
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Graph TheoryGraph Theory

Prudence Wong

Algorithmic Foundations
COMP108

How to Measure 4L?

a 3L container &
a 5L container
(without mark)

infinite supply of water
3L

5L

You can pour water from one
container to another

How to measure 4L of water?

Algorithmic Foundations
COMP108

Learning outcomes

� Able to tell what an undirected graph is and what
a directed graph is

� Know how to represent a graph using matrix and
list

� Understand what Euler circuit is and able to

3

(Graph)

� Understand what Euler circuit is and able to
determine whether such circuit exists in an
undirected graph

� Able to apply BFS and DFS to traverse a graph

� Able to tell what a tree is

Algorithmic Foundations
COMP108

Graph …

Algorithmic Foundations
COMP108

Graphs

Graph theory – an old subject with many modern
applications.

introduced in the
18th century

An undirected graph G=(V,E) consists of a set of
vertices V and a set of edges E. Each edge is an
unordered pair of vertices. (E.g., {b,c} & {c,b} refer to the
same edge.)

5

(Graph)

unordered pair of vertices. (E.g., {b,c} & {c,b} refer to the
same edge.)

A directed graph G=(V,E) consists of … Each edge is
an ordered pair of vertices. (E.g., (b,c) refer to an edge
from b to c.)

a b

c d

e

f

a b

c d

e

f

Algorithmic Foundations
COMP108

Applications of graphs

In computer science, graphs are often used to model

� computer networks,

� precedence among processes,

� state space of playing chess (AI applications)

resource conflicts, …

6

(Graph)

� resource conflicts, …

In other disciplines, graphs are also used to model
the structure of objects. E.g.,

� biology - evolutionary relationship

� chemistry - structure of molecules

Algorithmic Foundations
COMP108

Undirected graphs

Undirected graphs:
� simple graph: at most one edge between two
vertices, no self loop (i.e., an edge from a vertex to
itself).

� multigraph: allows more than one edge between two

7

(Graph)

� multigraph: allows more than one edge between two
vertices.

a b

c d

e

fReminder: An undirected graph G=(V,E)
consists of a set of vertices V and a set
of edges E. Each edge is an unordered
pair of vertices.

Algorithmic Foundations
COMP108

Undirected graphs

In an undirected graph G, suppose that e = {u, v} is an
edge of G

� u and v are said to be adjacent and called neighbors
of each other.

� u and v are called endpoints of e.
ve

deg(v) = 2

8

(Graph)

� u and v are called endpoints of e.
� e is said to be incident with u and v.
� e is said to connect u and v.

� The degree of a vertex v, denoted by deg(v), is the
number of edges incident with it (a loop contributes
twice to the degree)

u

ve

deg(u) = 1
w

Algorithmic Foundations
COMP108

Representation (of undirected graphs)

An undirected graph can be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

Adjacency matrix and adjacency list record the
relationship between vertex adjacency, i.e., a

9

(Graph)

relationship between vertex adjacency, i.e., a
vertex is adjacent to which other vertices

Incidence matrix and incidence list record the
relationship between edge incidence, i.e., an edge
is incident with which two vertices

Algorithmic Foundations
COMP108

Data Structure - Matrix

Rectangular / 2-dimensional array

�m-by-n matrix

• m rows

• n columns

m-by-n matrix
ai,j n columns

a1,1 a1,2 a1,3 … a1,n
a2,1 a2,2 a2,3 … a2,n

� ai,j
• row i, column j

10

(Graph)

a2,1 a2,2 a2,3 … a2,n
m rows a3,1 a3,2 a3,3 … a3,n

am,1 am,2 am,3 … am,n

Algorithmic Foundations
COMP108

Data Structure - Linked List

List of elements (nodes) connected together like a
chain

Each node contains two fields:

� "data" field: stores whatever type of elements

data next

"data" field: stores whatever type of elements

� "next" field: pointer to link this node to the next
node in the list

Head / Tail

� pointer to the beginning & end of list

11

(Graph)

10 30 20
head tail

Algorithmic Foundations
COMP108

Data Structure - Linked List
Queue (FIFO: first-in-first-out)

Insert element (enqueue) to tail

Remove element (dequeue) from head

10 30 20head tail

12

(Graph)

Insert 40 10 30 20head tail40

create newnode of 40; tail.next = newnode; tail = tail.next

Remove 10 30 20head tail40

return whatever head points to; head = head.next

Algorithmic Foundations
COMP108

Adjacency matrix / list

Adjacency matrix M for a simple undirected graph
with n vertices is an nxn matrix

�M(i, j) = 1 if vertex i and vertex j are adjacent

�M(i, j) = 0 otherwise

Adjacency list: each vertex has a list of vertices

13

(Graph)

Adjacency list: each vertex has a list of vertices
to which it is adjacent

a b

c d
e

a b c d e
a 0 0 1 1 0
b 0 0 1 1 0
c 1 1 0 1 1
d 1 1 1 0 1
e 0 0 1 1 0

a

b

c

d

e

c

a

c

c

d

db

d

d

e
a cb e

Algorithmic Foundations
COMP108

Incidence matrix / list
Incidence matrix M for a simple undirected graph
with n vertices and m edges is an mxn matrix
�M(i, j) = 1 if edge i and vertex j are incidence

�M(i, j) = 0 otherwise

Incidence list: each edge has a list of vertices to
which it is incident with

14

(Graph)

which it is incident with

a b

c d
e

a b c d e
1 1 0 1 0 0
2 1 0 0 1 0
3 0 1 1 0 0
4 0 1 0 1 0
5 0 0 1 1 0
6 0 0 0 1 1
7 0 0 1 0 1

1
2 3

4
5

6

7

1
2
3
4
5

a
b

a

c

c

c

d

d

b d

6
7 c e

d elabels of edge
are edge number

Algorithmic Foundations
COMP108

Exercise
Give the adjacency matrix and incidence matrix of
the following graph

a b c

1
2

4

a b c d e f
a
b
c
d
e

15

(Graph)

d e f

labels of edge
are edge number

1

3 5

e
f

a b c d e f
1
2
3
4
5

Algorithmic Foundations
COMP108

Directed graph …

Algorithmic Foundations
COMP108

Directed graph
Given a directed graph G, a vertex a is said to be
connected to a vertex b if there is a path from
a to b.

E.g., G represents the routes provided by a certain
airline. That means, a vertex represents a city and
an edge represents a flight from a city to another

17

(Graph)

an edge represents a flight from a city to another
city. Then we may ask question like: Can we fly from
one city to another?

Reminder: A directed graph
G=(V,E) consists of a set of
vertices V and a set of
edges E. Each edge is an
ordered pair of vertices.

a b

c d
e

E = { (a,b), (b,d),
(b,e), (c,b), (c,e),
(d,e) }

N.B. (a,b) is in E,
but (b,a) is NOT

Algorithmic Foundations
COMP108

In/Out degree (in directed graphs)

The in-degree of a vertex v is the number of
edges leading to the vertex v.

The out-degree of a vertex v is the number of
edges leading away from the vertex v.

18

(Graph)

v in-deg(v) out-deg(v)
a 0 1
b 2 2
c 0 2
d 1 1
e 3 0
sum: 6 6 Always equal?

a b

c d
e

Algorithmic Foundations
COMP108

Representation (of directed graphs)

Similar to undirected graph, a directed graph can
be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

19

(Graph)

Algorithmic Foundations
COMP108

Adjacency matrix / list
Adjacency matrix M for a directed graph with n
vertices is an nxn matrix
�M(i, j) = 1 if (i,j) is an edge
�M(i, j) = 0 otherwise

Adjacency list:

20

(Graph)

Adjacency list:
� each vertex u has a list of vertices pointed to by
an edge leading away from u

a b c d e
a 0 1 0 0 0
b 0 0 0 1 1
c 0 1 0 0 1
d 0 0 0 0 1
e 0 0 0 0 0

a

b

c

d

e

d

b

b

e

e

e

a b

c d
e

Algorithmic Foundations
COMP108

Incidence matrix / list
Incidence matrix M for a directed graph with n
vertices and m edges is an mxn matrix
�M(i, j) = 1 if edge i is leading away from vertex j

�M(i, j) = -1 if edge i is leading to vertex j

Incidence list: each edge has a list of two
vertices (leading away is 1st and leading to is 2nd)

21

(Graph)

Incidence list: each edge has a list of two
vertices (leading away is 1st and leading to is 2nd)

a b c d e
1 1 -1 0 0 0
2 0 -1 1 0 0
3 0 1 0 -1 0
4 0 1 0 0 -1
5 0 0 0 1 -1
6 0 0 1 0 -1

1
2
3
4
5

c
b

a

d

b

d

e

b

b e

6 c e

a b

c d
e

1

2 3
4

5

6

Algorithmic Foundations
COMP108

4

Exercise
Give the adjacency matrix and incidence matrix of
the following graph

a b c

1
2

a b c d e f
a
b
c
d
e

22

(Graph)

d e f

labels of edge
are edge number

1

3

e
f

a b c d e f
1
2
3
4
5
6

5
6

Algorithmic Foundations
COMP108

Euler circuit …

Algorithmic Foundations
COMP108

Paths, circuits (in undirected graphs)

� In an undirected graph, a path from a vertex u
to a vertex v is a sequence of edges e1= {u, x1},
e2= {x1, x2}, …en= {xn-1, v}, where n≥1.

� The length of this path is n.

� Note that a path from u to v implies a path

24

(Graph)

� Note that a path from u to v implies a path
from v to u.

� If u = v, this path is called a circuit (cycle).

u

v
e1 e2

en

Algorithmic Foundations
COMP108

Euler circuit

A simple circuit visits an edge at most once.

An Euler circuit in a graph G is a circuit visiting
every edge of G exactly once.
(NB. A vertex can be repeated.)

25

(Graph)

Does every graph has an Euler circuit ?

a b

c d
e

a c b d e c d a

a b

c d
e

no Euler circuit

Algorithmic Foundations
COMP108

History: In Konigsberg, Germany, a river ran through
the city and seven bridges were built. The people
wondered whether or not one could go around the
city in a way that would involve crossing each bridge
exactly once.

26

(Graph)
no Euler circuit

5
1 2

3 4
6

7a

b

c

d1
2

3
4

5

6

7

bridges

a

b

c

d

river banks

Algorithmic Foundations
COMP108

Necessary and sufficient condition
Let G be a connected graph.

Lemma: G contains an Euler circuit if and only if
degree of every vertex is even.

27

(Graph)

Algorithmic Foundations
COMP108

Hamiltonian circuit
Let G be an undirected graph.

A Hamiltonian circuit is a circuit containing every
vertex of G exactly once.

Note that a Hamiltonian circuit may NOT visit all
edges.

28

(Graph)

edges.

Unlike the case of Euler circuits, determining
whether a graph contains a Hamiltonian circuit is
a very difficult problem. (NP-hard)

Algorithmic Foundations
COMP108

Breadth First Search BFS …

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

All vertices at distance k from s are explored
before any vertices at distance k+1.

a b c

The source is a. Order of exploration
a,

30

(Graph)

a b

d e f

c
a,

g h k

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

a b c

Order of exploration
a, b, e, d

Distance 1 from a.
The source is a.

31

(Graph)

a b

d e f

c
a, b, e, d

g h k

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

a b c

The source is a. Order of exploration
a, b, e, d, c, f, h, g

32

(Graph)

a b

d e f

c
a, b, e, d, c, f, h, g

g h k

Distance 2 from a.

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

a b c

The source is a. Order of exploration
a, b, e, d, c, f, h, g, k

33

(Graph)

a b

d e f

c
a, b, e, d, c, f, h, g, k

g h k Distance 3 from a.

Algorithmic Foundations
COMP108

…

In general (BFS)

…

distance 0

Explore dist 2 frontier

s

distance 1

distance 2

Explore dist 1 frontier

Explore dist 0 frontier

34

(Graph)

…

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

A simple algorithm for searching a graph.

Given G=(V, E), and a distinguished source vertex s,
BFS systematically explores the edges of G such
that

all vertices at distance k from s are explored

35

(Graph)

� all vertices at distance k from s are explored
before any vertices at distance k+1.

Algorithmic Foundations
COMP108

BFS – Pseudo code

unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L

while L is nonempty do
begin

36

(Graph)

begin
remove a vertex v from front of L
visit v
for each unmarked neighbor w of v do

mark w and insert w into tail of list L

end

Algorithmic Foundations
COMP108

BFS using linked list

a b

d e f

c

g h k

ahead tail

bhead taile d

ehead taild c f

37

(Graph)

a, b, e, d, c, f, h, g, k
head taild c f

chead tailf h g

head tailf h g

head tailh g k
& so on …

Algorithmic Foundations
COMP108

Depth First Search DFS …

Algorithmic Foundations
COMP108

Edges are explored from the most recently
discovered vertex, backtracks when finished

Depth First Search (DFS)

Order of exploration
a,

a b c

The source is a.

39

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a,

a b c

The source is a.

40

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

search space

Algorithmic Foundations
COMP108

search space

Depth First Search (DFS)

Order of exploration
a, b

a b c

The source is a.

41

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c

a b c

The source is a.
search space
is empty

42

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c

a b c

The source is a.

search space
43

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

nowhere to go, backtrack

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f

a b c

The source is a.

search space
44

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k

a b c

The source is a.

45

(Graph)search space is empty

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

a b c

The source is a.

search space

46

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k
backtrack

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

a b c

The source is a.

search space
47

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

backtrack

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d

a b c

The source is a.

48

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

search space

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h

a b c

The source is a.

49

(Graph)search space is empty

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h

a b c

The source is a.

50

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

search space backtrack

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h, g

a b c

The source is a.

51

(Graph)search space is empty

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e, d, h, g

a b c

The source is a.

DONE!

52

(Graph)

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

g h k
backtrack

DONE!

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Depth-first search is another strategy for
exploring a graph; it search "deeper" in the
graph whenever possible.

� Edges are explored from the most recently
discovered vertex v that still has unexplored

53

(Graph)

discovered vertex v that still has unexplored
edges leaving it.

�When all edges of v have been explored, the
search "backtracks" to explore edges leaving the
vertex from which v was discovered.

Algorithmic Foundations
COMP108

DFS – Pseudo code (recursive)

Algorithm DFS(vertex v)

visit v

for each unvisited neighbor w of v do

begin

54

(Graph)

begin

DFS(w)

end

Algorithmic Foundations
COMP108

Tree …

Algorithmic Foundations
COMP108

Trees
An undirected graph G=(V,E) is a tree if G is
connected and acyclic (i.e., contains no cycles)

Other equivalent statements:

1. There is exactly one path between any two
vertices in G

56

(Graph)

vertices in G

2. G is connected and removal of one edge
disconnects G

3. G is acyclic and adding one edge creates a cycle

4. G is connected and m=n-1 (where |V|=n, |E|=m)

Algorithmic Foundations
COMP108

Rooted trees

Tree with hierarchical structure, e.g., directory
structure of file system

C:\

Program My

57

(Graph)

Program
Files

My
Documents

Microsoft
Office

Internet
Explorer

My
Pictures

My
Music

Algorithmic Foundations
COMP108

Terminologies
r

a b c

d e f hg

sqpk

Topmost vertex is called the root.

root r is parent of a, b & c;
a, b, & c are children of r

deg-0: d, k, p, g, q, s (leaves)
deg-1: b, e, f
deg-2: a, c, h
deg-3: r

What is the
degree of
this tree?

58

(Graph)

� Topmost vertex is called the root.

� A vertex u may have some children directly below it, u is called
the parent of its children.

� Degree of a vertex is the no. of children it has. (N.B. it is
different from the degree in an unrooted tree.)

� Degree of a tree is the max. degree of all vertices.

� A vertex with no child (degree-0) is called a leaf. All others are
called internal vertices.

this tree?

Algorithmic Foundations
COMP108

Binary tree

� a tree of degree at most TWO

� the two subtrees are called left subtree and
right subtree (may be empty)

r There are three common ways to
traverse a binary tree:

59

(Graph)

a b

c d fe

khg

left subtree right subtree

traverse a binary tree:

�preorder traversal - vertex, left
subtree, right subtree

�inorder traversal - left subtree,
vertex, right subtree

�postorder traversal - left
subtree, right subtree, vertex

Algorithmic Foundations
COMP108

Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

60

(Graph)

khg

1

2

3

r

a b

c d fe

khg

4

5

6

7
8

9 10

Algorithmic Foundations
COMP108

Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree

61

(Graph)

khg - left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k5

2

1

r

a b

c d fe

khg

4

3

7

6
9

8 10

Algorithmic Foundations
COMP108

Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree

62

(Graph)

khg - left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k10

4

1

r

a b

c d fe

khg

3

2

9

5
8

6 7

postorder traversal
- left subtree, right subtree, vertex

c -> g -> d -> a -> e -> h -> k -> f -> b -> r

