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Abstract

Motivated by applications in optical networks and job scheduling, we consider
the interval coloring problem in a setting where an increasing cost is associated
with using a higher color index. The cost of a coloring at any point of the
line is the cost of the maximum color index used at that point, and the cost
of the overall coloring is the integral of the cost over all points on the line.
A coloring of minimum cost is called a minimum skyline coloring. We prove
that the problem of computing a minimum skyline coloring is NP-hard and
initiate the study of the online setting, where intervals arrive one by one. We
give an asymptocially optimal online algorithm for the case of linear color
costs and present further results for some variations and generalizations of
the problem. Furthermore, we consider the variant of the minimum skyline
coloring problem where the intervals are already partitioned into color classes
and we only need permute the colors so as to minimize the cost of the coloring.
We show that this problem variant is NP-hard and present a 2-approximation
algorithm for it.

Keywords: Skyline coloring of intervals, online algorithm, NP-hardness,
approximation algorithm.

1. Introduction

Graph coloring has been studied extensively in the literature [16]. In the
basic problem, given a graph we have to color its vertices such that no two
adjacent vertices are assigned the same color. The classical version of the
problem concerns the number of colors used. Many different variants of the
problem have been studied, e.g., coloring edges instead of vertices, focusing
on different graph classes, and concerning different objective functions [7, 11,
12, 15, 16, 19, 20, 23].

In this paper, we focus on coloring of intervals [14] in which the input is a
set of intervals on a line and two overlapping intervals cannot be assigned the
same color. This corresponds to a coloring of an interval graph in the classical
sense, however our cost measure is different, as follows. We are interested in
the setting where there is an increasing cost associated with using a higher
color index. Given a set of intervals (represented on a line) and a coloring,
the cost of the coloring at any point is the cost of the maximum color index
used at that point and the overall cost of the coloring is the integral of the
cost over all points on the line. Intuitively, the maximum color index used
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at each point forms a “skyline” and so the objective is to obtain a minimum
skyline coloring. A formal definition of skyline will be given in Section 2.

The problem arises in various applications. In communication networks
like optical networks in the line topology, a network needs to be equipped with
optical amplifier devices for transmitting data through the optical fiber. The
devices are increasingly more complicated when we need a higher wavelength
(cf. color), and hence require a higher cost to operate; and each type of amplifier
device is capable of amplifying all the wavelengths up to a certain maximum.
Therefore, the cost of operation depends on the maximum wavelength which
is reflected in the cost of the maximum color index defined in our problem.
See [2] for a more detailed discussion.

Another application is from job scheduling, where each job has a required
execution interval and has to be assigned to a machine. The machines are
in an ordered list and one must at any time hire a set of machines that is
a prefix of that ordered list. This means that if the machine of the largest
index that one currently uses is machine k, one must pay the rental cost for
the first k machines.

Related work. Problems concerning coloring of intervals were first
studied with the objective of minimizing the number of colors used [14].
Generalizations considered include minimizing the sum of the colors assigned
to the vertices [11, 12, 15, 19]; incorporating a bandwidth requirement for each
interval and allowing overlapping intervals to be assigned the same color as
long as their total bandwidth requirement does not exceed the capacity [1, 3].
The work most relevant to this paper includes generalized coloring problems
studied in [2, 17, 23] and the busy time scheduling problems [5, 6, 8, 13, 18, 22].

In [2], the following more general problem of coloring intervals is defined.
The set of colors is partitioned into color classes and each color class Ci has a
cost of i. At any point on the line, if a color in Ci is the largest color assigned
to some interval containing the point, then the cost at this point is i. The
authors prove that this problem is NP-hard via a reduction from Numerical
Three Dimensional Matching. This reduction requires that some color class
contains more than one color. A 2-approximation algorithm is also proposed
in the paper. In the busy time scheduling problem [5, 6, 8, 13, 18, 22], a
machine (cf. color) can be shared by a certain number of jobs (cf. intervals)
and the usage of a machine costs the same no matter how many jobs are
sharing the machine. The busy time problem can also be presented as other
equivalent problems, e.g., in the context of optical line network wavelength
assignment [17, 23] and dynamic bin packing with minimum server usage
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time [21].
Our contribution. The problem we study in this paper is a special case

of the problem in [2] in which each color class consists of one color. Yet
we prove a stronger NP-hardness result revealing that the problem remains
NP-hard (Section 3). The proof is via a reduction from the ArcColoring
problem [10] and works for any strictly increasing color cost function. We
then initiate the study of the online setting for the problem (Section 4). For
the case where the cost of a color is proportional to its index, we present an
O(log `max

`min
)-competitive algorithm, where `max and `min are the maximum and

minimum length of the intervals. The algorithm assumes the knowledge of `max

`min

in advance. We also show a lower bound of 1
2

log `max

`min
on the competitive ratio

for any deterministic online algorithm even when the algorithm knows `max

`min
in

advance. This implies that our online algorithm is asymptotically optimal.
In addition, we extend our results to the case when each color has a positive
capacity κ and can be assigned to a set of intervals with load at most κ
(Section 5.1) showing that the online algorithm applies with only a constant
factor increase in the competitive ratio. On the other hand, if the cost function
is an arbitrary increasing function instead of linear in the class index, then
any deterministic online algorithm can perform very badly (Section 5.2). We
also note that our online algorithm applies when the underlying graph is a
circular graph instead of a line (Section 5.3).

The coloring problem essentially consists of two components: partitioning
the intervals into disjoint subsets such that in each subset no two intervals
overlap; and assigning a color to each subset. We consider a variant of this
problem in which the subsets are given and the only decision is to assign
a different color to each subset (Section 6), i.e., find a permutation of the
subsets to map to color 1, 2, · · · . At first glance this permutation problem
may sound easier. Nevertheless, we show that the permutation problem is
NP-hard (Section 6.1) by presenting a reduction from the optimal linear
arrangement problem [9]. We also design a 2-approximation algorithm for
the permutation problem (Section 6.2).

2. Definitions and preliminaries

Problem definition. We are given a set of n intervals I = {I1, I2, · · · , In}.
Each Ij is a half open interval [sj, ej), where sj and ej denote real numbers
that are the start and end point of the interval Ij , respectively. Two intervals
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Ii and Ij are overlapping if Ii ∩ Ij 6= ∅. Interval Ij contains point t if t ∈ Ij,
i.e., sj ≤ t < ej. We denote by It the set of intervals of I that contain
point t, i.e., It = {Ij ∈ I|Ij 3 t}, and by loadI(t) the number |It| of these
intervals which is termed the load induced by I at point t. When there is
no ambiguity, we omit the subscript I and simply write load(t). The length
of Ij, denoted by `(Ij), is defined as ej − sj. The maximum and minimum
lengths over all intervals in I are denoted by `max and `min, respectively. The
length `(S) of a set S of intervals is the sum of the lengths of all intervals
in S, i.e., `(S) =

∑
I∈S `(I).

We are also given an infinite set of colors Λ = {1, 2, 3, · · · }, and every
color i has an associated cost λ(i) ≥ 1, where λ is a non-decreasing function
of i. A coloring ω : I → Λ is valid if for any pair of distinct overlapping
intervals Ii and Ij, we have ω(Ii) 6= ω(Ij). We refer to the coloring of the
intervals in I as ω(I). For any subset I ′ ⊆ I, we denote by ω(I ′) the coloring
obtained by restricting ω to the intervals I ′. The instantaneous cost of ω at
point t, denoted by cost(ω, t), is the maximum cost of the colors of all intervals
containing t, i.e., cost(ω, t) = maxI∈It λ(ω(I)) if It 6= ∅ and zero otherwise.
Note that cost(ω, t) = 0 when load(t) = 0. Since λ is non-decreasing, we
have cost(ω, t) = λ(maxI∈It ω(I)). We term this color (i.e., maxI∈It ω(I)), as
the skyline of ω at t, and the unique interval of It colored with this color,
as the contributing interval of ω at t. We denote the set of all contributing
intervals by Is, i.e., an interval I is in Is if there exists t ∈ I such that
cost(ω, t) = λ(ω(I)), or equivalently, I = arg maxI∈It ω(I).

The total cost of ω, denoted as cost(ω), is the integral of all the in-
stantaneous costs, i.e., cost(ω) =

∫∞
−∞ cost(ω, t)dt. From our definitions it

follows that cost(ω(I)) = cost(ω(Is)). Moreover, when ω is a valid color-
ing we have maxI∈It ω(I) ≥ load(t), since the intervals of It are colored
with distinct colors. Therefore, cost(ω, t) ≥ λ(load(t)), and consequently,
cost(ω) ≥

∫∞
−∞ λ(load(t))dt. A valid coloring for which the last inequality is

tight is clearly optimal. We term such colorings as load-optimal. From the
definitions it follows:

Observation 1. Let λ be any strictly increasing color cost function. A valid
coloring ω of an input set of intervals I is load-optimal if and only if for every
point t, the set of colors used by ω for intervals in It is {1, . . . , load(t)}.

In this work, unless otherwise specified, we assume λ(i) = i. Whenever
this is the case we have

∫∞
−∞ λ(load(t))dt =

∫∞
−∞ load(t)dt = `(I). The last
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(a) Assigning the lowest available color.
The cost is 2× 1 + 6× 2 = 14.
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(b) Optimal coloring. The cost is 5×
1 + 1× 2 + 2× 3 = 13.

Figure 1: Two different colorings of four intervals. An optimal solution does not necessarily
minimize the number of colors used. The darker intervals contribute to the cost of the
coloring but the lighter interval does not. The bolded line indicates the skyline.

equality is due to the fact that every infinitesimal subinterval of an interval in
I contributes the same value (namely, its length) to both sides. This implies:

Observation 2. For every valid coloring ω of a set I of intervals, we have
cost(ω) ≥ `(I) when λ(i) = i for all i.

The objective of the Skyline problem is to find a valid coloring ω such
that cost(ω) is minimized. Without loss of generality, we can assume that
the union ∪I of the intervals in I is an interval that we term the horizon.
Otherwise, the coloring of each maximal interval of ∪I is independent of the
others. Figure 1 illustrates various notions used in the problem definition.

Approximation and online algorithms. An algorithm for the off-line
version of the Skyline problem is a ρ-approximation algorithm if it runs in
polynomial time and outputs a valid coloring whose cost is no more than ρ
times the cost of an optimal coloring. We also consider the online setting
where intervals arrive one at a time in an arbitrary order. An online algorithm
has to decide on the color of an interval upon its arrival, and this decision
cannot be modified later. Such an algorithm is c-competitive if the cost of the
solution of the algorithm is no more than c times that of an optimal (offline)
solution, for every input [4]. We also denote by A the coloring returned by
an algorithm A, and the cost of this solution by cost(A). We denote by O
an optimal solution.
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3. NP-hardness of Skyline

Theorem 3. It is NP-complete to decide whether a given instance of Skyline
has a load-optimal coloring.

Proof. It is easy to see that the problem is in NP because one can check
in polynomial time whether a given coloring is valid and load-optimal. The
NP-hardness is proved by a reduction from ArcColoring. An instance of
ArcColoring is given by a family F = {A1, . . . , An} of circular arcs and a
positive integer K. Each arc Ai ∈ F is given by a pair (ai, bi) with ai 6= bi
and ai, bi ∈ {1, . . . ,m} for some m ≤ 2n. Intuitively, the set {1, . . . ,m}
represents points that are located around a circle. The span of arc Ai is the
set {ai, ai + 1, . . . , bi − 1} if ai < bi and {ai, ai + 1, . . . ,m} ∪ {1, . . . , bi − 1}
if bi < ai. We say that two arcs intersect if their spans have a non-empty
intersection. It is NP-hard to decide whether the arcs in F can be colored
with at most K colors in such a way that arcs with the same color do not
intersect [10]. Let an instance (F , K) of ArcColoring be given. We say
that a point p ∈ {1, . . . ,m} is contained in an arc if it is contained in the
span of the arc. Without loss of generality, we can assume that every point
is contained in exactly K arcs: If a point is contained in more than K arcs,
the instance is trivially a no-instance. If a point p is contained in fewer than
K arcs, we can add arcs of the form (p, p+ 1) until p is contained in K arcs,
without changing the K-colorability of the instance.

We construct an instance I of Skyline from (F , K) as follows. Intuitively,
we “cut” the ring at the point 1 to turn the set of arcs into a set of intervals.
The intervals resulting from arcs that were cut are then extended (into a
“left staircase” and a “right staircase”) in such a way that the two intervals
resulting from the same arc must receive the same color in any load-optimal
coloring. Formally, we create intervals from the arcs in F as follows: Any arc
Ai = (ai, bi) that does not contain the point 1 produces the interval Ii = [ai, bi)
if bi > ai, or the interval Ii = [ai,m+ 1) if bi = 1. Let Aj1 , . . . , AjK be the K
arcs that contain point 1. For 1 ≤ i ≤ K, the arc Aji = (aji , bji) produces
two intervals I1

ji
and I2

ji
: If aji > bji , the two intervals are I1

ji
= [−K + i, bij)

and I2
ji

= [aij ,m + 2 + K − i). If aji = 1 < bji , the two intervals are
I1
ji

= [−K + i, bij) and I2
ji

= [m + 1,m + 2 + K − i). An example of the
construction is shown in Figure 2. The arcs in the example are A1 = (5, 3),
A2 = (4, 2), A3 = (2, 4) and A4 = (3, 5), and K = 2. A1 and A2 contain the
point 1 and thus produce two intervals each, while A3 and A4 produce only
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Figure 2: Instance of ArcColoring (left), constructed intervals (right)

one interval. In this example, a load-optimal coloring exists: Color I1
1 and I2

1

with 1, I1
2 and I2

2 with 2, I3 with 2, and I4 with 1.
We claim that I has a load-optimal coloring if and only if (F , K) is a yes-

instance of ArcColoring. For the “if” direction, let ω : F → {1, . . . , K}
be a K-coloring of F . We can rename the colors so that ω(Aji) = i for
1 ≤ i ≤ K. Let ω′ : I → {1, . . . , K} map each interval in I to the color
assigned by ω to the arc from which the interval was produced. First, note
that ω′ is a feasible coloring of I since any two intervals that intersect are
produced from arcs that intersect and hence their colors are different. We
claim that ω′ is a load-optimal coloring of I. For t ∈ [−K + r,−K + r + 1)
for some r ∈ {1, 2, . . . , K}, the only intervals containing t are the r intervals
I1
ji

for 1 ≤ j ≤ r, and these intervals have colors 1, . . . , r. Similarly, for
t ∈ [m + 1 + K − r,m + 2 + K − r) for some r ∈ {1, 2, . . . , K}, the only
intervals containing t are the r intervals I2

ji
for 1 ≤ j ≤ r, and these intervals

have colors 1, . . . , r. All points t ∈ [1,m + 1) are contained in exactly K
intervals that receive colors 1, . . . , K. Hence, ω′ is indeed load-optimal.

For the “only if” direction, let ω′ be a load-optimal coloring of I. The
points in [−K + 1,−K + 2) and [m+K,m+K + 1) are contained only in
the intervals I1

j1
and I2

j1
, respectively, and hence these two intervals must

both receive color 1. Similarly, as these intervals form staircase patterns, it
follows that I1

ji
and I2

ji
must both receive color i, for 2 ≤ i ≤ K. All other

intervals must receive colors in {1, . . . , K} as the load at any point is at
most K. Define a coloring ω : F → {1, . . . , K} by assigning to each arc in F
the color of the interval(s) it has produced (for arcs that have produced two
intervals, this is still well-defined as both intervals must have the same color,
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as argued above). It follows that ω is a feasible K-coloring of F . �

Combining with Observation 1 we have:

Corollary 1. Skyline is NP-hard for any strictly increasing color cost
function λ.

4. Online algorithms for Skyline when λ(i) = i

In this section, we present online algorithms for the Skyline problem
for the case where the cost of a color is equal to its index, i.e., λ(i) = i for
all i. We first focus in Section 4.1 on bounded length intervals and present
an O(1)-competitive greedy algorithm. In Section 4.2 we adapt the greedy
algorithm to the case where the lengths of intervals are arbitrary.

4.1. Bounded length intervals

In this section we consider bounded length intervals, i.e., we assume
there is a constant k such that for any interval I in the input, we have
`(I) ∈ [`min, k · `min). This section is dedicated to the analysis of the following
greedy algorithm.

4.1.1. The algorithm G and some basic properties

When an interval Ij ∈ I arrives, assign the minimum color that is valid
for it, i.e., the minimum color i such that for all j′ < j and Ij′ ∩ Ij 6= ∅, we
have G(Ij′) 6= i.

Roughly speaking, in the analysis, we select a subset of intervals on the
skyline of G (i.e., from Is), partition the horizon into segments based on
this subset, and show that we can “charge” the costs of G and O to this
subset, thus allowing us to relate the two costs. The partition of the horizon
is based on the notion of extended interval. For any interval Ij, we define
its hat interval as Ih

j = [sj − k`min, ej + k`min) and extended hat interval as
Ie
j = [sj − 3k`min, ej + 3k`min). Clearly, `(Ie

j ) = 6k`min + `(Ij) ≤ 7k`min.
We first observe a property of G. Intuitively, when G assigns an interval I

a certain color c, there is a substantial number of intervals overlapping with I
in the input. Precisely,

Lemma 1. Consider an interval Ij with G(Ij) = c. (i) There are at least c−1
intervals that overlap with Ij and are contained in Ih

j ; (ii) the total length of
these intervals together with Ij is at least c`min.
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Proof. (i) Since G assigns the smallest possible color to any interval, Ij gets
color c only if there are already c− 1 intervals colored by 1, 2, · · · , c− 1 each
of which overlaps with Ij. Since the length of any interval is bounded by
k`min, the start point of each such interval is at least sj − k`min and its end
point is at most ej + k`min, i.e., it is contained in Ih

j .
(ii) Follows from (i) and the fact the length of any interval is at least `min.

�

4.1.2. Analysis of G
Overview. The analysis is based on choosing a subset of intervals I∗s of

Is. We first give an overview of the role of I∗s and then show how to construct
I∗s . The aim is to obtain the following properties: (i) the hat intervals of
any two intervals of I∗s do not overlap (Lemma 2 (i)), (ii) the union of the
extended hat intervals of I∗s form a contiguous interval that contains the
horizon. The first allows us to lower bound cost(O) by considering these hat
intervals, since these hat intervals are disjoint (Lemma 3 (i)). The second
property means that we can map each interval to some extended hat interval
of I∗s (Lemma 2 (ii)). As to be shown, the procedure of selecting I∗s further
ensures that the mapping allows bounding the cost of G (Lemma 3 (ii)).

Choosing I∗
s . We choose the elements of I∗s according to the following

procedure. Initially I∗s is empty. We consider the intervals of Is in decreasing
order of their colors, and within each color, in the order of their start points.
We add the interval I under consideration to I∗s if it is not completely
contained in the extended hat interval of an interval of I∗s .

Competitiveness of G. We now analyze the properties of I∗s . First we
notice that by the way I∗s is chosen, the union of the extended hat intervals
of I∗s form a contiguous interval which contains the horizon. We next prove
the following lemma.

Lemma 2. (i) The hat intervals of the intervals of I∗s are pairwise disjoint.
(ii) For every interval Ij ∈ Is, there exists an interval Ij′ ∈ I∗s such that
Ij ⊆ Ie

j′ and G(Ij) ≤ G(Ij′).

Proof. (i) Consider any two intervals Ij and Ij′ in I∗s . Assume without loss
of generality that Ij is chosen before Ij′ . When Ij is chosen, any intervals that
are entirely contained in Ie

j are removed. Since Ij′ is not removed, at least one
of the following conditions holds. (1) ej′ > ej + 3k`min, (2) sj′ < sj − 3k`min.
We analyze only the case where (1) holds, the other case being symmetric. If

10



(1) holds we have that sj′ ≥ ej′ − k`min > ej + 2k`min and the left point of Ih
j′

is sj′ − k`min > ej + k`min. Therefore, Ih
j and Ih

j′ are disjoint.
(ii) Follows from the way I∗s is chosen. Consider an interval Ij ∈ Is.

If Ij ∈ I∗s the claim follows. Otherwise, there is an interval Ij′ ∈ I∗s such
that Ij ⊆ Ie

j′ and Ij′ is considered before Ij in the selection process. Therefore,
G(Ij) ≤ G(Ij′). �

Using Lemma 2, we can relate the cost of the greedy algorithm to the
optimum.

Lemma 3. (i) cost(O) ≥ `min·
∑

I∈I∗s
G(I); (ii) cost(G) ≤ 7k`min·

∑
I∈I∗s
G(I);

and (iii) cost(G) ≤ 7k`(I).

Proof. (i) By Lemma 1, for every interval I ∈ I∗s , there is a set of G(I)
intervals with total length of `minG(I) each of which is contained in Ih. By
Lemma 2, the hat intervals of I ∈ I∗s are pairwise disjoint. This means the
total length of all intervals is at least

∑
I∈I∗s

`minG(I). The statement then
follows from Observation 2.

(ii) Let Ie
s be the set of extended hat intervals of I∗s , i.e., Ie

s = {Ie | I ∈ I∗s },
and G(Ie

s ) be the coloring of Ie ∈ Ie
s using the color of the corresponding

interval I, i.e., G(Ie) = G(I). Note that G is not necessarily a valid coloring
for Ie

s , but its cost is yet well defined.
By Lemma 2, for every interval Ij ∈ I, there is an interval Ij′ ∈ I∗s

such that G(Ij) ≤ G(Ij′). If we raise the color of Ij from G(Ij) to G(Ij′),
then the resulting skyline is of the same height or higher at every point t,
in other words, cost(G(Is), t) ≤ cost(G(Ie

s ), t) at every point t. Therefore,
cost(G) = cost(G(Is)) ≤ cost(G(Ie

s )). We also have cost(G(Ie)) = `(Ie)G(I) ≤
7k`minG(I) for every interval I. Therefore, cost(G(Ie

s )) ≤ 7k`min

∑
I∈I∗s
G(I).

(iii) The proof of (i) states that `(I) ≥
∑

I∈I∗s
`minG(I). Then Statement

(ii) implies that cost(G) ≤ 7k`(I). �

Theorem 4. When λ(i) = i, the greedy algorithm G is 7k-competitive where
k = `max/`min.

4

4As was pointed out by an anonymous reviewer of a previous version of this paper, the
competitive ratios can be improved to 4 when k = 1 and 9 when k = 2 by using a different
algorithm, while the ratio becomes (k + 1)2 for larger k. This improvement does not affect
the order of the competitive ratio for the general case in Theorem 6.
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4.2. Arbitrary length intervals

In this section we consider intervals with arbitrary lengths. We first
observe in the following lemma that the greedy algorithm G performs badly
for such instances since `max

`min
can be large.

Lemma 4. The greedy algorithm G is Ω( `max

`min
)-competitive.

Proof. Consider the following instance consisting of n intervals, Ij = [0, 1)
for j ∈ [1, n− 1], and In = [0, `). Consider the coloring ω such that ω(In) = 1
and ω(Ij) = j+1 for every j ∈ [1, n−1]. The cost is cost(ω) = (`−1)+n. On
the other hand, the greedy algorithm gives the following coloring: G(Ij) = j
for j ∈ [1, n − 1] and G(In) = n and cost(G) = n`. We note that the ratio
cost(G)
cost(ω)

= `n
`−1+n

can be made arbitrarily close to ` = `max

`min
. �

The greedy algorithm performs badly against the adversary in Lemma 4
because it uses up the small colors for short intervals and then has to use a
large color for the long interval. To address this issue, we would like to design
an algorithm that distributes the colors among intervals of different lengths
in a “fair” way.

In order to obtain a better competitive ratio, we propose the algorithm
Classify-greedy which we denote by C. For ease of presentation, we first
assume that C knows in advance `max and `min. Let L = 1 + dlog `max

`min
e. We

partition I into L classes C1, C2, · · · , CL such that Ci contains all intervals
I with `(I) ∈ [`min · 2i−1, `min · 2i). Furthermore, we also partition the set of
colors Λ into L disjoint sets, where Λi = {i, i + L, i + 2L, i + 3L, · · · }, for
i ∈ [L].

Classify-greedy C runs L copies G1, . . .GL of G where Gi uses the set of
colors Λi. When I ∈ Ci arrives, it is processed by Gi which colors it with the
smallest color in Λi that is valid for I.

We denote an optimal coloring of I ∩Ci by Oi. The following observation
is due to Lemma 3(iii) (for k = 2) and the fact that Gi uses Λi that contains
one color per every interval of L colors.

Observation 5. cost(Gi) ≤ 14L · `(Ci).

Theorem 6. Algorithm C is O(dlog `max

`min
e)-competitive.

12



Proof. The cost of C is the integral over the horizon of the maximum color
used by all copies of G at every point t, i.e.,

cost(C) =

∫ ∞
−∞

max
i∈[L]

cost(Gi, t)dt ≤
∫ ∞
−∞

L∑
i=1

cost(Gi, t)dt

=
L∑
i=1

∫ ∞
−∞

cost(Gi, t)dt =
L∑
i=1

cost(Gi) ≤
L∑
i=1

14L · `(Ci)

= 14L · `(I) ≤ 14L · O .

�

Knowing the ratio `max

`min
only. We now describe how the algorithm

can be adapted to the setting where only the ratio `max

`min
is known instead of

knowing `max and `min. An interval of length ` is assigned to the class dlog2 `e.
In this way, the intervals are assigned to at most L+ 1 length classes with
consecutive indices though the indices may not be from 1 to L+ 1. The set
of colors Λ is now divided into L + 1 disjoint sets Λ1,Λ2, · · · ,ΛL+1 (recall
that Λi = {i, i+ L+ 1, i+ 2(L+ 1), i+ 3(L+ 1), · · · }). When an interval in
a new length class is released, we map this length class to the next available
color set. We note that Observation 5 remains correct with L = 2 + dlog `max

`min
e

and Theorem 6 follows with competitive ratio 14(2 + dlog `max

`min
e), which is still

O(dlog `max

`min
e).

4.3. Lower bound

In this section, we present an adversary to show a lower bound for any
deterministic online algorithm that asymptotically matches the upper bound
shown in Section 4.2 for Classify-greedy.

Theorem 7. No deterministic online algorithm can achieve competitive ratio
better than 1

2
log `max

`min
even if it knows `max

`min
in advance. This holds even when

the intervals are released from left to right and even for special instances
including proper instances and laminar instances. 5

5An instance is a proper instance if for any two intervals I1 and I2, s1 ≤ s2 implies
e1 ≤ e2. An instance is a laminar instance if any two intervals are either disjoint or one is
completely contained in another.

13



Proof. Let A be an online algorithm. Let L be an arbitrarily large positive
integer. The adversary creates an instance I with `max

`min
= 2L, or equivalently

log `max

`min
= L, as follows. We first present the construction of a laminar

instance. The instance will be such that it is easy to see that a load-optimal
coloring exists.

The adversary releases a sequence of up to L intervals Ij = [0, 2j) for
j = 1, 2, . . . , L. If the algorithm uses color L + 1 for one of them, say for
interval Ik, the adversary stops the sequence and presents only one more
final interval If = [2k, 2k + 1

2L−k ). Note that `max = 2k and `min = 2−(L−k),
so `max

`min
= 2L. We have cost(A) ≥ (L + 1)2k and cost(O) = `(I) < 2k+1, so

cost(A)
cost(O)

> L+1
2
> L

2
.

If the algorithm does not use color L+1 on the L intervals of the sequence,
it must use colors 1, . . . , L on these intervals as they all overlap. The adversary
then presents one more interval IL+1 = [0, 2L+1), which must receive color
at least L + 1. Note that `max = 2L+1 and `min = 2, so `max

`min
= 2L. We have

cost(A) ≥ (L+ 1)2L+1 and cost(O) = `(I) ≤ 2L+2, so cost(A)
cost(O)

≥ L+1
2
> L

2
.

The above instance is a laminar instance. We can change the construction
to produce a proper instance by a slight modification: Let ε be a very small
positive value; then Ij is set to [(j − 1)ε, 2j + (j − 1)ε) for 1 ≤ j ≤ L+ 1, and
If is set to [2k + (k − 1)ε, 2k + 1

2L−k + (k − 1)ε). This instance does not have
a load-optimal coloring, but the cost of an optimal coloring is larger than the
total length of the set of intervals by less than (L2 + L)ε (note that the only
part of the line in which the maximum color index used is larger than the
load lies between 0 and Lε, and the maximum color used is L + 1), which
is negligible for small enough ε. Therefore, the analysis of the laminar case
applies also here.

In both cases, intervals are released from left to right. �

5. Extensions

5.1. Uniform color capacity

We consider the extension where each color has a “capacity” κ: it is
allowed to have κ overlapping intervals sharing the same color at the same
point. A coloring ω : I → Λ is valid if for any c ∈ Λ and at any point t, there
are at most κ intervals I ∈ It with ω(I) = c. In this case, we show that we
can adapt the algorithms in Section 4 with a constant factor increase in the
competitive ratio.

14



Adapted algorithms. First, we observe that Observation 2 can be
adapted to cost(ω) ≥ `(I)

κ
because there can be at most κ intervals sharing a

color at any point t, i.e., cost(ω, t) ≥ d load(t)
κ
e, and

∫∞
−∞ load(t)dt = `(I). The

color assignment of the greedy algorithm G remains the same except that
the condition of valid coloring is now adapted as above to allow κ intervals
sharing a color. Then the algorithm Classify-greedy C is exactly the same
as before, but using the adapted G. The analysis is also similar but more
involved.

Adapted analysis. In the analysis of G, we rely on the fact that when G
assigns color c to an interval Ij, there are a substantial number of intervals
overlapping with Ij in the input (see Lemma 1). With the capacity, we
show a variant of Lemma 1: the length of Ij plus the total length of the
(c − 1)κ intervals that overlap with Ij and are contained in Ih

j is at least
((c−1)κ+1) ·`min (see Lemma 5). The main difference of this property is that
we are no longer able to show that the total length of overlapping intervals is
cκ`min, i.e., we have (c− 1)κ`min instead of the desired cκ`min. Recall that the
analysis uses a charging scheme that maps intervals on the skyline to certain
intervals in the optimal coloring. Most of the analysis still carries forward
except for intervals that are colored with color 1 because in such case the
new bound only guarantees that intervals with a total length of `min overlap
with such an interval (instead of the desired κ`min). Yet for intervals that are
colored with color 1, this means that the optimal algorithm also needs to use
at least color 1 because there is indeed an interval.

Roughly speaking, we divide the analysis into two parts: (i) I∗s is selected
from highest color until color 2 (instead of color 1) with the same analysis
as before and (ii) the remaining skyline intervals colored with color 1 are
compared directly to the optimal coloring.

Let T denote the whole horizon of points.

Observation 8. (Adapted Observation 2) For every valid coloring ω of a

set I of intervals, we have cost(ω) ≥ `(I)
κ

when λ(i) = i for all i.

Lemma 5. (Adapted Lemma 1) Consider an interval Ij with G(Ij) = c. (i)
There are at least (c−1)κ intervals that overlap with Ij and are contained in Ih

j ;
(ii) the total length of these (c−1)κ intervals and Ij is at least ((c−1)κ+1)·`min.

Proof. (i) Since G assigns the smallest possible color to any interval, Ij gets
color c only if there are already κ intervals colored by 1, κ intervals colored by
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2, · · · , κ intervals colored by c− 1 and all overlap with Ij . Since the length of
any interval is bounded by k`min, for each of these intervals, its start point is
at least sj − k`min and its end point is at most e+ k`min, meaning that they
are all inside Ih

j . (ii) (Same as the original one.) �

The selection of skyline intervals is the same as the original one except
that we stop before including skyline intervals with color 1. The horizon T
is partitioned into two parts, T ′ and T \ T ′, where T ′ is the union of the
extended hat intervals of all skyline intervals. Note that for all t ∈ T \ T ′,
cost(G, t) = 1. Also, for each skyline interval I, G(I) ≥ 2.

Lemma 6. (Adapted Lemma 3) (i) cost(G(T ′)) ≤ 7k`min ·
∑

I∈I∗s
G(I); (ii)

`(I) ≥ `min · κ ·
∑

I∈I∗s
(G(I) − 1); (iii) cost(G(T \ T ′)) ≤ cost(O); and (iv)

cost(G(T ′)) ≤ 14k · `(I)
κ
.

Proof. (i) (Same as the proof of Lemma 3 (i).) (ii) By Lemma 5, `(I) ≥∑
I∈I∗s

`min · κ · (G(I)− 1). (iii) It is trivial. (iv) By (i) and (ii), cost(G(T ′)) ≤
7k`min ·

∑
I∈I∗s
G(I) ≤ 7k

∑
I∈I∗s
G(I) · `(I)

κ·
∑

I∈I∗s
(G(I)−1)

= 7k · `(I)
κ
·

∑
I∈I∗s

G(I)∑
I∈I∗s

(G(I)−1)
.

Since G(I) ≥ 2 for any I ∈ I∗s ,
∑

I∈I∗s
G(I)∑

I∈I∗s
(G(I)−1)

≤ 2. Hence, cost(G(T ′)) ≤

14k · `(I)
κ

. �

Theorem 9. (Adapted Theorem 4) When λ(i) = i, the greedy algorithm G
is (14`max/`min + 1)-competitive for the uniform color capacity setting.

Proof. By definition, cost(G) = cost(G(T ′))+cost(G(T \T ′)). By Lemma 6
(iv) and Observation 8, cost(G(T ′)) ≤ 14k · cost(O). By Lemma 6 (iii),
cost(G) = cost(G(T ′)) + cost(G(T \ T ′)) ≤ 14k · cost(O) + cost(O). �

Similarly, the analysis of C also takes the approach of dividing the horizon
into two parts: those with intervals colored higher than color L and those
with intervals colored L or lower; the latter corresponds to color 1 for each
length class. More precisely, the horizon T is partitioned into two parts, T ′′
and T \ T ′′. A point t is in T ′′ if there is at least one interval I such that
t ∈ Ie and G(I) > L. Letting T ′′i denote T ′′ defined with respect to Gi(Ci),
we have T ′′ = ∪iT ′′i .

Observation 10. (Adapted Observation 5) cost(Gi(T ′′i )) ≤ 28L · `(Ci)
κ

.
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Theorem 11. (Adapted Theorem 6) Algorithm C is O(dlog `max

`min
e)-competitive

for the uniform color capacity setting.

Proof. As we have shown in Theorem 6, the cost of C is at most the integral
over the horizon of the maximum color used by all copies of G at every point
t, i.e., cost(C) ≤

∫∞
−∞maxi∈[L] cost(Gi, t)dt. As we partition the horizon, the

latter is equivalent to
∫
T ′′ maxi∈[L] cost(Gi, t)dt+

∫
T \T ′′ maxi∈[L] cost(Gi, t)dt.

Similar to the proof of Theorem 6, we have
∫
T ′′ maxi∈[L] cost(Gi, t)dt ≤∑L

i=1 cost(Gi(T ′′i )) ≤
∑L

i=1 28L · `(Ci)
κ

. The latter inequality is due to Ob-

servation 10. We also note that
∑L

i=1
`(Ci)
κ

= `(I)
κ
≤ cost(O) because of

Observation 8. On the other hand,
∫
T \T ′′ maxi∈[L] cost(Gi, t) ≤

∫
T \T ′′ L dt ≤

L · cost(O). Combining the two results, we have cost(C) ≤ 29L · cost(O). �

5.2. Generalized color cost function

A more general problem of Skyline is to generalize the cost function of
colors. In the original Skyline problem, we assume that λ(i) = i for all
colors i ∈ Λ. We relax this constraint by considering a bounded relative cost
of the neighboring colors, i.e., 1 ≤ λ(i+1)

λ(i)
≤ δ. Note that for the original

setting we have λ(i+1)
λ(i)

≤ 2. The Skyline problem under this new setting,
however, is much harder in the sense of competitive ratio. In fact, we show in
Theorem 12 that the lower bound on the competitive ratio of this problem is
exponential in n. On the other hand, the competitive ratio in terms of n for
the original setting can be shown to be Θ(n) as follows. The greedy algorithm
is O(n)-competitive because it colors any interval by a color at most n and
so the cost of the greedy algorithm is at most n · h and the optimal cost is at
least h, where h is the length of the horizon. A lower bound of Ω(n) follows
from the construction in the proof of Theorem 7 since the number of intervals
in the construction is at most L+ 1.

Theorem 12. Consider Skyline. For every δ > 1, there exists a cost
function λ such that λ(i+1)

λ(i)
≤ δ for all i ≥ 1 and cost(A)

cost(O)
≥ δΩ(n).

Proof. We consider the cost function λ(i) = δi−1. Note that λ(i+1)
λ(i)

= δ. We
apply an adversary that is similar to the one in the proof of Theorem 7. The
adversary creates an instance I such that it is easy to see that a load-optimal
coloring exists. Let A be an online algorithm, L be an arbitrarily large
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positive integer and d = dδe+ 1. The adversary releases a sequence of up to
L intervals Ij = [0, dj) for j = 1, 2, . . . , L.

Considering the set of the x intervals Ij = [0, dj) for 1 ≤ j ≤ x, the
optimal cost is at most dx+1 due to the following.

cost(O) = d · δx−1 +
x−1∑
i=1

(di+1 − di) · δx−(i+1)

= d · δx−1 + (d− 1) · (δ · dx − d · δx)/(δ(d− δ))
≤ d · δx−1 + (d− 1) · dx ≤ dx+1

The first equality holds because in the optimal solution the interval Ii is
assigned color x+ 1− i with cost λ(x− i) = δx−i for all 1 ≤ i ≤ x, and each
interval Ii+1 of length di+1, for 1 ≤ i ≤ x − 1, contributes a part of length
di+1− di (with cost δx−(i+1) at each point) to the skyline. The first inequality
is due to d− δ ≥ 1 and the second inequality is because δ ≤ d− 1.

If the algorithm uses color L+ 1 for one of the released intervals, say for
interval Ik, the adversary stops the sequence. We have cost(A) ≥ dk · δL and

cost(O) ≤ dk+1, so cost(A)
cost(O)

≥ δL

d
≥ δL

3δ
= δL−1

3
. Note that d ≤ 3δ since δ > 1.

If the algorithm does not use color L + 1 on the L intervals of the
sequence, it must use colors 1, . . . , L on these intervals as they all overlap.
The adversary then presents one more interval IL+1 = [0, dL+1), which must
receive color at least L+ 1. We have cost(A) ≥ dL+1 · δL and cost(O) ≤ dL+2,

so cost(A)
cost(O)

≥ δL

d
≥ δL

3δ
= δL−1

3
. �

5.3. Circular graphs

The upper and lower bound results in Section 4 apply to circular graphs as
well. For the lower bound this is obvious. For the upper bound, suppose we
have a circle running clockwise from label 0 until label T (0 coincides with T ).
An input interval consists of a start point and an end point. If the start point
has label larger than the end point, this means the interval runs across point 0.
Without loss of generality, we assume that the union of the input intervals
cover the entire circle, otherwise, the input can be treated as an input on a
line. The algorithm G works the same way on a circle. The analysis needs
modification for intervals crossing the point 0. For an interval [s, e), the hat
and extended hat interval is now defined as [(sj − k`min) mod T , (ej + k`min)
mod T ) and [(sj−3k`min) mod T , (ej +3k`min) mod T ), respectively. With
this definition, we select I∗s the same way as before until the whole horizon
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is covered by the span of the extended hat intervals of selected intervals. In
this way, Lemma 2 remains correct and the analysis follows.

6. The Permutation problem

In this section, we consider a variant of the Skyline problem. Throughout
this section, we assume λ(i) = i for all i. A solution of the Skyline problem
can be obtained by first partitioning I into disjoint subsets such that the
intervals of every subset are pairwise disjoint, and then assigning distinct
colors to the subsets. The second stage is exactly the problem of finding a
permutation of the subsets of intervals.

Precisely, we define the problem Permutation as follows. We are given
|Λ| disjoint sets of intervals I1, I2, · · · , I|Λ| such that the intervals in each
set are pairwise disjoint, i.e., all the intervals of a set Ii can be assigned the
same color. The goal is to find a permutation π of the colors such that Ii
is assigned the color π(i) and the total cost of the coloring induced by π is
minimized.

At first glance, the permutation problem may look simpler since the
partition into sets is already given. Yet we show in Section 6.1 that the
permutation problem is NP-hard. Note that there is no requirement that the
given partition has a permutation that is an optimal solution to Skyline.
Our NP-hardness proof does not imply anything regarding the complexity
of π when it has a solution that is optimal for Skyline. We propose a
2-approximation algorithm in Section 6.2.

6.1. NP-hardness

The NP-hardness proof is by reduction from the optimal linear arrangement
problem.

Optimal linear arrangement (Lina). The input is a graph G = (V,E),
and the goal is to find a one-to-one function f : V → {1, 2, . . . , |V |} such that∑

(u,v)∈E |f(v)− f(u)| is minimized. The decision version of this problem is

known to be NP-hard (see [9]).
We denote the degree of a vertex v ∈ V by d(v). We also denote the

maximum degree of all vertices by ∆.
The reduction. Given a simple graph G = (V,E) which is an instance

of Lina, we construct an instance I of Permutation. For each vertex
v ∈ V , we create a subset of intervals Iv ⊆ I such that the intervals in Iv are
pairwise disjoint. The details of the construction are as follows. For each edge
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e = uv ∈ E, we create an edge gadget containing two identical intervals Ieu
and Iev of length 2. The intervals corresponding to distinct edges are disjoint.
Then for every vertex v ∈ V , we create a dummy interval of length ∆− d(v).
Each dummy interval is disjoint from any other interval in the construction.
Overall, the set Iv consists of all intervals Iev where v is an endpoint of edge e
and its dummy interval. The input I is then {Iv | v ∈ V }. We are going to
prove the following theorem.

Theorem 13. The Permutation problem is NP-hard.

Proof. Consider a solution π of Permutation on instance I. The cost of
the two intervals associated with an edge e = uv is

2 max{π(u), π(v)} = π(u) + π(v) + |π(u)− π(v)|.

The cost of a dummy interval associated with a vertex v is

(∆− d(v))π(v)

Summing up the first cost over all edges and the second over all vertices we
get the following expression for the cost of π.

Permutation(I, π)

=
∑

e=uv∈E

(π(u) + π(v)) +
∑

e=uv∈E

|π(u)− π(v)|+
∑
v∈V

(∆− d(v))π(v)

= Lina(G, π) +
∑

e=uv∈E

(π(u) + π(v)) +
∑
v∈V

(∆− d(v))π(v)

= Lina(G, π) +
∑
v∈V

π(v)d(v) +
∑
v∈V

(∆− d(v))π(v)

= Lina(G, π) +
∑
v∈V

∆ · π(v) = Lina(G, π) + ∆
∑
v∈V

π(v)

= Lina(G, π) +
∆ · |V | · (|V |+ 1)

2
.

Since the second term does not depend on π, minimizing Permutation(I, π)
is equivalent to minimizing Lina(G, π). �
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6.2. Approximation algorithm

We design a 2-approximation algorithm for the permutation problem by
using a linear programming relaxation and show that the analysis is tight by
proving that the integrality gap of the linear program is 2.

The permutation problem can be considered as a matching problem that
matches colors to sets of intervals. Let mj,i = 1 indicate that the j-th color is
matched to the i-th set of intervals and mj,i = 0 otherwise. The permutation
problem thus aims to determine mj,i for all j and i such that the total cost is
minimized. Without loss of generality, we assume that the horizon is divided
into t segments of unit length such that all intervals start and end at the
boundaries of these segments, i.e. no interval starts or ends in the interior of
a segment. Although the number of unit segments t can be arbitrarily large,
we can remove this assumption by combining adjacent unit segments such
that for each combined segment, both its left boundary and right boundary
are the start or end points of at least one interval. The cost of this combined
segment is the skyline of this segment times the length of this segment. The
number of combined segments is at most 2n− 1, which allows the following
relaxed linear program to be constructed and solved in polynomial time. For
ease of presentation, we present the linear program for the unit segments
instead of the combined segments.

By considering the matching problem and the unit segments, we can write
a linear program for Permutation. Let ai,u = 1 indicate that the i-th set
of intervals covers the u-th unit segment, i.e. that the u-th unit segment is
entirely covered by some interval in the i-th set of intervals, and ai,u = 0
otherwise. Let also su be the skyline of the u-th unit segment. The integer
linear program that models the Permutation problem is as follows.

Minimize
t∑

u=1

su
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subject to

|Λ|∑
i=1

mj,i = 1 ∀j ∈ [|Λ|] (1)

|Λ|∑
j=1

mj,i = 1 ∀i ∈ [|Λ|] (2)

ai,u ·
|Λ|∑
j=1

j ·mj,i ≤ su ∀i ∈ [|Λ|], u ∈ [t] (3)

mj,i ∈ {0, 1} ∀i, j ∈ [|Λ|] (4)

Our algorithm solves the relaxed version of the above program that is obtained
by replacing the integrality constraints (4) by constraints (5), and matches
the colors with the sets of intervals based on the computed solution.

mj,i ∈ [0, 1] ∀i, j ∈ [|Λ|] (5)

Algorithm B. Let ci =
∑|Λ|

j=1 j ·mj,i be the estimated color of the i-th
set of intervals provided by the linear program, for every i ∈ [|Λ|]. B solves
the relaxed linear program and obtains all ci’s. We denote by c(k) the k-th
smallest number in {c1, c2, . . . , c|Λ|} with ties broken arbitrarily. Then B
assigns to the i-th set of intervals the color k such that ci = c(k).

Theorem 14. Algorithm B is 2-approximation for Permutation.

We argue in the following that for every unit length segment u ∈ [t], its
skyline returned by B is at most twice its skyline su given by the solution of
the relaxed linear program. Thus Theorem 14 follows.

Let u ∈ [t] be any unit length segment. Note that given an optimal
solution of the relaxed linear program, there is at least one i ∈ [|Λ|] such that
the corresponding contraint (3) is satisfied with equality. This is because,
otherwise one can obtain a super-optimal solution by replacing the value of
su with a smaller value. Furthermore, for this value of i, we have ai,u = 1.
We conclude that su = max{ci|ai,u = 1, i ∈ [|Λ|]}. The behavior of B is such
that if su = c(k), then the skyline of u returned by B is k.

We show in the following that the sum of the smallest k values c(1), . . . , c(k)

is at least k(k+1)
2

. Therefore, the maximum of these values, i.e. c(k) is at least
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their average, i.e. k+1
2

, implying k < k + 1 ≤ 2c(k). Therefore, the skyline k
of u returned by B is at most twice its skyline su in the relaxed solution, as
required.

Lemma 7.
x∑
k=1

c(k) ≥ x(x+ 1)

2
∀1 ≤ x ≤ |Λ| .

Proof. Constraints (1), (2) and (5) imply that the matrix M = [mj,i](i, j ∈
[|Λ|]) is doubly stochastic. Let m be a matching that minimizes

∑x
k=1 c

(k)

among all matchings, and assume without loss of generality that sets of
intervals are ordered by their estimated colors in m, i.e. c1 ≤ . . . ≤ c|Λ|. We

write M =

[
M1 M2

M3 M4

]
where M1 is the x by x submatrix M1 = [mj,i](i, j ∈

[x]). We claim that at least one of M2,M3 is zero. Suppose for a contradiction
that both of M2 and M3 are non-zero, and let mj,i (resp. mj′,i′) be a non-zero
entry of M2 (resp. M3). Let also ε = min{mj,i,mj′,i′}. We now consider a
modified matching m′ and the corresponding matrix M ′ whose entries are
equal to the entries of M except the following four entries that are different:
m′j,i = mj,i − ε, m′j′,i′ = mj′,i′ − ε, m′j,i′ = mj,i′ + ε, m′j′,i = mj′,i + ε. See
Figure 3 for an example. Clearly, M ′ is doubly stochastic. Furthermore, the
estimated color of every set of intervals is equal in m and m′ except for the set
of intervals i > x (resp. i′ ≤ x) whose estimated color is higher (resp. lower)
in m′ by ε(j′ − j). Therefore, the interval sets with the smallest x estimated
colors are the same in m and m′. This also implies that

∑x
k=1 c

′(k) <
∑x

k=1 c
(k)

(where c′(k) is the k-th smallest estimated color in m′), which contradicts the
assumption that m minimizes

∑x
k=1 c

(k). Therefore, either M2 or M3 is zero.
We now show that M2 = M3 = 0. Suppose that M2 = 0 and M3 6= 0 (the

other case being symmetric). Since the sum of every column of M is 1 and
also M2 = 0, we have that the sum of every column of M4 is 1. Therefore,
the sum of all the entries of M4 is |Λ| − x, which in turn implies that the sum
of every row of M4 is exactly 1. We conlude that M3 = 0. Therefore,

x∑
k=1

c(k) =
x∑
k=1

|Λ|∑
j=1

j ·mj,k =
x∑
k=1

x∑
j=1

j ·mj,k

=
x∑
j=1

j ·
x∑
k=1

mj,k =
x∑
j=1

j =
x(x+ 1)

2
.
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M =


0.6 0.1 0.1 0 0.2
0 0.4 0.6 0 0

0.1 0.5 0 0.3 0.1
0.1 0 0.1 0.7 0.1
0.2 0 0.2 0 0.6

 M ′ =


0.6 0.1 0.1 0 0.2
0 0.4 0.6 0 0

0.3 0.5 0 0.1 0.1
0.1 0 0.1 0.7 0.1
0 0 0.2 0.2 0.6


Figure 3: Consider the matrix M above and the case where x = 3. Since M2 and M3 are not
zero, we can pick two non-zero cells from M2 and M3 respectively, say m3,4 and m5,1. In this
case, ε = 0.2. We then decrease m3,4 and m5,1 by 0.2, and increase m3,1 and m5,4 by 0.2.
The modified matrix M ′ is shown above. We can see that

∑x
k=1 c

(k) = 7.4 > 7 =
∑x

k=1 c
′(k).

Since m minimizes
∑x

k=1 c
(k) the lemma follows. �

We show that the analysis of Theorem 14 is tight by showing that the
integrality gap of the linear program is not smaller than 2.

Theorem 15. The integrality gap of the linear program used in B is at least
2.

Proof. We construct an instance of the problem and determine the gap
between the relaxed and integer versions of the linear program. Consider
n identical intervals, each belonging to one class. A solution of the relaxed
program is mj,i = 1/n for all j and i. Thus each unit segment gets the
following skyline.

n∑
j=1

j ·mj,i =
n∑
j=1

j · 1

n
=
n(n+ 1)

2
· 1

n
=
n+ 1

2
.

However the optimal solution for the integer linear program has skyline n for
each unit segment leading to the following integrality gap.

n

(n+ 1)/2
=

2n

n+ 1
= 2− 2

n+ 1

By increasing n, the gap can be made arbitrarily close to 2. Therefore, the
worst-case integrality gap cannot be strictly smaller than 2. �
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7. Conclusion

We initiated the study of online algorithms for the coloring problem
Skyline. An immediate research direction is to extend the online algorithms
for two cases: (i) each color can have an arbitrary capacity; and (ii) the cost
of a color class is given by an arbitrary increasing function, i.e., for arbitrary
λ. Another direction is to find a better competitive ratio for bounded length
intervals. The other directions include determining if there is PTAS for the
problem or whether the problem is APX-hard.

For the variant Permutation, it is desirable to obtain a stronger com-
plexity result by determining whether the problem of permuting the color
classes stays NP-hard if the given color classes correspond to an overall opti-
mal solution. It would be interesting to determine whether approximation
ratio better than 2 can be achieved for Permutation. One could also study
online algorithms and other objective functions.
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