J. J. Yuan. Preemptikedaling with simple linear
deterioration on a single machinEheoretical Computer Sciencé&l1(40-42):3578-3586,
2010.

[19] C. Phillips, C. Stein, and J. Wein. Minimizing average @ation time in the presence of
release datesviathematical Programming32:199-223, 1998.

[20] M. Pinedo. Scheduling: Theory, Algorithms, and SysteRsentice-Hall, Upper Saddle
River, 2002.

[21] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. .Ilhelung, editorHandbook of
Scheduling: Algorithms, Models, and Performance Anajysges 15.1-15.42. Chapman
and Hall, Boca Raton, 2004.

[22] C. R. Ren and L. Y. Kang. An approximation algorithm for pklamachine scheduling
with simple linear deteriorationlournal of Shanghai University.1(4):351-354, 2007.

[23] W. Townsend. The single machine problem with quadiaeicalty function of completion
times: A branch-and-bound solutiomanagement Scienc24(5):530-534, Jan. 1978.

[24] S. Yu, J.-T. Ojiaku, P. W. H. Wong, and Y. Xi. Online makas scheduling of linear
deteriorating jobs on parallel machines. Manuscript, 2011

[25] S. Yu and P. W. H. Wong. A note on “An optimal online alghm for single machine
scheduling to minimize total general completion timéiformation Processing Letters
112(1-2):55-58, 2012.

11

