COMP108 Algorithmic Foundations

Algorithm efficiency

Prudence Wong

Learning outcomes

> Able to carry out simple asymptotic analysis of algorithms

(Efficiency)

Algorithmic Foundations

Algorithmic Foundations COMP108

Time Complexity Analysis

How fast is the algorithm?

Code the algorithm and run the program, then measure the running time

- 1. Depend on the speed of the computer
- 2. Waste time coding and testing if the algorithm is slow

Identify some important operations/steps and count how many times these operations/steps needed to be executed

Time Complexity Analysis

How to measure efficiency?

Number of operations usually expressed in terms of input size

> If we doubled/trebled the input size, how much longer would the algorithm take?

(Efficiency)

(Efficiency)

Why efficiency matters?

- > speed of computation by hardware has been improved
- > efficiency still matters
- > ambition for computer applications grow with computer power
- > demand a great increase in speed of computation

(Efficiency)

(Efficiency)

Amount of data handled matches speed increase?

When computation speed vastly increased, can we handle much more data?

Suppose

- an algorithm takes n^2 comparisons to sort n numbers
- we need 1 sec to sort 5 numbers (25 comparisons)
- · computing speed increases by factor of 100

Using 1 sec, we can now perform ?? comparisons, i.e., to sort 22 numbers

With 100 times speedup, only sort ?? times more numbers!

(Efficiency)

Algorithmic Foundations

Time/Space Complexity Analysis

Important operation of summation: addition

How many additions this algorithm requires?

input n for i = 1 to n do begin sum = sum + iend output sum

We need n additions (depend on the input size n)

We need 3 variables n, sum, & i \Rightarrow needs 3 memory space

> In other cases, space complexity may depend on the input size n

Look for improvement

Mathematical formula gives us an alternative way to find the sum of first n integers:

1 + 2 + ... + n = n(n+1)/2

input n sum = n*(n+1)/2output sum

We only need 3 operations:

(no matter what the input size n is)

1 addition, 1 multiplication, and 1 division

Improve Searching

We've learnt sequential search and it takes n comparisons in the worst case.

If the numbers are pre-sorted, then we can improve the time complexity of searching by binary search.

(Efficiency)

Algorithmic Foundations

COMP108

Binary Search

more efficient way of searching when the sequence of numbers is pre-sorted

Input: a sequence of n sorted numbers a_1 , a_2 , ..., a_n in ascending order and a number X

Idea of algorithm:

- > compare X with number in the middle
- then focus on only the first half or the second half (depend on whether X is smaller or greater than the middle number)
- > reduce the amount of numbers to be searched by half

(Efficiency)

Algorithmic Foundations

COMP108

10

Binary Search (2)

To find 24

3 7 11 12 15 19 24 33 41 55 ← 10 nos

19 2	4 33 24	41	55
19 2 24	_		
^	4		found

Binary Search (3)

To find 30

3 7 11 12 15 19 24 33 41 55 ← 10 no 30 ← x

19 24 33 41 55

19 24

30

24

30

not found!

Binary Search - Pseudo Code

```
first = 1
last = n
while (first <= last) do

begin

mid = \[ \text{(fi}
if (X == i)
report
else
if (X
last
report "Not Found!"</pre>
```

```
is the floor function, truncates the decimal part
```

```
mid = [(first+last)/2]
if (X == a[mid])
    report "Found!" & stop
else
    if (X < a[mid])
        last = mid-1
    else
        first = mid+1</pre>
```

13

(Efficiency)

Binary Search - Pseudo Code

```
while first <= last do
begin
  mid = [(first+last)/2]
  if (X == a[mid])
    report "Found!" & stop
  else
    if (X < a[mid])
        last = mid-1
    else
        first = mid+1
end</pre>
```

Modify it to include stopping conditions in the while loop

(Efficiency)

Algorithmic Foundations COMP108

Number of Comparisons

```
Best case:
```

Worst case:

Why?

Time complexity
- Big O notation ...

Algorithmic Foundations COMP108

Note on Logarithm

Logarithm is the inverse of the power function

$$log_2 2^x = x$$

For example,

$$\log_2 1 = \log_2 2^0 = 0$$

$$\log_2 2 = \log_2 2^1 = 1$$

$$\log_2 4 = \log_2 2^2 = 2$$

$$\log_2 16 = \log_2 2^4 = 4$$

$$\log_2 256 = \log_2 2^8 = 8$$

$$\log_2 1024 = \log_2 2^{10} = 10$$

$$\log_2 x^* y = \log_2 x + \log_2 y$$

 $\log_2 4^* 8 = \log_2 4 + \log_2 8 = 2 + 3 = 5$
 $\log_2 16^* 16 = \log_2 16 + \log_2 16 = 8$

$$log_2 \times / y = log_2 \times - log_2 y$$

 $log_2 32/8 = log_2 32 - log_2 8 = 5-3 = 2$
 $log_2 1/4 = log_2 1 - log_2 4 = 0-2 = -2$

17 (Efficiency)

(Efficiency)

Which algorithm is the fastest?

Consider a problem that can be solved by 5 algorithms A_1 , A_2 , A_3 , A_4 , A_5 using different number of operations (time complexity).

$$f_1(n) = 50n + 20$$
 $f_2(n) = 10 \text{ n } \log_2 n + 100$
 $f_3(n) = n^2 - 3n + 6$ $f_4(n) = 2n^2$
 $f_5(n) = 2^n/8 - n/4 + 2$

1	2	4	8	16	32	64	128	256	512	1024	2048
70	120	220	420	820	1620	3220	6420	12820	25620	51220	102420
100	120	180	340	740	1700	3940	9060	20580	46180	102500	225380
4	4	10	46	214	934	3910	16006	64774	3E+05	1E+06	4E+06
2	8	32	128	512	2048	8192	32768	131072	5E+05	2E+06	8E+06
2	2	3	32	8190	5E+08	2E+18					
	100	100 120 4 4	70 120 220 100 120 180 4 4 10 2 8 32	70 120 220 420 100 120 180 340 4 4 10 46 2 8 32 128	70 120 220 420 820 100 120 180 340 740 4 4 10 46 214 2 8 32 128 512	70 120 220 420 820 1620 100 120 180 340 740 1700 4 4 10 46 214 934 2 8 32 128 512 2048	70 120 220 420 820 1620 3220 100 120 180 340 740 1700 3940 4 4 10 46 214 934 3910 2 8 32 128 512 2048 8192	70 120 220 420 820 1620 3220 6420 100 120 180 340 740 1700 3940 9060 4 4 10 46 214 934 3910 16006 2 8 32 128 512 2048 8192 32768	70 120 220 420 820 1620 3220 6420 12820 100 120 180 340 740 1700 3940 9060 20580 4 4 10 46 214 934 3910 16006 64774 2 8 32 128 512 2048 8192 32768 131072	70 120 220 420 820 1620 3220 6420 1280 25620 100 120 180 340 740 1700 3940 9060 20580 46180 4 4 10 46 214 934 3910 16006 64774 3E+05 2 8 32 128 512 2048 8192 32768 131072 5E+05	70 120 220 420 820 1620 3220 6420 12820 25620 51220 100 120 180 340 740 1700 3940 9060 20580 46180 102500 4 4 10 46 214 934 3910 16006 64774 3E+05 1E+06 2 8 32 128 512 2048 8192 32768 131072 5E+05 2E+06

Quickest: $f_5(n)$ $f_3(n)$ $f_1(n)$

Depends on the size of the input!

(Efficiency)

(Efficiency)

Algorithmic Foundations

Algorithmic Foundations COMP108

What do we observe?

- > There is huge difference between
 - functions involving powers of n (e.g., n, n², called polynomial functions) and
 - > functions involving powering by n (e.g., 2ⁿ, 3ⁿ, called exponential functions)
- > Among polynomial functions, those with same order of power are more comparable

$$>$$
 e.g., $f_3(n) = n^2 - 3n + 6$ and $f_4(n) = 2n^2$

Growth of functions

n	$\log n$	\sqrt{n}	n	$n \log n$	n^2	n^3	2^n
2	1	1.4	2	2	4	8	4
4	2	2	4	8	16	64	16
8	3	2.8	8	24	64	512	256
16	4	4	16	64	256	4096	65536
32	5	5.7	32	160	1024	32768	4294967296
64	6	8	64	384	4096	262144	1.84×10^{19}
128	7	11.3	128	896	16384	2097152	3.40×10^{38}
256	8	16	256	2048	65536	16777216	1.16×10^{77}
512	9	22.6	512	4608	262144	134217728	1.34×10^{154}
1024	10	32	1024	10240	1048576	1073741824	

21 (Efficiency)

Relative growth rate

(Efficiency)

Algorithmic Foundations

Hierarchy of functions

> We can define a hierarchy of functions each having a greater order of growth than its predecessor:

> We can further refine the hierarchy by inserting n log n between n and n², n^2 log n between n^2 and n^3 , and so on.

Hierarchy of functions (2)

Note: as we move from left to right, successive functions have greater order of growth than the previous ones.

As n increases, the values of the later functions increase more rapidly than the earlier ones.

⇒ Relative growth rates increase

Algorithmic Foundations

Hierarchy of functions (3)

 $(log n)^3$

What about log3 n & n? Which is higher in hierarchy?

Remember: $n = 2^{\log n}$ So we are comparing (log n)3 & 2 log n $\therefore \log^3 n$ is lower than n in the hierarchy

Similarly, $\log^k n$ is lower than n in the hierarchy, for any constant k

25

(Efficiency)

Hierarchy of functions (4)

- > Now, when we have a function, we can classify the function to some function in the hierarchy:
 - > For example, $f(n) = 2n^3 + 5n^2 + 4n + 7$ The term with the highest power is 2n³. The growth rate of f(n) is dominated by n^3 .
- > This concept is captured by Big-O notation

(Efficiency)

Algorithmic Foundations COMP108

Algorithmic Foundations

Big-O notation

f(n) = O(q(n)) [read as f(n) is of order g(n)]

- > Roughly speaking, this means f(n) is at most a constant times q(n) for all large n
- > Examples

$$> 2n^3 = O(n^3)$$

$$> 3n^2 = O(n^2)$$

- > 2n log n = O(n log n)
- $> n^3 + n^2 = O(n^3)$

Exercise

Determine the order of growth of the following functions.

1.
$$n^3 + 3n^2 + 3$$

2.
$$4n^2 \log n + n^3 + 5n^2 + n$$

3.
$$2n^2 + n^2 \log n$$

$$4.6n^2 + 2^n$$

Look for the term highest in the hierarchy

More Exercise

Are the followings correct?

1.
$$n^2 \log n + n^3 + 3n^2 + 3$$

$$O(n^2 \log n)$$
?

$$O(n)$$
?

3.
$$6n^{20} + 2^n$$

4.
$$n^3 + 5n^2 \log n + n$$

$$O(n^2 \log n)$$
?

29 (Efficiency)

(Efficiency)

Algorithmic Foundations COMP108

Big-O notation - formal definition

$$f(n) = O(g(n))$$

> There exists a constant c and n_o such that $f(n) \le c g(n)$ for all $n > n_o$

 $\rightarrow \exists c \exists n_o \forall n > n_o \text{ then } f(n) \leq c g(n)$

Algorithmic Foundations COMP108

Example: n+60 is O(n)

 \exists constants c & n_o such that \forall n>n_o, $f(n) \le c g(n)$

Which one is the fastest?

Usually we are only interested in the *asymptotic* time complexity

> i.e., when n is large

 $O(\log n) \cdot O(\log^2 n) \cdot O(\sqrt{n}) \cdot O(n) \cdot O(n \log n) \cdot O(n^2) \cdot O(2^n)$

Proof of order of growth

```
> Prove that 2n² + 4n is O(n²)

✓ Since n ≤ n² ∀n≥1,

we have
2n² + 4n ≤ 2n² + 4n²

= 6n² ∀n≥1.
```

Note: plotting a graph is NOT a proof

 \checkmark Therefore, by definition, $2n^2 + 4n$ is $O(n^2)$.

```
> Alternatively,

✓ Since 4n \le n^2 \forall n \ge 4,

we have
2n^2 + 4n \le 2n^2 + n^2
= 3n^2 \forall n \ge 4.

✓ Therefore, by definition, 2n^2 + 4n is O(n^2).

(Efficiency)
```

Proof of order of growth (2)

```
> Prove that n^3 + 3n^2 + 3 is O(n^3)

✓ Since n^2 \le n^3 and 1 \le n^3 \forall n \ge 1,

we have
n^3 + 3n^2 + 3 \le n^3 + 3n^3 + 3n^3
= 7n^3 \forall n \ge 1.

✓ Therefore, by definition, n^3 + 3n^2 + 3 is O(n^3).
```

```
    Alternatively,
    ✓ Since 3n² ≤ n³ ∀n≥3, and 3 ≤ n³ ∀n≥2
    we have
    n³ + 3n² + 3 ≤ 3n³ ∀n≥3.
    ✓ Therefore, by definition, n³ + 3n² + 3 is O(n³).
```

34

(Efficiency)

Algorithmic Foundations

Algorithmic Foundations COMP108

Challenges

Prove the order of growth 1. $2n^3 + n^2 + 4n + 4$ is $O(n^3)$

```
2. 2n^2 + 2^n is O(2^n)
```

Some algorithms we learnt

```
Sum of 1<sup>st</sup> n integers

input n
sum = n*(n+1)/2
output sum

O(?)

input n
sum = 0
for i = 1 to n do
begin
sum = sum + i
end
output sum

O(?)
```

Min value among n numbers

```
loc = 1
for i = 2 to n do
   if (a[i] < a[loc]) then
      loc = i
output a[loc]
      O(?)</pre>
```

Algorithmic Foundations COMP108

Time complexity of this?

```
for i = 1 to 2n do

for j = 1 to n do

x = x + 1  O(?)
```

The outer loop iterates for $\ref{eq:condition}$? times. The inner loop iterates for $\ref{eq:condition}$ times for each $\ref{eq:condition}$. Total: $\ref{eq:condition}$? $\ref{eq:condition}$?

What about this?

suppose n=8

Algorithmic Foundations COMP108

(@ end of) iteration	i	count
	1	0
1	2	1
2	4	2
3	8	3

suppose n=32

(@ end of)	i	count
iteration		
	1	0
1	2	1
2	4	2
3	8	3
4	16	4
5	32	5

38

(Eniciency)

37

(Efficiency)