
Greedy is Optimal for Online Restricted
Assignment and Smart Grid Scheduling for

Unit Size Jobs

Fu-Hong Liu1, Hsiang-Hsuan Liu2[0000−0002−0194−9360]?, and
Prudence W.H. Wong3[0000−0001−7935−7245]??

1 Dept. of Computer Science, National Tsing Hua University, Taiwan
fhliu@cs.nthu.edu.tw

2 Dept. Information & Computing Sciences, Utrecht University, The Netherlands
Institute of Computer Science, Wroclaw University, Poland

H.H.Liu@uu.nl
3 Dept. of Computer Science, University of Liverpool, UK

pwong@liverpool.ac.uk

Abstract. We study online scheduling of unit-sized jobs in two related
problems, namely, restricted assignment problem and smart grid prob-
lem. The input to the two problems are in close analogy but the objective
functions are different. We show that the greedy algorithm is an opti-
mal online algorithm for both problems. Typically, an online algorithm is
proved to be an optimal online algorithm through bounding its compet-
itive ratio and showing a lower bound with matching competitive ratio.
However, our analysis does not take this approach. Instead, we prove
the optimality without giving the exact bounds on competitive ratio.
Roughly speaking, given any online algorithm and a job instance, we
show the existence of another job instance for greedy such that (i) the
two instances admit the same optimal offline schedule; (ii) the cost of the
online algorithm is at least that of the greedy algorithm on the respective
job instance. With these properties, we can show that the competitive
ratio of the greedy algorithm is the smallest possible.

Keywords: Optimal online algorithm · Restricted assignment · Smart
grid scheduling.

1 Introduction

In this paper, we study online scheduling of unit-sized jobs in two related prob-
lems, namely, restricted assignment problem and smart grid problem. The input
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to the two problems are in close analogy but the objective functions are dif-
ferent. We show that the greedy algorithm is an optimal online algorithm for
both problems by showing that both objective functions have led to the same
property of the greedy algorithm. The property is crucial for the optimality of
the greedy algorithm.

Smart grid scheduling. The smart grid scheduling problem arises in de-
mand response management in electrical smart grid [16,21,23,35,48] - one of the
major challenges in the 21st century [15, 44, 45]. The smart grid [17, 37] makes
power generation, distribution and consumption more efficient through informa-
tion and communication technologies. One of the main challenges is that peak
demand hours happen only for a short duration, yet can make electrical grid
very inefficient. For example, in the US power grid, 10% of generation assets
and 25% of distribution infrastructure are required for the peak hours which
is roughly 5% of the whole time [13, 45]. Demand response management is to
reduce peak load by shifting demand to non-peak hours [11, 26, 34, 36, 38, 41]
through technological advances in smart meters [27]. It is beneficial to both the
power supplier and consumers. On one hand, it can bring down the cost of for
the supplier operating the grid [34]. On the other hand, it can reduce electricity
bill for consumers as it is common that suppliers charge according to generation
cost [41]. Research initiatives in the area include [24,33,40,43].

We consider online scheduling of unit-sized requests with the following input.
A consumer sends in a power request j with unit power requirement, unit dura-
tion of service, and feasible timeslots F (j) that j can be served. The operator of
the smart grid selects a timeslot from F (j) for each request j. The load of the
grid at each timeslot t is the number of requests allocated to t. The energy cost
is modeled by a strictly increasing convex function f(t) on load(t). The objective
is to minimize the total energy cost over time, i.e., minimize

∑
t f(load(t)).

Restricted assignment problem. The assignment problem [19, 20] and
its variant restricted assignment problem [7] have been extensively studied. The
assignment problem is concerned with a set of jobs and a set of machines in
which each job specifies a vector of processing times (a.k.a. load) it takes to
complete if it is assigned in the corresponding machine. The objective is to
minimize over the machines the total load of jobs scheduled on each machine.
For the restricted assignment problem, each job is associated with a processing
time (a.k.a. size) and a subset of machines that the job can be scheduled on.
As pointed out in [7], the restricted assignment problem can be applied to say
a wireless communication network where customers arriving one-by-one each
request a certain amount of service and must be assigned a base-station within
range to service it. We consider online scheduling of unit size jobs. This means
that a job increases the load of the assigned machine by one. The objective is to
minimize the maximum number of jobs assigned to any machine while satisfying
the assignment restriction constraints.

Our contribution. Notice that with unit size, the input for the grid schedul-
ing problem and the restricted assignment problem is indeed the same. Timeslots
in grid scheduling is in analogy to machines in restricted assignment; feasible
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timeslots in analogy to subset of machines; load of timeslots in analogy to load
of machines. The difference of the two problems lie in the objective functions.
Our main contribution is the following theorem about both problems.

Theorem 1. When the input to the grid scheduling problem and the restricted
assignment problem is a set of unit-sized jobs, the greedy algorithm is an optimal
online algorithm having the best possible competitive ratio.

Typically, an online algorithm is proved to be an optimal online algorithm
through bounding its competitive ratio and showing a lower bound with match-
ing competitive ratio. However, our analysis does not take this approach. Instead,
we prove the optimality without giving the exact bounds on competitive ratio.

Roughly speaking, given any online algorithm and a load configuration (to
be defined precisely later), we show the existence of two job instances J1 and
J2 such that (i) J1 and J2 admit the same optimal offline schedule represented
by the given load configuration; (ii) the cost of the schedule produced by the
given online algorithm on J1 is at least the cost of the schedule produced by the
greedy algorithm on J2. This means that when we consider any job instance for
the greedy algorithm, there is always another job instance such that the ratio
versus the (same) optimal offline schedule of the greedy algorithm is not larger
than any online algorithm. Hence, we can show that the competitive ratio of
the greedy algorithm is the smallest possible. The existence of the two job sets
relies on a property about the relative costs of two comparable schedules (see
Theorem 2). We show that this property holds for both objective functions for
the two problems in concern, hence, the optimality holds for both problems.

Related work on grid scheduling. The offline version of the grid problem
with unit power requirement and unit service duration can be solved optimally
in polynomial time [10]. The solution iteratively assigns each request and re-
arranges the assignment to maintain optimality. However in the online setting
where a request must be irrevocably scheduled, rearrangement is not allowed.
It is interesting to study the performance of the greedy strategy without the
rearrangement. A previous work [18] has studied the greedy strategy on the
problem with unit power requirement, unit service duration and cost function
f(t) = load2(t) and claimed that the algorithm is 2-competitive. However, as
stated in [31], the greedy algorithm is indeed at least 3-competitive. Hence, it is
still an open problem that how good or bad the greedy strategy is. Our results
in this paper establish the optimality of the greedy algorithm.

For arbitrary power requirement and service duration, the problem becomes
NP-hard [10, 26]. Theoretical study on this problem mainly focuses on the cost
function f(t) = loadα(t) [12,32]. In particular, Chau et al. [12] designed a greedy
algorithm based on a primal-dual approach and improved the upper bound on
the competitive ratio to O(αα), which is asymptotically optimal. Other work on
demand response management can be found in [26,34,35,41].

Related work on (restricted) assignment problem. Online (restricted)
assignment problem of jobs with arbitrary size has also been studied as the
problem of load balancing. When jobs can be scheduled on any (unrestricted)
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machine, Graham [19, 20] has showed that the greedy algorithm is (2 − 1
m )-

competitive where m is the number of machines and this has been improved to
2− ε in [8]. For restricted assignment, Azar et al. [7] have shown that the greedy
algorithm is (dlogme + 1)-competitive and no online algorithm can do better
than dlog(m + 1)e-competitive. This implies that the greedy algorithm is very
close to optimal. Our result indeed shows that the greedy algorithm is the best
possible online algorithm for unit-sized jobs although the precise competitive
ratio is yet to been established.

In the offline setting, the (unrestricted) assignment problem has also been
studied as scheduling on unrelated machines in which Lenstra et al. [30] have
shown a 2-approximation algorithm and that approximating the problem with
approximation ratio 3/2 is NP-hard. For restricted assignment, a breakthrough
was made by Svensson [42] who has shown that the integrality gap of the con-
figuration LP for the restricted assignment problem is at most 1.942. Various
special cases have been studied [14,22,25,29,39,46,47]. The (restricted and un-
restricted) assignment problem has also been studied for temporary jobs that
depart [2–4,6, 28].

Organization of the paper. We present some preliminaries in Section 2.
We then present a framework of analysis in Section 3 and establish the optimality
of the greedy algorithm in Section 4. Finally, we conclude in Section 5. Due to
space limit, proofs are given in the full paper.

2 Preliminaries

Problem definition. We unify the two problems as follows. We are given a set
of machines. Each job j has unit size and a set of permitted machines Pj , which
is a subset of machines where the job can be assigned to. A job instance J is a
set of jobs together with their release order. Two job instances can contain the
same set of jobs but with different release orders.

A schedule S(J) of a job instance J is an assignment assigning each job to
a machine. We simply use S when the context is clear. We denote the machine
where j is assigned to by the schedule S by mS(j). A schedule S is feasible if
each job j ∈ J is assigned to one of the machines in Pj . That is, S is feasible
if mS(j) ∈ Pj for all j in the job instance. We denote by A(J) the schedule
produced by a scheduling algorithm A on J . We denote the optimal offline
algorithm by O and its schedule O(J).

In a schedule S of some job instance J , the load of machine i, loadS(i), is the
number of jobs assigned to the machine i. That is, loadS(i) = |{j : mS(j) = i}|.
The cost of machine i, costS(i) is a strictly increasing convex function of the
load of i and costS(i) = 0 if the load of i is 0. We overload the notation and use
S(J) to also denote the total cost of schedule S with instance J , which is the
sum of costS(i) over the machines. The goal is to minimize the total cost S(J).

Online model. We consider the online model. The jobs are released one
by one, and the released job has to be scheduled before the next one is released.
And any time, the online algorithm knows only the released jobs without any
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knowledge about the future. The decisions of an online algorithm are made
irrevocably.

We measure the performance of online algorithms by competitive ratio [9],
which is defined as the maximum ratio between the cost of the online algorithm
and the cost of an optimal offline algorithm knowing the whole input.

The greedy algorithm G. When a job arrives, it is assigned to the machine
with the smallest number of jobs currently assigned.

A critical theorem. We first introduce a theorem which is useful when
comparing the costs of two schedules.

Definition 1. Consider an algorithm A, the level of job j decided by A, levelA(j),
is the number of jobs on the machine mA(j) right after the time when j is as-
signed to it. That is, a job with levelA(j) means that it is the levelA(j)-th job
assigned to mA(j) by A.

Definition 2. Given a schedule S produced by an algorithm A on job instance

J , the accumulated size at level k, L
(k)
S , is defined as the total number of jobs

with level at most k. That is, L
(k)
S := |{j : levelS(j) ∈ [1, k]}|.

Theorem 2. Given two schedules S1 and S2 which have the same number of

jobs (which are not necessary of the same job instance), if L
(k)
S1 ≥ L

(k)
S2 for all

k ≥ 1, then the cost of S1 is at most that of S2.

Proof. Let f(x) be the cost corresponding to load x. First of all, we observe that
the cost of schedule S can be written as∑

j∈J

(
f
(
levelS(j)

)
− f

(
levelS(j)− 1

))
. (1)

We claim that we can map each job j in S2 to a unique job j′ in S1 such that
levelS2(j) ≥ levelS1(j′). The claim can be proved inductively by first mapping

jobs in S2 at level 1 and because of L
(1)
S1 ≥ L

(1)
S2 , there are enough jobs in S1

at level 1 to have a unique mapping. Then we can map jobs in S2 at level 2

to unmapped jobs in S1 at level 1 and any jobs at level 2 because L
(2)
S1 ≥ L

(2)
S2 .

Since the number of jobs up to level i in S1 is always at least that in S2, we
can repeat this mapping for each level. The claim then follows. Furthermore,
as the cost function f is convex, we have f

(
levelS2(j)

)
− f

(
levelS2(j) − 1

)
≥

f
(
levelS1(j′)

)
− f

(
levelS1(j′) − 1

)
. Summing up over all pairs of mapped jobs

using Equation (1) concludes the theorem. ut

Remark: Note that Theorem 2 also holds for the objective of minimizing
the maximum load over machines. This objective is equivalent to `∞ norm by
viewing the loads of machines as a vector. Since `p norm for any p ≥ 1 is a valid
total cost function for the problem, the proof of Theorem 2 applies to `p norm.
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3 Framework of analysis

In this section, we give a framework of the analysis and we then present the
details of analysis in the next section. As proved in Theorem 2, we can compare
schedules by looking at some aggregate property of the schedule instead of the
precise allocation of which job in which machine. We further formalize this notion
as configuration of a schedule.

Given an arbitrary schedule S, the configuration of S, config(S), is defined as
the multi-set of loads of the machines. Two schedules are considered as having
the same configuration if they have the same multi-set of machine loads even
with different order. Moreover, we represent the configuration of a schedule as
the sequence of loads sorted from low to high and we can compute the cost of a
certain configuration.

Example. Consider a case with five machines and ten jobs, and two schedules
S1 and S2. Let `i be the load on machine mi. Suppose the load of S1 is `1 = 1,
`2 = 2, `3 = 2, `4 = 5, and `5 = 0; the load of S2 is `1 = 2, `2 = 1, `3 = 0, `4 = 2,
`5 = 5. The two schedules S1 and S2 have the same configuration (0, 1, 2, 2, 5).

The high level idea of the analysis is roughly as follows. We attempt to
find some “bad” instances for the greedy algorithm G and show that for each
such bad instance we can always find another bad instance for every other online
algorithm A such that the ratio of G to O on its bad instance is no more than the
ratio of A to O on its own bad instance. We can then bound the competitive ratio
of G by that ofA. We are going to find these bad instances through characterizing
the job instances by the configuration of their optimal schedules.

Let I be the set of all possible job instances. We partition I according to the
optimal configuration of job instances. Job instances J and J ′ are in the same
partition IC if and only if they both have the optimal configuration the same as
C. That is, config(O(J)) = config(O(J ′)) = C. The following are some properties
of IC .

Observation 1 Consider a partition IC and the corresponding optimal config-
uration C.

(1) Since the cost function is strictly increasing and convex, any two different
configurations have different cost. Hence, for each job instance J , there is exactly
one IC such that J ∈ IC, i.e., the partition is well defined.

(2) By definition, for any job instance J ∈ IC, config(O(J)) = C.
(3) For any two job instances J1, J2 ∈ IC, consider their optimal schedules

O1 and O2, respectively. Although config(O1) = config(O2), O1 may not be a
feasible schedule for J2, and neither the other way round.

With the above partition, we can express the competitive ratio of G, denoted
by R(G), as follows.

R(G) = max
J∈I

G(J)

O(J)
= max
IC

max
J∈IC

G(J)

O(J)
= max
IC

max
J∈IC

G(J)

C
.

This means that we can characterize the competitive ratio by considering the job
instance in each IC with the highest greedy cost. We denote this job instance
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as JG , i.e., for a given C, JG = arg maxJ∈IC G(J). It is not clear how to find
such job instances directly and instead we try to find their counter parts (bad
instances) for any online algorithm A which share the same C. Precisely, for any
online algorithm A, we show the existence of a job instance JA ∈ IC such that

A(JA) ≥ G(JG). This implies G(JG)
C ≤ A(JA)

C = A(JA)
O(JA) , where the last equality is

because that JA ∈ IC . We can then bound the competitive ratio of G by that of
A as follows:

R(G) = max
IC

max
J∈IC

G(JG)

C
≤ max
IC

max
J∈IC

A(JA)

O(A)
= R(A) .

Then we can conclude Theorem 1.

4 Optimality of the greedy algorithm

In this section, we construct JG and JA as required in the framework in Section 3.

4.1 The job instance JG for the greedy algorithm G

Given an optimal configuration C and the corresponding set of job instances IC ,
we aim to find a job instance JG ∈ IC such that JG is the most troublesome
job instance for G among all job instances in IC . That is, for any job instance
J ∈ IC , G(JG) ≥ G(J).

We find JG by artificially designing a job instance. More specifically, JG has
the same number of jobs as the given C, and we design the set of permitted
machines of each job and the release order of the jobs. First, we transform the
given C to schedule SG by changing the configuration. We make sure that C is the
optimal configuration of JG (Lemma 2) and the schedule SG is the consequence
of running a greedy algorithm on JG (Lemma 1). To achieve this, we design the
set of permitted machines of each job and choose the release order carefully

Although the job instance JG seems to be artificial, we can prove that G(JG)
is the highest among all job instances in IC (Corollary 1). That is, consider any
job set and any release order, as long as the job set with the release order has
optimal configuration C, its greedy cost is no greater than the greedy cost of JG .

Construction of the job instance JG. We aim to construct a job instance
with high greedy cost, i.e., we want the greedy schedule for the job instance to
have as few jobs at each level as possible. This can be done by setting a small
set of permitted machines. However, this may result in a high optimal cost as
well and the ratio between the greedy cost and the optimal cost is still small.
Hence we have to balance the greedy schedule and the feasibility of optimal
configuration of the job instance.

First we explain how to transform the given optimal configuration C to sched-
ule SG . Assume that C = (v1, v2, · · · , vk), where 0 < v1 ≤ v2 ≤ · · · ≤ vk, we
treat C as building blocks with k columns and each column i has vi blocks (where
each block corresponding to one job). The transformation runs in rounds, in each
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round, we choose certain number of blocks, remove them from C and put them
in SG (which is initially empty) and produce another configuration. During the
process, the configuration C changes to reflect the removing of blocks. Hence,
the number of non-zero terms in the configuration changes over the process as
well. The number of non-zero terms in the configuration in each round takes an
important role in our construction. We denote the number of non-zero terms in
the configuration at the beginning of round i by ni. Note that ni is also the
number of non-zero terms in the configuration at the end of round i− 1.

At the beginning of round i, let m1,m2, · · · ,mni
be the non-empty columns

in the configuration and v1 ≤ v2 ≤ · · · ≤ vni
be the number of blocks in the

corresponding non-empty columns. We remove the jobs one by one from the
lowest load non-empty column m1 and update the number of v1 to reflect the
moving. The removing procedure stops once the number of the set of removing

blocks in this round, J
(i)
G , is greater than or equal to the number of non-empty

columns in the current configuration (that is, the configuration after removing

the jobs). Notice that by the construction, ni+1 ≤ |J (i)
G | ≤ ni+1 + 1.

In round i, after removing the blocks from C, we place them in SG (which is
initially empty at the beginning of the first round). Recall that there are ni+1

non-empty columns in the (updated) C at the end of round i. Let K ′i denote the

corresponding set of these ni+1 non-empty columns. In SG , the blocks in J
(i)
G are

evenly placed at columns with highest load and cover all columns corresponding
to K ′i (Observation 2).

Now we design other parameters of the job instance JG . As mentioned before,
each block is corresponding to one job. For each job j, its permitted machines
are the machines corresponding to the columns the block was in C and SG .
That is, Pj = {mC(j)} ∪ {mSG (j)}, where mC(j) and mSG (j) are the columns
of block j in the configurations C and SG , respectively. The release order of
the jobs in JG is exactly the order their corresponding blocks removed from C.
Algorithm 1 is a demonstration to find the job instance JG . Figure 1a gives an
example configuration and Figure 1b is the corresponding JG of the configuration
in Figure 1a.

The construction guarantees that C and SG are feasible for JG.
We have to show that JG ∈ IC . Moreover, we show that SG generated during
the construction process is a greedy schedule for JG . That is, there is a greedy
algorithm for the input job set and the release order generating the schedule SG
(with a certain tie breaking).

Before showing the construction produces a desired JG , we first show that
Algorithm 1 is valid. More specifically, we prove that at the end of round i,

the level of each jobs j ∈ J (i)
G is equal to i (that is, in Algorithm 1, Line 10 is

achievable). This property of the construction is essential for proving that the
resulting schedule SG is a greedy schedule for JG .

Let Mi be the subset of machines we choose to place jobs in J
(i)
G , and K ′i be

the subset of non-empty machines in the updated configuration C′ at the end
of round i. We first observe the relation of machines in Mi and K ′i, which then
lead to the feasibility of SG (Lemma 1).



Greedy is Optimal for Online RA and SGS for Unit Size Jobs 9

Algorithm 1 Find JG

Input: The given configuration C = (v1, v2, · · · , vk), where 0 < v1 ≤ v2 ≤ v3 ≤ · · · ≤
vk.

Output: Job instance JG with job subsets J
(1)
G , J

(2)
G , · · ·

Schedule SG of JG
1: C′ ← C (we ignore all zero terms and only consider non-zero terms in C′)
2: while there is at least one job in the updated configuration C′ do
3: for round i = 1, 2, 3, · · · do
4: while |J(i)

G | < the number of non-zero entries in C′ = (v′1, v
′
2, · · · , v′k′

i
) do

5: Let j ← be a job with lowest level at v′1 (which is the non-zero vector
with the smallest index in C′)

6: Add j to J
(i)
G

7: Remove j from C; update C′
8: end while
9: Let Mi be a set of |J(i)

G | machines such that Mi covers all non-empty ma-

chines in C′ (which is K′i) and the machine mC(j) of the last job j ∈ J
(i)
G

10: Arrange the jobs in J
(i)
G evenly at the machines in Mi such that levelSG (j)

are the same for all jobs j ∈ J
(i)
G

11: The permitted machines of job j is {mC(j)} ∪mSG (j)}, where mC(j) and
mSG (j) are the machines j is assigned in C and SG , respectively.

12: end for
13: The release order of jobs is the order they are removed from C
14: end while

Observation 2 There is a G with some tie breaking to choose a subset Mi of

|J (i)
G | machines such that K ′i ⊆Mi.

Proof. First we notice that |Mi| = |J (i)
G | and |J (i)

G | ≥ |K ′i| by the construction
(Line 4 in Algorithm 1). By the construction (Line 9), Mi = K ′i or Mi = K ′i ∪
mC(j). The second case is the situation where mC(j) /∈ K ′i, that is, the removing

of j from C creates another empty machine. In this case, |J (i)
G | = |K ′i|+ 1. ut

Observation 3 For all jobs j ∈ J (i)
G , mC(j) ∈ K ′i−1. (K ′0 is defined as the whole

set of machines.)

Proof. In the updated C′, in the beginning of round i, the job j ∈ J (i)
G is at one

of the non-empty machines. That is, the position of job j in C, mC(j) is one of
the machines in K ′i−1. ut

Lemma 1. SG is a greedy schedule for JG.

Lemma 2. JG is a job instance in IC. That is, the optimal configuration of JG
is C.

The job instance JG is the most troublesome among IC for G. Now
we show that the job instance JG has the highest greedy cost among all job
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instances in IC . Recall that the schedule SG produced by Algorithm 1 is G(JG).
We compare SG with any greedy schedule of job instances in IC .

Lemma 3. Given any job instance J where J, JG ∈ IC for some IC, L
(k)
G(J) ≥

L
(k)
SG for all k.

By Lemma 3 and Theorem 2,

Corollary 1. Given any job instance J where J, JG ∈ IC for some IC, G(J) ≤
G(JG)

4.2 A job instance JA for an online algorithm A

Given an arbitrary online algorithm A and an optimal configuration C with the
corresponding set of job instances IC , we prove that there is a bad instance
JA ∈ IC for A such that A(JA) ≥ G(JG).

Find a job instance for any online algorithm A. Similar to the con-
struction of JG , we aim to construct a job instance which has a high cost for the
online algorithm A. However, unlike the greedy strategy, we have no knowledge
about the behavior of A. Hence we reference A as an oracle and design the job
instance such that every decision made by A makes some trouble for itself in the
future. Note that since A is an online algorithm, it is practicable for us to make
use of the history of A and design the next group of released jobs such that the
previous decisions of A become bad choices.

Given an optimal configuration C = (v1, v2, · · · , vk) where 0 < v1 ≤ v2 ≤
· · · ≤ vk. In each round i, we release the set of jobs at column corresponding to

vi as J
(i)
A . The permitted machines of jobs j ∈ J (i)

A is decided by the simulation of
A on jobs released in previous rounds. The number of these permitted machines
is k− i+1. Note that we can make the simulation since A is an online algorithm.
Algorithm 2 is a detailed instruction of finding JA. In the end, let SA be the
schedule returned by running A on JA.

Figure 1 is a demonstration to find the job instance JA. Figure 1c is the
corresponding JA for some online algorithm A of the configuration in Figure 1a.

By the construction, the output schedule SA is the result of running A on
job set JA (Line 4 in Algorithm 2). Now we need to prove that the job instance
JA satisfied the requirement that JA ∈ IC .

Lemma 4. O(JA) and C have the same configuration.

The property that A(JA) is at least G(JG). Recall that the schedule SA
produced by Algorithm 2 is A(JA). We compare SA with the greedy schedule
SG = G(JG) produced by Algorithm 1.

Observation 4 Given an optimal configuration C, there exists constructions of
JG and JA such that for any job in C, the corresponding jobs in JG and JA have
the same position in the release orders in JG and JA.
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Algorithm 2 Find JA

Input: The given configuration C = (v1, v2, · · · , vk), where 0 < v1 ≤ v2 ≤ v3 ≤ · · · ≤
vk.

Online scheduling algorithm A
Output: Job instance JA with job subsets J

(1)
A , J

(2)
A , · · ·

Schedule SA of JA
1: for round i = 1, 2, · · · , k do
2: Let t1, t2, · · · , tk−i+1 be the first k − (i − 1) machines with highest load in

A(
⋃i−1

j=1 J
(j)
A ).

3: J
(i)
A ← jobs at machine vi in C, where for each job j ∈ J

(i)
A , Pj =

{t1, t2, · · · , tk−i+1}
4: SA ← A(

⋃i
j=1 J

(j)
A ).

5: end for
6: The jobs in J

(i)
A released after J

(i−1)
A . For jobs within J

(i)
A , the jobs with lower level

in C are released before the jobs with higher level.

Proof. The release orders are the same due to the Line 5 in Algorithm 1 and the
Line 6 in Algorithm 2. ut

Lemma 5. Consider the schedules SA and SG, L
(k)
SG ≥ L

(k)
SA for all k.

By Lemma 5 and Theorem 2, we have

Corollary 2. Given any online algorithm A, G(JG) ≤ A(JA).

5 Conclusion

We have shown the optimality of greedy algorithm for online grid scheduling
and restricted assignment problem for unit-sized jobs. Nevertheless, we have not
been able to derive the precise competitive ratio of the greedy algorithm. It is
therefore of immediate interest to find the competitive ratio. As mentioned in the
introduction, in the restricted assignment problem for arbitrary sized jobs, the
greedy algorithm is almost the best online algorithm. Deriving a similar result for
the grid scheduling problem would be of interest. Another direction of research is
to consider `p norm. The assignment problem and restricted assignment problem
have been studied in `p norm [1, 5]. As far as we are aware, the general grid
problem with arbitrary duration and arbitrary power requirement has not been
studied in `p norm and it would be an interesting direction.

Acknowledgment. The authors would like to thank Marcin Bienkowski for
helpful discussion.
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Fig. 1: An example of finding JG and JA. (a) is a configuration with 8 jobs and 4
machines. To obtain JG , we first remove from (a) the jobs j1, j2 and j3, which are
in the lowest-load machines and the number of such jobs is at least the number
of non-empty machines: m3 and m4. These 3 jobs are assigned to m2,m3 and m4

in JG respectively. Then we remove j4 and j5 from (a) and assign them evenly
on the second level of JG . After that, we stack the remaining jobs onto JG such
that each job occupies a level since the current number of non-empty machines
in (a) is at most 1. The bottom part of (b) shows the permitted machines of
each job which is the union of machines the job assigned to in (a) and (b). On
the other hand, for finding JA for some A, we first release j1, which is at the
lowest-load machine in (a), with all machines being permitted and get that A
schedules j1 to m1. Then we release j2 and j3 with the permitted machines of
the 3 highest-load machines in the current JA, which are m1,m2 and m3. And
then we release j4 and j5 with the permitted machines m1 and m3. Finally we
release j6, j7 and j8 with the current highest-load machine as their permitted
machine.
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