Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Algorithm efficiency

Prudence Wong

Learning outcomes

> Able to carry out simple asymptotic analysis of
algorithms

2

(Efficiency)

Algorithmic Foundations
COMP108

Time Complexity Analysis
How fast is the algorithm?

Code the algorithm and run the program,
then measure the running time

= 1. Depend on the speed of the computer

2. Waste time coding and testing if the
algorithm is slow

.4 Identify some important operations/steps
and count how many times these
operations/steps needed to be executed

3

(Efficiency)

Algorithmic Foundations
COMP108

Time Complexity Analysis

How to measure efficiency?

@ Number of operations usually expressed in
terms of input size

> If we doubled/trebled the input size, how much
longer would the algorithm take?

4

(Efficiency)

Algorithmic Foundations
COMP108

Why efficiency matters?

> speed of computation by hardware has been
improved

> efficiency still matters

> ambition for computer applications grow with
computer power

> demand a great increase in speed of computation

5

(Efficiency)

Algorithmic Foundations
COMP108

Amount of data handled matches
speed increase?

When computation speed vastly increased,
can we handle much more data?

Suppose
* an algorithm takes 72 comparisons to sort 7 numbers
* we need 7sec to sort 5 numbers (25 comparisons)
* computing speed /ncreases by factor of 100
Using 1 sec, we can now perform 22 comparisons, i.e.,
to sort 2?2 numbers
With 100 times speedup, only sort 22 times more numbers!

6

(Efficiency)

Algorithmic Foundations
COMP108

Time/Space Complexity Analysis

Important operation of input n

ion: /e sum = 0
summation: addition Y L te n 4o
How many additions this begin

sum = sum + i
end
output sum

algorithm requires?

We need n additions
(depend on the input size n)

We need 3 variables n, sum, & i
= needs 3 memory space

In other cases, space complexity may
depend on the input size n

7

(Efficiency)

Algorithmic Foundations
COMP108

Look for improvement

Mathematical formula gives us an i“ﬁ“t 2* (n+1) /2

. . u =
alternative way to find the sum of output sum
first n integers:

1+2+ .. .+n=n(n+1)/2

We only need 3 operations:
1 addition, 1 multiplication, and 1 division
(no matter what the input size n is)

8

(Efficiency)

Algorithmic Foundations

COMP108

Improve Searching

We've learnt sequential search and it
takes n comparisons in the worst case.

If the numbers are pre-sorted, then we
can improve the time complexity of
searching by binary search.

Algorithmic Foundations
COMP108

Binary Search

more efficient way of searching when the sequence
of numbers is pre-sorted

Input: a sequence of n sorted numbers q,, a,, ..., q,
in ascending order and a number X

Idea of algorithm:
> compare X with number in the middle

> then focus on only the first half or the second half
(depend on whether X is smaller or greater than the
middle number)

> reduce the amount of numbers to be searched by half

Algorithmic Foundations

COMP108

Binary Search (2)

37 11 12 15 19 24 33 41 BH < 10nos
24 — X

19 24 33 41 55
24

19 24
24

24
24 found!

Algorithmic Foundations

Binary Search (3)

37 11 12 15 19 24 33 41 55 < 10nes

30 — X
19 24 33 41 55
30
19 24
30
24
30 not found!

Algorithmic Foundations
COMP108

Binary Search - Pseudo Code

last = n | | is the floor function,

while (first <= last) do truncates the decimal part

begin
mid = | (first+last) /2] \

if (X == a[mid])

// check with no. in middle report "Found!" & stop

else
if (X < a[mid])
end last = mid-1
else

report "Not Found!"
first = mid+1 ///

13

(Efficiency)

Algorithmic Foundations
COMP108

Binary Search - Pseudo Code

ﬁhile first <= last do \

begin
mid = | (first+last) /2]
if (X == a[mid])
report "Found!" & stop
else
if (X < a[mid])
last = mid-1
else
first = mid+1

Modify it to
include stopping
conditions in the
while loop

@d

14

(Efficiency)

Algorithmic Foundations
COMP108

Number of Comparisons

Best case:

Worst case:

Why?

15

(Efficiency)

Algorithmic Foundations

Time complexity
- Big O notation ...

COMP108

Algorithmic Foundations
COMP10

Note on Logarithm

Logarithm is the inverse of the power function
X =
log, 2% = x log, x*y = log, x + log, y
log, 4*8 = log, 4 + log, 8 = 2+3 =5
log, 16*16 = log, 16 + log, 16 = 8

For example,
log, 1 =1log, 2°=0
_ 1 -
log, 2 = log, 2" =1 log, x/y = log, x - log, y
log, 32/8 = log, 32 - log, 8 =5-3 =2
log, 1/4 = log, 1 - log, 4 = 0-2 = -2

log, 4 = log, 22 = 2

log, 16 = log, 2% = 4
log, 256 = log, 28 = 8
log, 1024 = log, 21° =10

17

(Efficiency)

Algorithmic Foundations
OMP10

Which algorithm is the fastest?

Consider a problem that can be solved by 5 algorithms
Ay, Ay, Az, Ay, Ag using different number of operations
(time complexity).

fi(n) = 50n + 20 f,(n) = 10 n log, n + 100

fs(n)=n?-3n+6 fa(n) = 2n2

fs(n) = 2"/8 - n/4 + 2
n 1 2 4 8 16 32 64 128 256 512 1024 2048
f;(n) = 50n + 20 70 120 220 420 820 1620 3220 6420 12820 25620 51220 102420
f,(n) =10 n log,n + 100 100 120 180 340 740 1700 3940 9060 20580 46180 102500 225380
f3(n) = n?-3n+6 4 4 10 46 214 934 3910 16006 64774 3E+05 1E+06 4E+06
fi(n) = 2n? 2 8 32 128 512 2048 8192 32768 131072 5E+05 2E+06 8E+06
fs(n)=2"/8-n/4 + 2 2 2 3 32 8190 5E+08 2E+18

Quickest: < >< >< >

f5(n) f3(n) fi(n)
Depends on the size of the input! 18

(Efficiency)

Algorithmic Foundations
COMP108

1000000 -+ /

100000 /
10000

"

Q
E 1000
% — £,(n) = 50n + 20
100 —,— / f,(n) =10 n log,n + 100 |-
/ fi(n)=n?-3n+6
10 f4(n) = 2?]2 L

e fs(n)= 20/8 -n/4 + 2

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

n

19

(Efficiency)

Algorithmic Foundations
COMP108

What do we observe?

> There is huge difference between

» functions involving powers of n (e.g., n, n?, called
polynomial functions) and

> functions involving powering by n (e.g., 2", 3",
called exponential functions)

> Among polynomial functions, those with same
order of power are more comparable

>e.g., f3(n) =n?-3n+ 6 and f4(n) = 2n?

20

(Efficiency)

Algorithmic Foundations
COMP108

Growth of functions

n [logn v/n n nlogn n? n’ o

2 1 1.4 2 2 4 8 4

4 2 2 4 8 16 64 16

8 3 2.8 8 24 64 512 256

16 4 4 16 64 256 4096 65536
32) 5.7 32 160 1024 32768 4294967296
64 6 8 64 384 4096 262144 1.84 x 10'°
128 7 11.3 128 896 16384 2097152 3.40 x 10%8
256 8 16 256 2048 65536 16777216 1.16 x 107"
012 9 226 512 4608 262144 134217728 1.34 x 10%*
1024 | 10 32 1024 10240 1048576 1073741824

21

(Efficiency)

Relative growth rate

n
2 n2

log n

c

22

(Efficiency)

Algorithmic Foundations
COMP108

Hierarchy of functions

> We can define a hierarchy of functions each
having a greater order of growth than its

predecessor:
1 log n n n?n3..nk., 2n

T T T

constant logarithmic polynomial exponential

> We can further refine the hierarchy by inserting

n log n between n and n?,
n2 log n between n? and n3, and so on.

23

(Efficiency)

Algorithmic Foundations
COMP108

Hierarchy of functions (2)

1 log n n n2nd..nk.. 2n

T T T

constant logarithmic polynomial exponential

Note: as we move from left to right, successive
functions have greater order of growth than

the previous ones.

As n increases, the values of the later functions
increase more rapidly than the earlier ones.

= Relative growth rates increase

24

(Efficiency)

Algorithmic Foundations

COMP108

Hierarchy of functions (3)

. (logny®
What about log® n & n?

Which is higher in hierarchy?

Remember: n = 2logn
So we are comparing (log n)3 & 2leg n
~. log® n is lower than n in the hierarchy

Similarly, logk n is lower than n in the hierarchy,
for any constant k

25

(Efficiency)

Algorithmic Foundations
COMP108

Hierarchy of functions (4)

1 log n n n?nd3..nk.. 2n
constant logarithmic polynomial exponential

> Now, when we have a function, we can classify the
function to some function in the hierarchy:

> For example, f(n) = 2n3 + 5n?+ 4n + 7
The term with the highest power is 2n3.
The growth rate of f(n) is dominated by n3.

> This concept is captured by Big-O notation

26

(Efficiency)

Algorithmic Foundations

COMP108

Big-O notation

f(n) = O(g(n)) /read as (n) is of order g(n)]

> Roughly speaking, this means f(n) is at most a
constant times g(n) for all large n

> Examples
> 2n% = O(n3)
> 3n2 = O(n?)
> 2nlog n = O(n log n)
> n3+n2=0(n3)

27

(Efficiency)

Algorithmic Foundations
COMP108

Exercise

Determine the order of growth of the
following functions.

1. n3+3n%+3

2.4n%logn+n3+5n2+n

3.2n2+n?log n

4.6n2+ 2n

Look for the term 1
highest in the hierarchy

28

(Efficiency)

More Exercise

Are the followings correct?
1. nlogn+nd3+3n2+3

n + 1000

6n20 + 2n

n3+5n?logn+n

H wn

Algorithmic Foundations
COMP108

O(n?log n)?
O(n)?
0O(n29)?
O(n?log n) ?

29

(Efficiency)

Algorithmic Foundations
COMP108

Big-O notation - formal definition
f(n) = O(g(n))

> There exists a constant ¢ and n, such that
f(n) < c g(n) forall n>n,
» dc dn, Vn>n, then f(n) < ¢ g(n)

7000

6000

: ¢ g(n)
‘ Graphical 5000 a7
Tllustration o 4000 /\/'
£ P S
= 3000 — /
1 f(n)
2000
1000
0 :
100 300 Ng 500 700 900 1100 30

input size (n) (Efficiency)

Example: n+60 is O(n)

400 1 [c=2, ny=60]

Algorithmic Foundations
COMP108

Aconstants ¢ & n, such
that Vn>n,, f(n) < c g(n)

2n_~

350
o -

150
100 %‘
50

-

10 30 50 i 70 90 110
“o input size (n)

130 150 170 190

31

(Efficiency)

Algorithmic Foundations
COMP108

Which one is the fastest?

Usually we are only interested in the
asymptotic time complexity
> i.e., whennis large

O(log n) < O(log? n) < O(n) < O(n) < O(n log n) < O(n2) < O(2")

32

(Efficiency)

Algorithmic Foundations
COMP108

Proof of order of growth

> Prove that 2n? + 4n is O(n?) Note: plotting a graph
is NOT a proof

v Sincen < n2vVn21,

we have
2n2 + 4n < 2n2 + 4n?

= 6n? vn21.
v Therefore, by definition, 2n2 + 4n is O(n?).

> Alternatively,
v Since 4n < n? Vn24,

we have
2n2 + 4n < 2n2 + n?

= 3n? vn:4.
v Therefore, by definition, 2n? + 4n is O(n?).

33

(Efficiency)

Proof of order of growth (2)

> Prove that n® + 3n2 + 3 is O(n3)
v Sincen2 <ndand 1 < n®Vn:1,

we have
n+3n2+3< nd3+ 3nd+ 3nd

= 7n3 vn2l.

v Therefore, by definition, n3 + 3n2 + 3 is O(nd).

Algorithmic Foundations
COMP108

> Alternatively,
v Since 3n2 < n¥vn23,and 3 < n® Vn22

we have
nd+3n2+3 < 3nd vn23.

v Therefore, by definition, n3 + 3n? + 3 is O(n3).

34

(Efficiency)

Algorithmic Foundations
COMP108

Challenges

Prove the order of growth
1. 2n3+n2+4n+4is O(n3)

2.2n%+ 2" is O(2")

35

(Efficiency)

Algorithmic Foundations
COMP108

Some algorithms we learnt

Ve N
(st o ; input n \
Sum of 15" nintegers 7PVt ©

input n for i =1 to n do

sum = n* (n+l)/2 begin

output sum sum = sum + i

end

\ C)(?) output sum C)(?))
N S

Min value among n numbers

loc =1
for i = 2 to n do
if (a[i] < a[loc]) then

loc = 1

output a[loc] C)(?)

36

(Efficiency)

Algorithmic Foundations
COMP108

Time complexity of this?

for i = 1 to 2n do
for j =1 to n do
x=x+1 O(?)

The outer loop iterates for ?? times.
The inner loop iterates for ? times for each i.

Total: 22 * 2.

\\,,

37

(Efficiency)

What about this?

i=1
count = 0
while i < n o(?)
begin
i=2*i

count = count + 1
end
output count

suppose n=8

Algorithmic Foundations
COMP108

(@ end of) i | count
iteration
1 0
1 2 1
2 4 2
3 8 3
suppose n=32
(@ end of) i count
iteration
1 0
1 2 1
2 4 2
3 8 3
4 16 4
5 32 5 ®

(EMiciency)

