
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Polynomial & Exponential Algorithms

Prudence Wong

Algorithmic Foundations
COMP108

Learning outcomes

� See some examples of polynomial time and
exponential time algorithms

�Able to apply searching/sorting algorithms and
derive their time complexities

2

(Polynomial & Exponential)

Algorithmic Foundations
COMP108

Sequential/Binary search
i = 1

while i <= n do

begin

if X == a[i] then

report "Found!" & stop

else

first=1, last=n

while (first <= last) do

begin

mid = (first+last)/2
if (X == a[mid])

report "Found!" & stop

else

if (X < a[mid])

last = mid-1

3

(Polynomial & Exponential)

i = i+1

end

report "Not Found!"

Best case: X is 1st no.,
1 comparison, O(???)

Worst case: X is last OR
X is not found,
n comparisons, O(???)

last = mid-1

else first = mid+1

end

report "Not Found!"

Best case: X is the number in
the middle ⇒ 1 comparison,
O(???)

Worst case: at most log2n+1
comparisons, O(???)-time

Algorithmic Foundations
COMP108

Binary search vs Sequential search

Time complexity of sequential search is O(n)

Time complexity of binary search is O(log n)

Therefore, binary search is more efficient than
sequential search

4

(Polynomial & Exponential)

sequential search

Algorithmic Foundations
COMP108

Search for a pattern

We’ve seen how to search a number over a
sequence of numbers

What about searching a pattern of characters
over some text?

5

(Polynomial & Exponential)

A C G G A A T A A C T G G A A C Gtext:
A A Cpattern:

A C G G A A T A A C T G G A A C Gsubstring:

Example

Algorithmic Foundations
COMP108

String Matching

Given a string of n characters called the text and a
string of x characters (x≤n) called the pattern.

We want to determine if the text contains a
substring matching the pattern.

6

(Polynomial & Exponential)

A C G G A A T A A C T G G A A C Gtext:
A A Cpattern:

A C G G A A T A A C T G G A A C Gsubstring:

Example

Algorithmic Foundations
COMP108

The algorithm

The algorithm scans over the text position by
position.

For each position i, it checks whether the
pattern P[1..x] appears in T[i..(i+x-1)]

If the pattern exists, then report found & stop

7

(Polynomial & Exponential)

If the pattern exists, then report found & stop

Else continue with the next position i+1

If repeating until the end without success,
report not found

Algorithmic Foundations
COMP108

Example

A C G G A A T A A C T G G A A C G

A A C

A A C
A A C

A A C

T[]:

P[]:

bolded: match

crossed: not match

8

(Polynomial & Exponential)

A A C
A A C

A A C

A A C
A A C

crossed: not match

un-bolded: not considered

Algorithmic Foundations
COMP108

Match for each position

for i = 1 to n-x+1 do

begin

// check if P[1..x] match with T[i..(i+x-1)]

9

(Polynomial & Exponential)

end

report "Not found!"

Algorithmic Foundations
COMP108

Match pattern with T[i..(i+x-1)]
j = 1

while (j<=x && P[j]==T[i+j-1]) do

j = j + 1

if (j==x+1) then

2 cases when exit loop:
� j becomes x+1
� all matches

10

(Polynomial & Exponential)

report "found!" & stop

T[i] T[i+1] T[i+2] T[i+3] … T[i+x-1]

P[1] P[2] P[3] P[4] … P[x]

� all matches
OR
� P[j] ≠ T[i+j-1]
Х unmatched

Algorithmic Foundations
COMP108

Algorithm

for i = 1 to n-x+1 do

begin

j = 1

while (j<=x && P[j]==T[i+j-1]) do

j = j + 1

11

(Polynomial & Exponential)

j = j + 1

if (j==x+1) then

report "found!" & stop

end

report "Not found!"

Algorithmic Foundations
COMP108

Best case:
pattern appears at the
beginning of the text,
O(m)-time

Worst case:

Time Complexity
How many comparisons?

Best case:
pattern appears at the
beginning of the text,
O(???)-time

Worst case:Worst case:
pattern appears at the
end of the text OR
pattern does not exist,
O(nm)-time

12

(Polynomial & Exponential)

Worst case:
pattern appears at the
end of the text OR
pattern does not exist,
O(???)-time

Algorithmic Foundations
COMP108

More polynomial time
algorithms - sorting … algorithms - sorting …

Algorithmic Foundations
COMP108

Sorting

Input: a sequence of n numbers a1, a2, …, an

Output: arrange the n numbers into ascending
order, i.e., from smallest to largest

Example: If the input contains 5 numbers 132,
56, 43, 200, 10, then the output should be

14

(Polynomial & Exponential)

Example: If the input contains 5 numbers 132,
56, 43, 200, 10, then the output should be
10, 43, 56, 132, 200

There are many sorting algorithms:
bubble sort, insertion sort, merge sort, quick
sort, selection sort

Algorithmic Foundations
COMP108

Selection Sort

� find minimum key from the input sequence

� delete it from input sequence

� append it to resulting sequence

� repeat until nothing left in input sequence

15

(Polynomial & Exponential)

� repeat until nothing left in input sequence

Algorithmic Foundations
COMP108

Selection Sort - Example
� sort (34, 10, 64, 51, 32, 21) in ascending order

Sorted part Unsorted part To swap

34 10 64 51 32 21 10, 34

10 34 64 51 32 21 21, 34

10 21 64 51 32 34 32, 64

16

(Polynomial & Exponential)

10 21 64 51 32 34 32, 64

10 21 32 51 64 34 51, 34

10 21 32 34 64 51 51, 64

10 21 32 34 51 64 --

10 21 32 34 51 64

Algorithmic Foundations
COMP108

Selection Sort Algorithm
for i = 1 to n-1 do

begin

// find the index 'loc' of the minimum number
// in the range a[i] to a[n]

17

(Polynomial & Exponential)

swap a[i] and a[loc]

end

Algorithmic Foundations
COMP108

Selection Sort Algorithm
for i = 1 to n-1 do

begin // find index 'loc' in range a[i] to a[n]

loc = i

for j = i+1 to n do

if a[j] < a[loc] then

loc = j

18

(Polynomial & Exponential)

loc = j

swap a[i] and a[loc]

end

Algorithmic Foundations
COMP108

Algorithm Analysis

The algorithm consists of a
nested for-loop.

For each iteration of the
outer i-loop,
there is an inner j-loop.

19

(Polynomial & Exponential)

there is an inner j-loop.

Total number of comparisons
= (n-1) + (n-2) + … + 1
= n(n-1)/2

i # of comparisons
in inner loop

1 n-1

2 n-2

… ...

n-1 1

O(???)-time

Algorithmic Foundations
COMP108

Bubble Sort

starting from the first element, swap adjacent
items if they are not in ascending order

when last item is reached, the last item is the
largest

repeat the above steps for the remaining

20

(Polynomial & Exponential)

repeat the above steps for the remaining
items to find the second largest item, and so
on

Algorithmic Foundations
COMP108

Bubble Sort - Example
(34 10 64 51 32 21)

round
34 10 64 51 32 21

1 10 34 64 51 32 21 ←don’t need to swap

10 34 64 51 32 21
10 34 51 64 32 21

21

(Polynomial & Exponential)

10 34 51 64 32 21
10 34 51 32 64 21
10 34 51 32 21 64 ←don’t need to swap

2 10 34 51 32 21 64 ←don’t need to swap

10 34 51 32 21 64
10 34 32 51 21 64
10 34 32 21 51 64

underlined: being considered

italic: sorted

Algorithmic Foundations
COMP108

Bubble Sort - Example (2)
round

10 34 32 21 51 64 ←don’t need to swap

3 10 34 32 21 51 64
10 32 34 21 51 64
10 32 21 34 51 64 don’t need to swap

22

(Polynomial & Exponential)

10 32 21 34 51 64 ←don’t need to swap

4 10 32 21 34 51 64
10 21 32 34 51 64 ←don’t need to swap

5 10 21 32 34 51 64

underlined: being considered

italic: sorted

Algorithmic Foundations
COMP108

Bubble Sort Algorithm

for i = n downto 2 do

for j = 1 to i-1 do

if (a[j] > a[j+1])

swap a[j] & a[j+1]

the largest will be moved to a[i]

start from a[1],
check up to a[i-1]

23

(Polynomial & Exponential)

34 10 64 51 32 21
i = 6

j = 5
j = 4j = 3

j = 2j = 1

i = 5

j = 1 j = 2

j = 3 j = 4

Algorithmic Foundations
COMP108

Algorithm Analysis

The algorithm consists of a nested for-loop.

24

(Polynomial & Exponential)

Total number of comparisons
= (n-1) + (n-2) + … + 1
= n(n-1)/2

i # of comparisons
in inner loop

n n-1

n-1 n-2

… ...

2 1

O(???)-time

Algorithmic Foundations
COMP108

Insertion Sort (self-study)

look at elements one by one

build up sorted list by inserting the element at the
correct location

25

(Polynomial & Exponential)

Algorithmic Foundations
COMP108

Example
� sort (34, 8, 64, 51, 32, 21) in ascending order

Sorted part Unsorted part int moved to right

34 8 64 51 32 21

34 8 64 51 32 21 -

8 34 64 51 32 21 34

26

(Polynomial & Exponential)

8 34 64 51 32 21 34

8 34 64 51 32 21 -

8 34 51 64 32 21 64

8 32 34 51 64 21 34, 51, 64

8 21 32 34 51 64 32, 34, 51, 64

Algorithmic Foundations
COMP108

Insertion Sort Algorithm
for i = 2 to n do

begin

key = a[i]

loc = 1

while (a[loc] < key) && (loc < i) do

loc = loc + 1

using sequential search
to find the correct
position for key

27

(Polynomial & Exponential)

loc = loc + 1

shift a[loc], …, a[i-1] to the right

a[loc] = key

end

finally, place key
(the original a[i]) in

a[loc]

i.e., move a[i-1] to a[i],
a[i-2] to a[i-1], …,
a[loc] to a[loc+1]

Algorithmic Foundations
COMP108

Algorithm Analysis
Worst case input

� input is sorted in
descending order

Then, for a[i]

finding the position

28

(Polynomial & Exponential)

� finding the position
takes i-1 comparisons

total number of comparisons
= 1 + 2 + … + n-1
= (n-1)n/2

i # of comparisons in
the while loop

2 1

3 2

… ...

n n-1
O(???)-time

Algorithmic Foundations
COMP108

Selection, Bubble, Insertion Sort

All three algorithms have time complexity O(n2) in
the worst case.

Are there any more efficient sorting algorithms?
YES, we will learn them later.

What is the time complexity of the fastest

29

(Polynomial & Exponential)

What is the time complexity of the fastest
comparison-based sorting algorithm?
O(n log n)

Algorithmic Foundations
COMP108

Some exponential time
algorithms – Traveling
Salesman Problem, Salesman Problem,
Knapsack Problem …

Algorithmic Foundations
COMP108

Traveling Salesman Problem

Input: There are n cities.

Output: Find the shortest tour from a particular
city that visit each city exactly once before
returning to the city where it started.

31

(Polynomial & Exponential)

This is known as
Hamiltonian circuit

Algorithmic Foundations
COMP108

Example
a b

c d

2

5

1

7 8 3

Tour Length

a -> b -> c -> d -> a 2 + 8 + 1 + 7 = 18

To find a Hamiltonian
circuit from a to a

32

(Polynomial & Exponential)

a -> b -> c -> d -> a 2 + 8 + 1 + 7 = 18

a -> b -> d -> c -> a 2 + 3 + 1 + 5 = 11

a -> c -> b -> d -> a 5 + 8 + 3 + 7 = 23

a -> c -> d -> b -> a 5 + 1 + 3 + 2 = 11

a -> d -> b -> c -> a 7 + 3 + 8 + 5 = 23

a -> d -> c -> b -> a 7 + 1 + 8 + 2 = 18

Algorithmic Foundations
COMP108

Idea and Analysis

A Hamiltonian circuit can be represented by a
sequence of n+1 cities v1, v2, …, vn, v1, where
the first and the last are the same, and all
the others are distinct.

Exhaustive search approach: Find all tours in

33

(Polynomial & Exponential)

Exhaustive search approach: Find all tours in
this form, compute the tour length and find
the shortest among them.

How many possible tours to consider?

Algorithmic Foundations
COMP108

Knapsack Problem

What to take? so that…
1. Not too heavy
2.Most valuable

34

(Polynomial & Exponential)

Algorithmic Foundations
COMP108

Knapsack Problem

Input: Given n items with weights w1, w2, …, wn
and values v1, v2, …, vn, and a knapsack with
capacity W.

Output: Find the most valuable subset of items
that can fit into the knapsack.

35

(Polynomial & Exponential)

that can fit into the knapsack.

Application: A transport plane is to deliver the
most valuable set of items to a remote
location without exceeding its capacity.

Algorithmic Foundations
COMP108

Example

w = 7
v = 42

w = 3
v = 12

w = 4
v = 40

w = 5
v = 25

item 1 item 2 item 3 item 4 knapsack

capacity = 10

total total total total

36

(Polynomial & Exponential)

total total
subset weight value

φ 0 0
{1} 7 42
{2} 3 12
{3} 4 40
{4} 5 25
{1,2} 10 54
{1,3} 11 N/A
{1,4} 12 N/A

total total
subset weight value

{2,3} 7 52
{2,4} 8 37
{3,4} 9 65
{1,2,3} 14 N/A
{1,2,4} 15 N/A
{1,3,4} 16 N/A
{2,3,4} 12 N/A
{1,2,3,4} 19 N/A

Algorithmic Foundations
COMP108

Idea and Analysis

Exhaustive search approach:

� Try every subset of the set of n given items

� compute total weight of each subset and

� compute total value of those subsets that do

37

(Polynomial & Exponential)

� compute total value of those subsets that do
NOT exceed knapsack's capacity.

How many subsets to consider?

Algorithmic Foundations
COMP108

Suppose you have forgotten a password with 5
characters. You only remember:

� the 5 characters are all distinct

� the 5 characters are B, D, M, P, Y

Exercises (1)

If you want to try all possible combinations,
how many of them in total?

What if the 5 characters can be any of the 26
upper case letters?

38

(Polynomial & Exponential)

Algorithmic Foundations
COMP108

Suppose the password still has 5 characters

� the characters may NOT be distinct

� each character can be any of the 26 upper
case letter

Exercises (2)

How many combinations are there?

39

(Polynomial & Exponential)

Algorithmic Foundations
COMP108

What if the password is in the form adaaada?

� a means letter, d means digit

� all characters are all distinct

� the 5 letters are B, D, M, P, Y

Exercises (3)

� the 5 letters are B, D, M, P, Y

� the digit is either 0 or 1

How many combinations are there?

40

(Polynomial & Exponential)

