Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Algorithm efficiency

Prudence Wong

Algorithmic Foundations
COMP108

Learning outcomes

> Able to carry out simple asymptotic analysis of
algorithms

Algorithmic Foundations
COMP108

Time Complexity Analysis
How fast is the algorithm?

? Code the algorithm and run the program,
then measure the running time

b 1. Depend on the speed of the computer

W2, Waste time coding and testing if the
algorithm is slow

.4 Identify some important operations/steps
and count how many times these
operations/steps needed to be executed

3

(Efficiency)

Algorithmic Foundations
COMP108

Time Complexity Analysis

How to measure efficiency?

i Number of operations usually expressed in
terms of input size

> If we doubled/trebled the input size, how much
longer would the algorithm take?

4

(Efficiency)

Algorithmic Foundations
COMP108

Why efficiency matters?

> speed of computation by hardware has been
improved

> efficiency still matters

> ambition for computer applications grow with
computer power

> demand a great increase in speed of computation

Algorithmic Foundations
COMP108

Amount of data handled matches

speed increase?

When computation speed vastly increased,
can we handle much more data?

Suppose
* an algorithm takes #¥ comparisons to sort n humbers
- we need /sec to sort 5 numbers (25 comparisons)
» computing speed /ncreases by factor of 100
Using 1 sec, we can now perform 22 comparisons, i.e.,
to sort 22 numbers
With 700 times speedup, only sort ?? times more numbers!

6

(Efficiency)

Algorithmic Foundations
COMP108

Time/Space Complexity Analysis

Important operation of input n
on: 't sum = 0
summation: addition S 1 e o de
How many additions this begin |
sum = sum + 1

algorithm requires? end

output sum

We need n additions
(depend on the input size n)

We need 3 variables n, sum, & i
= needs 3 memory space

In other cases, space complexity may
depend on the input size n

7

(Efficiency)

Algorithmic Foundations
COMP108

Look for improvement

Mathematical formula gives us an :zfluf 2* (n+1) /2
alternative way to find the sum of output sum

first n integers:
1+2+ ...+n=n(n+1)/2

We only need 3 operations:
1 addition, 1 multiplication, and 1 division
(no matter what the input size n is)

8

(Efficiency)

Algorithmic Foundations
COMP108

Improve Searching

We've learnt sequential search and it
takes n comparisons in the worst case.

If the numbers are pre-sorted, then we
can improve the time complexity of
searching by binary search.

9

(Efficiency)

Algorithmic Foundations
COMP108

Binary Search

more efficient way of searching when the sequence
of numbers is pre-sorted

Input: a sequence of n sorted numbers q;, a,, ..., a,
in ascending order and a humber X

Idea of algorithm:
> compare X with number in the middle

> then focus on only the first half or the second half
(depend on whether X is smaller or greater than the
middle number)

> reduce the amount of numbers to be searched by half

10

(Efficiency)

Algorithmic Foundations
COMP108

Binary Search (2)

37 11 12 15 19 24 33 41 55« 10r0s
24 «— X

19 24 33 41 55
24

19 24
24

24
24 found!

Algorithmic Foundations
COMP108

Binary Search (3)

37 11 12 15
30

19 24 33 41 55 10m0s

X

19 24 33 41 55
30

19 24
30

24
30 not found!

Algorithmic Foundations
COMP108

Binary Search - Pseudo Code

first =1

last = n | | is the floor function,
while (first <= last) do truncates the decimal part

begin \\\
mid = | (first+last) /2]
if (X == a[mid])

// check with no. in middle report "Found!" & stop
else

if (X < a[mid])
end last = mid-1
report "Not Found!" else

\\\ first = mid+1 ///

13

(Efficiency)

Algorithmic Foundations
COMP108

Binary Search - Pseudo Code

//;;ile first <= last do \\\\

begin

mid = | (first+last) /2]
if (X a[mid])

report "Found!" & stop
else

if (X < a[mid])

last = mid-1
else
first = mid+1

Modify it to
include stopping
conditions in the
while loop

14

(Efficiency)

Algorithmic Foundations
COMP108

Number of Comparisons

Best case:

Worst case:

Why?

Algorithmic Foundations
COMP108

Time complexity
- Big O notation ...

Algorithmic Foundations
COMP108

Note on Logarithm

Logarithm is the inverse of the power function

log, 2% = X log, x*y = log, x + log, y
For example, log, 4*8 = log, 4 + log, 8 = 2+3 = 5
0g, 1 = log, 290=0 log, 16*16 = log, 16 + log, 16 = 8
0g; 2 = log; 2* = 1 log, x/y = log, x - log, y
09, 4 = log, 22 =2 log, 32/8 = log, 32 - log, 8 = 5-3 = 2
095 16 = |092 24 - 4 log, 1/4 = log, 1 - log, 4 = 0-2 = -2

0g, 256 = log, 28 = 8
0g, 1024 = log, 21° = 10

17

(Efficiency)

Which algorithm is the fastest?

Algorithmic Foundations

COMP108

Consider a problem that can be solved by 5 algorithms
Ay, A,, Az, As, As using different number of operations

(time complexity).

f,(n) = 50n + 20
f3(n)=n2-3n+6

f,(n) =10 n log, n + 100
f4(n) = 2n°

fs5(n)=2"/8 -n/4 +2
n 1 2 4 8 16 32 64 128 256 512 1024 2048
fi(n) =50n + 20 70 120 220 420 820 1620 3220 6420 12820 25620 51220 102420
f,(n) =10 nlog,n + 100 100 120 180 340 740 1700 3940 9060 20580 46180 102500 225380
f3(nN)=n’-3n+6 4 4 10 46 214 934 3910 16006 64774 3E+05 1E+06 4E+06
fi(n) = 2n? 2 8 32 128 512 2048 8192 32768 131072 5E+05 2E+06 8E+06
fs(n) =2"/8 -n/4 + 2 2 3 32 8190 5E+08 2E+18

Quickest: <

f5(n)

o

e

f3(n) f1(n)

Depends on the size of the input!

18

(Efficiency)

Time

1000000

100000

10000

1000

100

10

16

32

64

128

Algorithmic Foundations
COMP108

— £,(n) = 50n + 20
f,(n) = 10 n log,n + 100
—+ f3(nN)=n2-3n+6
— f4(n) = 2n?
—x fg(n)=2"/8 -n/4+2

256 512 1024 2048 4096

19

(Efficiency)

Algorithmic Foundations
COMP108

What do we observe?

> There is huge difference between

> functions involving powers of n (e.g., n, n?, called
polynomial functions) and

> functions involving powering by n (e.g., 2", 3",
called exponential functions)

> Among polynomial functions, those with same
order of power are more comparable

»>e.g., f5(n) = n?-3n+ 6 and f,(n) = 2n?

Growth of functions

Algorithmic Foundations
COMP108

n |logn /n n nlogn n’ n 2"

2 1 1.4 2 2 4 8 4

4 2 2 4 8 16 64 16

8 3 28 8 24 64 512 256

16 4 4 16 64 256 4096 65536
32 5 5.7 32 160 1024 32768 4294967296
64 6 8 64 384 4096 262144 1.84 x 10%°
128 7 11.3 128 896 16384 2097152 3.40 x 10%
256 8 16 256 2048 65536 16777216 1.16 x 107"
512 9 22.6 512 4608 262144 134217728 1.34 x 10'°*
1024 | 10 32 1024 10240 1048576 1073741824

21

(Efficiency)

Algorithmic Foundations
COMP108

Relative growth rate

22

(Efficiency)

Algorithmic Foundations

COMP108

Hierarchy of functions

> We can define a hierarchy of functions each
having a greater order of growth than its
predecessor:

C log n nn2nd.. nk. 2n N
constant logarithmic polynomial exponential

> We can further refine the hierarchy by inserting
n log n between n and n?,
n? log n between n? and n3, and so on.

Algorithmic Foundations
COMP108

Hierarchy of functions (2)

C log n nnnd .. nk._ 2n N
constant logarithmic polynomial exponential

Note: as we move from left to right, successive
functions have greater order of growth than
the previous ones.

As n increases, the values of the later functions
increase more rapidly than the earlier ones.

= Relative growth rates increase

24

(Efficiency)

Algorithmic Foundations
COMP108

Hierarchy of functions (3)

. (log n)?
What about log® n & n?

Which is higher in hierarchy?

Remember: n = 2logn
So we are comparing (log n)3® & 2'°ea n
~. log® n is lower than n in the hierarchy

Similarly, log® n is lower than n in the hierarchy,
for any constant k

icienc

Algorithmic Foundations
COMP108

Hierarchy of functions (4)

S log n nn2nd.. nk. 2" N
constant logarithmic polynomial exponential

> Now, when we have a function, we can classify the
function to some function in the hierarchy:

> For example, f(n) = 2n3 + 5n2+ 4n + 7
The term with the highest power is 2n3.
The growth rate of f(n) is dominated by ns.

> This concept is captured by Big-O notation

26

(Efficiency)

Algorithmic Foundations
COMP108

Big-O notation

f(n) = O(g(n)) [read as f(n) is of order g(n)]

> Roughly speaking, this means f(n) is at most a
constant times g(n) for all large n

> Examples
> 2n3 = O(nd)
> 3n2 = O(n?)
> 2nlog n = O(n log n)
> n3 +n%=0(n3)

Algorithmic Foundations
COMP108

Exercise

Determine the order of growth of the
following functions.

1. N3+ 3n+ 3

2.4n°log h + N3+ 5n%+n
3.2n%+n¢logn

4.6n%+ 2"

Look for the term
highest in the hierarchy

More Exercise

Are the followings correct?
1. n%logn+n3+3n°+3

2. n+ 1000

3. 6n%0+ 2n

4. n3+bBn?logh+n

Algorithmic Foundations
COMP108

O(n¢log n)?
O(n)?
O(n29)?
O(nélog n) ?

Algorithmic Foundations
COMP108

Big-O notation - formal definition

f(n) = O(g(n))

> There exists a constant ¢ and n, such that
f(n) < c g(n) foralln>n,

> dc dn, Vn>n, then f(n) < ¢ g(n)

|

Graphical
Tllustration

J,

£
=

7000

6000

5000

4000

3000

2000

1000

0]

c gn) s

—

o
P

f(n)
7~

100 300 r‘() 500 700 900 1100

input size (n)

30

(Efficiency)

Algorithmic Foundations
COMP108

Example: n+60 is O(n)

dconstants ¢ & n, such
that Vron,, f(n) < c g(n)

400

350

300

250

Time

200

150

100

50

10 30 50 : 70 90 110 130 150 170 190
input size (n)

31

(Efficiency)

Algorithmic Foundations
COMP108

Which one is the fastest?

Usually we are only interested in the
asymptotic time complexity
> i.e., when n is large

O(log n) < O(log? n) < O(¥n) < O(n) < O(n log n) < O(n2) < O(2")

Algorithmic Foundations
COMP108

Proof of order of growth

v Sincen < n?vn21,
we have
2n2 + 4n < 2n? + 4n2

= 6n?

v Therefore, by definition, 2n2 + 4n is O(n2).

is NOT a proof

» Prove that 2n? + 4n is O(ﬂz) LNoTe: plotting a graph}

vn21.

> Alternatively,

we have
2n + 4n

<

v Since 4n < n? Vn24,

2n2 + n?

3n? vn24.

v Therefore, by definition, 2n?> + 4n is O(n?). >

(Efficiency)

Algorithmic Foundations
COMP108

Proof of order of growth (2)
» Prove that n3 + 3n2 + 3 is O(n3)

v Sincen? <ndand1 < n3vVvn21,

we have
n+3n2+3< n3+ 3n3 + 3n3

= 7nd vn21.
v Therefore, by definition, n3 + 3n? + 3 is O(n3).

> Alternatively,
v Since 3n? < n®Vn23,and 3 < n® Vn22

we have
n+3n2 +3 < 3n3 vn23.

v Therefore, by definition, n® + 3n? + 3 is O(n3).

34

(Efficiency)

Algorithmic Foundations
COMP108

Challenges

Prove the order of growth
1. 2n3 + N2+ 4n + 4 is O(n3)

2. 2n2+ 2" is O(2M

Some algorithms we learnt

Algorithmic Foundations
COMP108

S

N

-

st : input n
um of 1s* nintegers 7P 7
input n for 1 =1 to n do
sum = n*(n+l)/2 begin
output sum sum = sum + 1
end

O(?)

output sum

O(?)

~

/

“Min value among h numbers
1

loc
for i 2 to n do
if (a[i] < a[loc]) then

loc i
O(?)

output a[loc]

N

~

/

36

(Efficiency)

Time complexity of this?

for 1
for
X

]

1
X

to 2n do
1l to n do
+ 1

O(?)

Algorithmic Foundations
COMP108

_

The outer loop iterates for ?? times.
The inner loop iterates for ? times for each i.
Total: 2?2 * 2.

~

/

37

(Efficiency)

What about this?

i =1
count = 0
while 1 < n O(?)
begin

i1 =2 * 1

count = count + 1
end

output count

suppose n=8

Algorithmic Foundations
COMP108

(@ end of) i count
iteration
1 0]
1 2 1
2 4 2
3 8 3
suppose n=32
(@ end of) I count
iteration
1 0]
1 2 1
2 4 2
3 8 3
4 16 4
5 32 5 38

(ETTiciency)

