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How to Measure 4L?

a 3L container &
a 5L container 
(without mark)

infinite supply of water
3L

5L

You can pour water from one 
container to another 

How to measure 4L of water?

Algorithmic Foundations
COMP108

Learning outcomes

� Able to tell what an undirected graph is and what 
a directed graph is

� Know how to represent a graph using matrix and 
list

� Understand what Euler circuit is and able to 
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(Graph)

� Understand what Euler circuit is and able to 
determine whether such circuit exists in an 
undirected graph

� Able to apply BFS and DFS to traverse a graph

� Able to tell what a tree is
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Graph …
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Graphs

Graph theory – an old subject with many modern 
applications.

introduced in the 
18th century

An undirected graph G=(V,E) consists of a set of 
vertices V and a set of edges E. Each edge is an 
unordered pair of vertices. (E.g., {b,c} & {c,b} refer to the 
same edge.)
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(Graph)

unordered pair of vertices. (E.g., {b,c} & {c,b} refer to the 
same edge.)

A directed graph G=(V,E) consists of … Each edge is 
an ordered pair of vertices. (E.g., (b,c) refer to an edge 
from b to c.)

a b

c d

e

f

a b

c d

e

f
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Applications of graphs

In computer science, graphs are often used to model

� computer networks,

� precedence among processes,

� state space of playing chess (AI applications)

resource conflicts, …
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� resource conflicts, …

In other disciplines, graphs are also used to model 
the structure of objects. E.g., 

� biology - evolutionary relationship

� chemistry - structure of molecules
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Undirected graphs

Undirected graphs:
� simple graph: at most one edge between two 
vertices, no self loop (i.e., an edge from a vertex to 
itself).

� multigraph: allows more than one edge between two 
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(Graph)

� multigraph: allows more than one edge between two 
vertices.

a b

c d

e

fReminder: An undirected graph G=(V,E) 
consists of a set of vertices V and a set 
of edges E. Each edge is an unordered 
pair of vertices.
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Undirected graphs

In an undirected graph G, suppose that e = {u, v} is an 
edge of G

� u and v are said to be adjacent and called neighbors
of each other.

� u and v are called endpoints of e.
ve

deg(v) = 2
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� u and v are called endpoints of e.
� e is said to be incident with u and v.
� e is said to connect u and v.

� The degree of a vertex v, denoted by deg(v), is the 
number of edges incident with it (a loop contributes 
twice to the degree)

u

ve

deg(u) = 1
w
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Representation (of undirected graphs)

An undirected graph can be represented by 
adjacency matrix, adjacency list, incidence 
matrix or incidence list.

Adjacency matrix and adjacency list record the 
relationship between vertex adjacency, i.e., a 
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relationship between vertex adjacency, i.e., a 
vertex is adjacent to which other vertices

Incidence matrix and incidence list record the 
relationship between edge incidence, i.e., an edge 
is incident with which two vertices
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Data Structure - Matrix

Rectangular / 2-dimensional array

�m-by-n matrix

• m rows

• n columns

m-by-n matrix
ai,j n columns

a1,1 a1,2 a1,3 … a1,n
a2,1 a2,2 a2,3 … a2,n

� ai,j
• row i, column j
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a2,1 a2,2 a2,3 … a2,n
m rows a3,1 a3,2 a3,3 … a3,n

am,1 am,2 am,3 … am,n
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Data Structure - Linked List

List of elements (nodes) connected together like a 
chain

Each node contains two fields:

� "data" field: stores whatever type of elements

data next

"data" field: stores whatever type of elements

� "next" field: pointer to link this node to the next 
node in the list

Head / Tail

� pointer to the beginning & end of list
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10 30 20
head tail

Algorithmic Foundations
COMP108

Data Structure - Linked List
Queue (FIFO: first-in-first-out)

Insert element (enqueue) to tail

Remove element (dequeue) from head

10 30 20head tail
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(Graph)

Insert 40 10 30 20head tail40

create newnode of 40; tail.next = newnode; tail = tail.next

Remove 10 30 20head tail40

return whatever head points to; head = head.next
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Adjacency matrix / list

Adjacency matrix M for a simple undirected graph 
with n vertices is an nxn matrix

�M(i, j) = 1 if vertex i and vertex j are adjacent

�M(i, j) = 0 otherwise

Adjacency list: each vertex has a list of vertices 
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Adjacency list: each vertex has a list of vertices 
to which it is adjacent

a b

c d
e

a b c d e
a 0 0 1 1 0
b 0 0 1 1 0
c 1 1 0 1 1
d 1 1 1 0 1
e 0 0 1 1 0

a

b

c

d

e

c

a

c

c

d

db

d

d

e
a cb e
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Incidence matrix / list
Incidence matrix M for a simple undirected graph 
with n vertices and m edges is an mxn matrix
�M(i, j) = 1 if edge i and vertex j are incidence

�M(i, j) = 0 otherwise

Incidence list: each edge has a list of vertices to 
which it is incident with
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(Graph)

which it is incident with

a b

c d
e

a b c d e
1 1 0 1 0 0
2 1 0 0 1 0
3 0 1 1 0 0
4 0 1 0 1 0
5 0 0 1 1 0
6 0 0 0 1 1
7 0 0 1 0 1

1
2 3

4
5

6

7

1
2
3
4
5

a
b

a

c

c

c

d

d

b d

6
7 c e

d elabels of edge 
are edge number

Algorithmic Foundations
COMP108

Exercise
Give the adjacency matrix and incidence matrix of 
the following graph

a b c

1
2

4

a b c d e f
a
b
c
d
e

15

(Graph)

d e f

labels of edge 
are edge number

1

3 5

e
f

a b c d e f
1
2
3
4
5
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Directed graph …
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Directed graph
Given a directed graph G, a vertex a is said to be 
connected to a vertex b if there is a path from
a to b.

E.g., G represents the routes provided by a certain 
airline. That means, a vertex represents a city and 
an edge represents a flight from a city to another 
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(Graph)

an edge represents a flight from a city to another 
city. Then we may ask question like: Can we fly from 
one city to another?

Reminder: A directed graph 
G=(V,E) consists of a set of 
vertices V and a set of 
edges E. Each edge is an 
ordered pair of vertices.

a b

c d
e

E = { (a,b), (b,d), 
(b,e), (c,b), (c,e), 
(d,e) }

N.B. (a,b) is in E, 
but (b,a) is NOT
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In/Out degree (in directed graphs)

The in-degree of a vertex v is the number of 
edges leading to the vertex v.

The out-degree of a vertex v is the number of 
edges leading away from the vertex v.
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v in-deg(v) out-deg(v)
a 0 1
b 2 2
c 0 2
d 1 1
e 3 0
sum: 6 6 Always equal?

a b

c d
e
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Representation (of directed graphs)

Similar to undirected graph, a directed graph can 
be represented by
adjacency matrix, adjacency list, incidence 
matrix or incidence list.
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Adjacency matrix / list
Adjacency matrix M for a directed graph with n 
vertices is an nxn matrix
�M(i, j) = 1 if (i,j) is an edge
�M(i, j) = 0 otherwise

Adjacency list:
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Adjacency list:
� each vertex u has a list of vertices pointed to by 
an edge leading away from u

a b c d e
a 0 1 0 0 0
b 0 0 0 1 1
c 0 1 0 0 1
d 0 0 0 0 1
e 0 0 0 0 0

a

b

c

d

e

d

b

b

e

e

e

a b

c d
e
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Incidence matrix / list
Incidence matrix M for a directed graph with n 
vertices and m edges is an mxn matrix
�M(i, j) = 1 if edge i is leading away from vertex j

�M(i, j) = -1 if edge i is leading to vertex j

Incidence list: each edge has a list of two 
vertices (leading away is 1st and leading to is 2nd)
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Incidence list: each edge has a list of two 
vertices (leading away is 1st and leading to is 2nd)

a b c d e
1 1 -1 0 0 0
2 0 -1 1 0 0
3 0 1 0 -1 0
4 0 1 0 0 -1
5 0 0 0 1 -1
6 0 0 1 0 -1

1
2
3
4
5

c
b

a

d

b

d

e

b

b e

6 c e

a b

c d
e

1

2 3
4

5

6
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Exercise
Give the adjacency matrix and incidence matrix of 
the following graph

a b c

1
2

a b c d e f
a
b
c
d
e
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d e f

labels of edge 
are edge number

1

3

e
f

a b c d e f
1
2
3
4
5
6

5
6
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Euler circuit …
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Paths, circuits (in undirected graphs)

� In an undirected graph, a path from a vertex u 
to a vertex v is a sequence of edges e1= {u, x1}, 
e2= {x1, x2}, …en= {xn-1, v}, where n≥1.

� The length of this path is n.

� Note that a path from u to v implies a path 
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(Graph)

� Note that a path from u to v implies a path 
from v to u.

� If u = v, this path is called a circuit (cycle).

u

v
e1 e2

en



Algorithmic Foundations
COMP108

Euler circuit

A simple circuit visits an edge at most once.

An Euler circuit in a graph G is a circuit visiting 
every edge of G exactly once.
(NB. A vertex can be repeated.)
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Does every graph has an Euler circuit ?

a b

c d
e

a c b d e c d a

a b

c d
e

no Euler circuit
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History: In Konigsberg, Germany, a river ran through 
the city and seven bridges were built. The people 
wondered whether or not one could go around the 
city in a way that would involve crossing each bridge 
exactly once.

26

(Graph)
no Euler circuit

5
1 2

3 4
6

7a

b

c

d1
2

3
4

5

6

7

bridges

a

b

c

d

river banks
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Necessary and sufficient condition
Let G be a connected graph. 

Lemma: G contains an Euler circuit if and only if 
degree of every vertex is even.
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Hamiltonian circuit
Let G be an undirected graph.

A Hamiltonian circuit is a circuit containing every 
vertex of G exactly once.

Note that a Hamiltonian circuit may NOT visit all 
edges.
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(Graph)

edges.

Unlike the case of Euler circuits, determining 
whether a graph contains a Hamiltonian circuit is 
a very difficult problem. (NP-hard)
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Breadth First Search BFS …
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Breadth First Search (BFS)

All vertices at distance k from s are explored 
before any vertices at distance k+1.

a b c

The source is a. Order of exploration
a, 
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a b

d e f

c
a, 

g h k
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Breadth First Search (BFS)

a b c

Order of exploration
a, b, e, d

Distance 1 from a.
The source is a.
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a b

d e f

c
a, b, e, d

g h k
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Breadth First Search (BFS)

a b c

The source is a. Order of exploration
a, b, e, d, c, f, h, g
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a b

d e f

c
a, b, e, d, c, f, h, g

g h k

Distance 2 from a.
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Breadth First Search (BFS)

a b c

The source is a. Order of exploration
a, b, e, d, c, f, h, g, k
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a b

d e f

c
a, b, e, d, c, f, h, g, k

g h k Distance 3 from a.

Algorithmic Foundations
COMP108

…

In general (BFS)

…

distance 0

Explore dist 2 frontier

s

distance 1

distance 2

Explore dist 1 frontier

Explore dist 0 frontier
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…
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Breadth First Search (BFS)

A simple algorithm for searching a graph.

Given G=(V, E), and a distinguished source vertex s, 
BFS systematically explores the edges of G such 
that

all vertices at distance k from s are explored 
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� all vertices at distance k from s are explored 
before any vertices at distance k+1.
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BFS – Pseudo code

unmark all vertices
choose some starting vertex s 
mark s and insert s into tail of list L

while L is nonempty do
begin

36

(Graph)

begin
remove a vertex v from front of L
visit v
for each unmarked neighbor w of v do

mark w and insert w into tail of list L

end
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BFS using linked list

a b

d e f

c

g h k

ahead tail

bhead taile d

ehead taild c f
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a, b, e, d, c, f, h, g, k
head taild c f

chead tailf h g

head tailf h g

head tailh g k
& so on …
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Depth First Search DFS …
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Edges are explored from the most recently 
discovered vertex, backtracks when finished

Depth First Search (DFS)

Order of exploration
a, 

a b c

The source is a.
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(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
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Depth First Search (DFS)

Order of exploration
a, 

a b c

The source is a.
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(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k

search space
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search space

Depth First Search (DFS)

Order of exploration
a, b

a b c

The source is a.
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DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
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Depth First Search (DFS)

Order of exploration
a, b, c

a b c

The source is a.
search space
is empty
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(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
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Depth First Search (DFS)

Order of exploration
a, b, c

a b c

The source is a.

search space
43

(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k

nowhere to go, backtrack
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Depth First Search (DFS)

Order of exploration
a, b, c, f

a b c

The source is a.

search space
44

(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
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Depth First Search (DFS)

Order of exploration
a, b, c, f, k

a b c

The source is a.
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(Graph)search space is empty

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
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Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

a b c

The source is a.

search space
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DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
backtrack
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Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

a b c

The source is a.

search space
47

(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k

backtrack

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d

a b c

The source is a.
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(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k

search space
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Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h

a b c

The source is a.
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(Graph)search space is empty

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h

a b c

The source is a.
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DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k

search space backtrack
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Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h, g

a b c

The source is a.
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(Graph)search space is empty

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
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Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h, g

a b c

The source is a.

DONE!
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(Graph)

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

g h k
backtrack

DONE!
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Depth First Search (DFS)

Depth-first search is another strategy for 
exploring a graph; it search "deeper" in the 
graph whenever possible.

� Edges are explored from the most recently 
discovered vertex v that still has unexplored 
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discovered vertex v that still has unexplored 
edges leaving it.

�When all edges of v have been explored, the 
search "backtracks" to explore edges leaving the 
vertex from which v was discovered.

Algorithmic Foundations
COMP108

DFS – Pseudo code (recursive)

Algorithm DFS(vertex v)

visit v

for each unvisited neighbor w of v do

begin
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begin

DFS(w)

end
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Tree …
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Trees
An undirected graph G=(V,E) is a tree if G is 
connected and acyclic (i.e., contains no cycles)

Other equivalent statements:

1. There is exactly one path between any two 
vertices in G

56

(Graph)

vertices in G

2. G is connected and removal of one edge 
disconnects G

3. G is acyclic and adding one edge creates a cycle

4. G is connected and m=n-1 (where |V|=n, |E|=m)
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Rooted trees

Tree with hierarchical structure, e.g., directory 
structure of file system

C:\

Program My 

57

(Graph)

Program 
Files

My 
Documents

Microsoft 
Office

Internet 
Explorer

My 
Pictures

My 
Music
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Terminologies
r

a b c

d e f hg

sqpk

Topmost vertex is called the root.

root r is parent of a, b & c;
a, b, & c are children of r

deg-0: d, k, p, g, q, s (leaves)
deg-1: b, e, f
deg-2: a, c, h
deg-3: r

What is the 
degree of 
this tree?
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� Topmost vertex is called the root.

� A vertex u may have some children directly below it, u is called 
the parent of its children.

� Degree of a vertex is the no. of children it has. (N.B. it is 
different from the degree in an unrooted tree.)

� Degree of a tree is the max. degree of all vertices.

� A vertex with no child (degree-0) is called a leaf. All others are 
called internal vertices.

this tree?
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Binary tree

� a tree of degree at most TWO

� the two subtrees are called left subtree and 
right subtree (may be empty)

r There are three common ways to 
traverse a binary tree:
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a b

c d fe

khg

left subtree right subtree

traverse a binary tree:

�preorder traversal - vertex, left 
subtree, right subtree

�inorder traversal - left subtree, 
vertex, right subtree

�postorder traversal - left 
subtree, right subtree, vertex
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Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k
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khg

1

2

3

r

a b

c d fe

khg

4

5

6

7
8

9 10
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Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree
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khg - left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k5

2

1

r

a b

c d fe

khg

4

3

7

6
9

8 10
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Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree
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khg - left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k10

4

1

r

a b

c d fe

khg

3

2

9

5
8

6 7

postorder traversal
- left subtree, right subtree, vertex

c -> g -> d -> a -> e -> h -> k -> f -> b -> r


