COMP108 Algorithmic Foundations

Greedy methods

Prudence Wong

Coin Change Problem

Suppose we have 3 types of coins

10p

20p

50p

Minimum number of coins to make £0.8, £1.0, £1.4?

Greedy method

(Greedy)

Algorithmic Foundations

Algorithmic Foundations

Learning outcomes

- > Understand what greedy method is
- Able to apply Kruskal's algorithm to find minimum spanning tree
- Able to apply Dijkstra's algorithm to find singlesource shortest-paths
- > Able to apply greedy algorithm to find solution for Knapsack problem

Greedy methods

How to be greedy?

- > At every step, make the best move you can make
- > Keep going until you're done

Advantages

- > Don't need to pay much effort at each step
- > Usually finds a solution very quickly
- > The solution found is usually not bad

Possible problem

> The solution found may NOT be the best one

(Greedy)

4

Algorithmic Foundations

COMP108

Greedy methods - examples

Minimum spanning tree

> Kruskal's algorithm

Single-source shortest-paths

> Dijkstra's algorithm

Both algorithms find one of the BEST solutions

Knapsack problem

> greedy algorithm does NOT find the BEST solution

Kruskal's algorithm ...

.

(Greedy)

Algorithmic Foundations COMP108

Minimum Spanning tree (MST)

Given an undirected connected graph G

> The edges are labelled by weight

Spanning tree of G

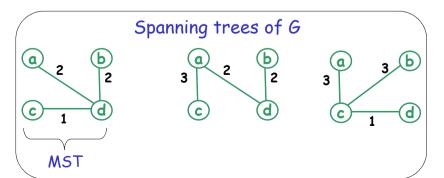
> a tree containing all vertices in G

Minimum spanning tree of G

> a spanning tree of G with minimum weight

Examples

Graph G (edge label is weight) (edge label is weight)

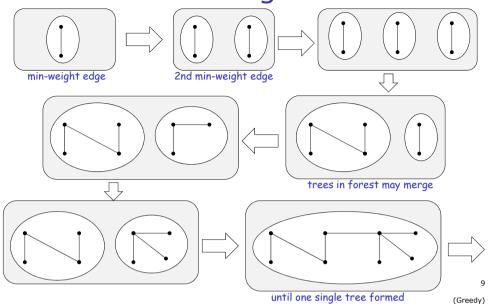


.

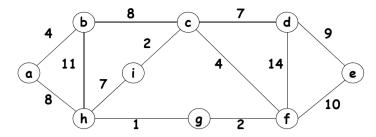
(Greedy)

8

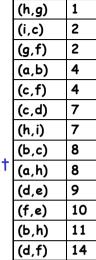
Idea of Kruskal's algorithm - MST



Kruskal's algorithm - MST



Arrange edges from smallest to largest weight

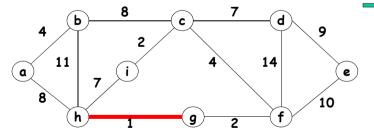


10

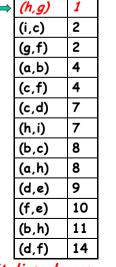
(Greedy)

Algorithmic Foundations COMP108

Kruskal's algorithm - MST



Choose the minimum weight edge

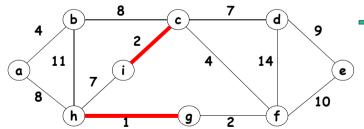


Algorithmic Foundations COMP108

italic: chosen 11

(Greedy)

Kruskal's algorithm - MST



Choose the next minimum weight edge

	(h,g)	1			
\longrightarrow	(i,c)	2			
	(g,f)	2			
)	(a,b)	4			
/	(c,f)	4			
	(c,d)	7			
	(h,i)	7			
	(b,c)	8			
	(a,h)	8			
	(d,e)	9			
	(f,e)	10			
	(b,h)	11			
	(d,f)	14			
italic: chosen					

11

(a)

Algorithmic Foundations COMP108

2 (i,c) (g,f)(a,b) (c,f)

10 (c,d) (h,i) (b,c)

14

ď

Continue as long as no cycle forms

(a,h)(d,e) (f,e) 10 (b,h) 11 14

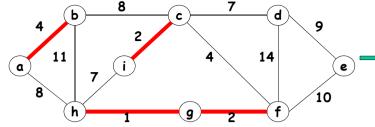
italic: chosen 13

(Greedy)

Algorithmic Foundations

COMP108

Kruskal's algorithm - MST



Continue as long as no cycle forms

(g,f) (a,b)(c,f) (c,d) (h,i) (b,c) (a,h) (d.e) (f,e) 10 (b,h) 11 14

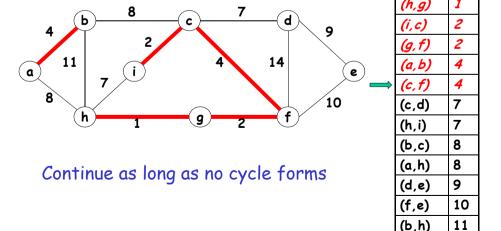
(i,c)

COMP108

2

italic: chosen 14

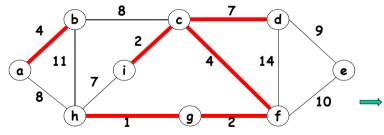
Kruskal's algorithm - MST



italic: chosen 15

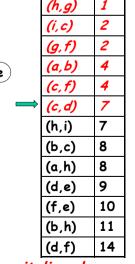
(Greedy)

Kruskal's algorithm - MST



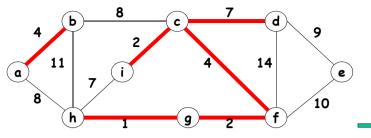
Continue as long as no cycle forms

Algorithmic Foundations COMP108



italic: chosen 16

Kruskal's algorithm - MST



(h,i) cannot be included, otherwise, a cycle is formed

(h,g)	1
(i,c)	2
(g,f)	2
(a,b)	4
(c,f)	4

Algorithmic Foundations COMP108

(b,c) (a,h)

(d,e) 10 (f,e)

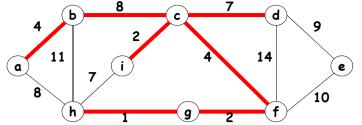
(b,h) 11 14

Algorithmic Foundations

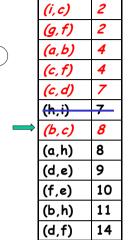
italic: chosen 17

(Greedy)

Kruskal's algorithm - MST

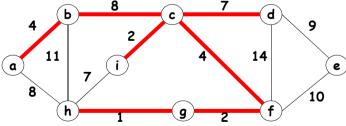


Choose the next minimum weight edge

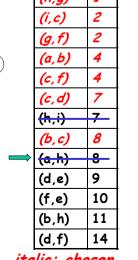


italic: chosen 18

Kruskal's algorithm - MST



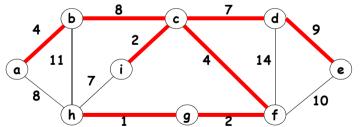
(a,h) cannot be included, otherwise, a cycle is formed



italic: chosen 19

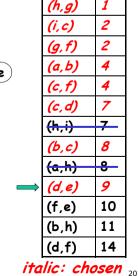
(Greedy)

Kruskal's algorithm - MST

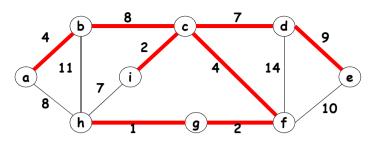


Choose the next minimum weight edge

Algorithmic Foundations COMP108



Kruskal's algorithm - MST



(f,e) cannot be included, otherwise, a cycle is formed

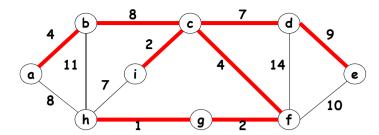
	(h,g)	1	
	(i,c)	2	
	(g,f)	2	
	(a,b)	4	
	(c,f)	4	
	(c,d)	7	
	(h,i)	7_	
	(b,c)	8	
	(a,h)	8	
	(d,e)	9	
\Rightarrow	(f,e)	10	
	(b,h)	11	
	(d,f)	14	

Algorithmic Foundations COMP108

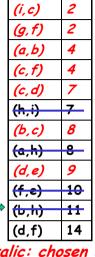
italic: chosen 21

Algorithmic Foundations COMP108

Kruskal's algorithm - MST



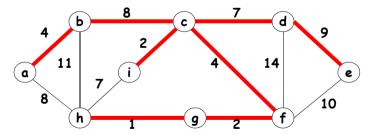
(b,h) cannot be included, otherwise, a cycle is formed



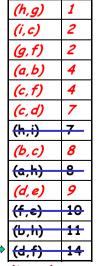
italic: chosen ,,

Algorithmic Foundations COMP108

Kruskal's algorithm - MST



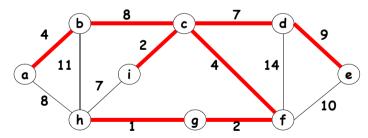
(d,f) cannot be included, otherwise, a cycle is formed



italic: chosen 23

(Greedy)

Kruskal's algorithm - MST



MST is found when all edges are examined

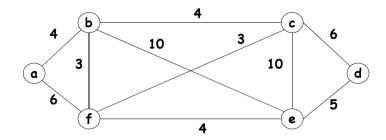
(a,h) (d,e) (b,h)

italic: chosen 24

Kruskal's algorithm - MST

Kruskal's algorithm is **greedy** in the sense that it always attempt to select the **smallest** weight edge to be included in the MST

Exercise - Find MST for this graph



order of (edges) selection:

. . . .

(Greedy)

(Greedy)

25

Algorithmic Foundations COMP108

(Greedy)

Pseudo code

// Given an undirected connected graph G=(V,E)

```
T = \emptyset and E' = E
while E' \neq \emptyset do
```

Time complexity?

begin

pick an edge e in E' with minimum weight if adding e to T does not form cycle then add e to T, i.e., $T = T \cup \{e\}$ oremove e from E', i.e., E' = E' \ $\{e\}$

end

Can be tested by marking vertices

Dijkstra's algorithm ...

Algorithmic Foundations COMP108

Single-source shortest-paths

Consider a (un)directed connected graph G

> The edges are labelled by weight

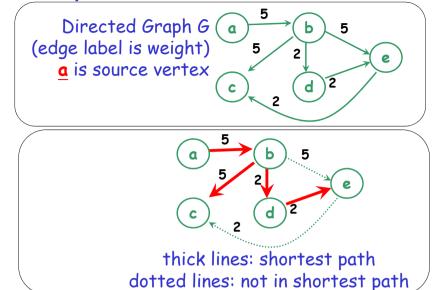
Given a particular vertex called the **source**

> Find shortest paths from the source to all other vertices (shortest path means the total weight of the path is the smallest)

29

(Greedy)

Example



30

(Greedy)

Algorithmic Foundation COMP108

Single-source shortest paths vs MST



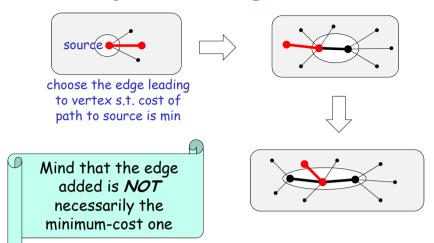
Algorithms for shortest paths

Algorithms

there are many algorithms to solve this problem, one of them is Dijkstra's algorithm, which assumes the weights of edges are non-negative

Algorithmic Foundations COMP108

Idea of Dijkstra's algorithm



33

(Greedy)

Dijkstra's algorithm

Input: A directed connected weighted graph G and a source vertex s

Output: For every vertex v in G, find the shortest path from s to v

Dijkstra's algorithm runs in iterations:

- > in the i-th iteration, the vertex which is the i-th closest to s is found,
- > for every remaining vertices, the current shortest path to s found so far (this shortest path will be updated as the algorithm runs)

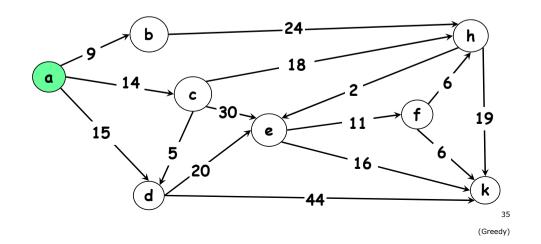
34

(Greedy)

Algorithmic Foundations

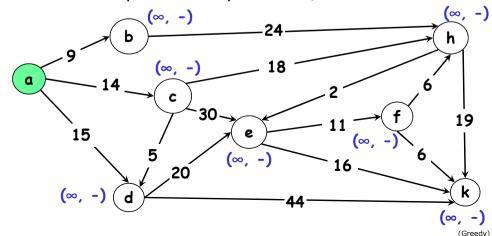
Dijkstra's algorithm

Suppose vertex *a* is the source, we now show how Dijkstra's algorithm works



Dijkstra's algorithm

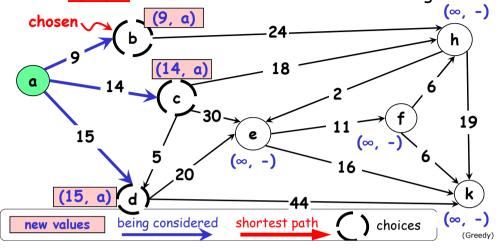
Every vertex ν keeps 2 labels: (1) the weight of the current shortest path from a; (2) the vertex leading to ν on that path, initially as $(\infty, -)$



Algorithmic Foundations

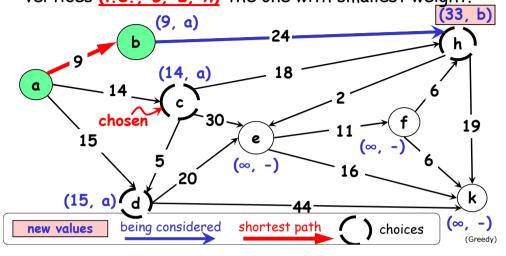
Dijkstra's algorithm

For every neighbor u of a, update the weight to the weight of (a, u) and the leading vertex to a. Choose from b, c, d the one with the smallest such weight.



Dijkstra's algorithm

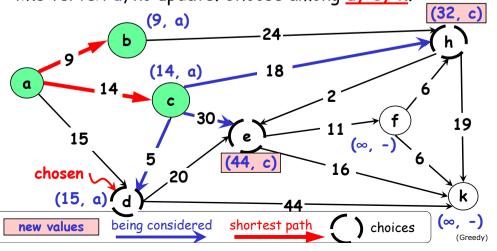
For every un-chosen neighbor of vertex **b**, update the weight and leading vertex. Choose from **ALL** un-chosen vertices (i.e., c, d, h) the one with smallest weight.



Algorithmic Foundations COMP108

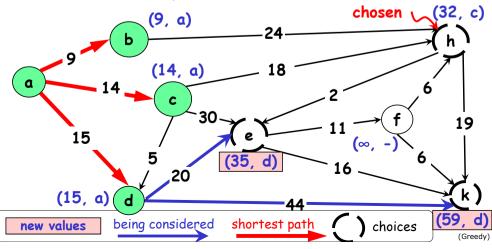
Dijkstra's algorithm

If a new path with smallest weight is discovered, e.g., for vertices *e*, *h*, the weight is updated. Otherwise, like vertex *d*, no update. Choose among *d*, *e*, *h*.



Dijkstra's algorithm

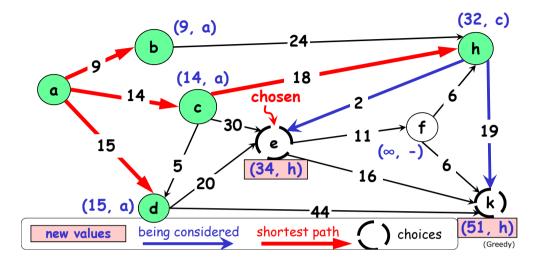
Repeat the procedure. After d is chosen, the weight of e and k is updated. Choose among e, h, k. Next vertex chosen is h.



Algorithmic Foundations

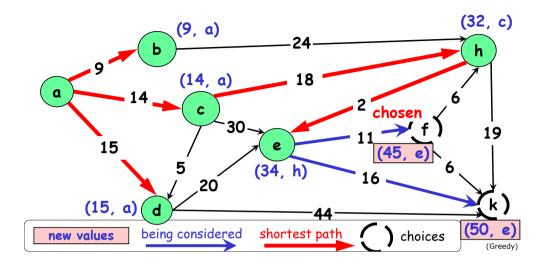
Dijkstra's algorithm

After h is chosen, the weight of e and k is updated again. Choose among e, k. Next vertex chosen is e.



Dijkstra's algorithm

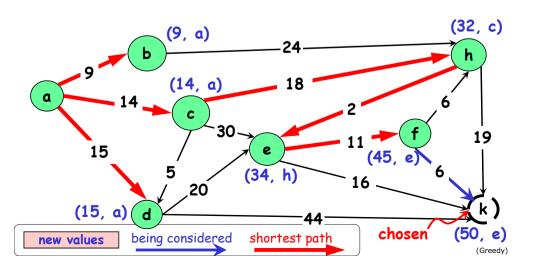
After e is chosen, the weight of f and k is updated again. Choose among f, k. Next vertex chosen is f.



Algorithmic Foundations COMP108

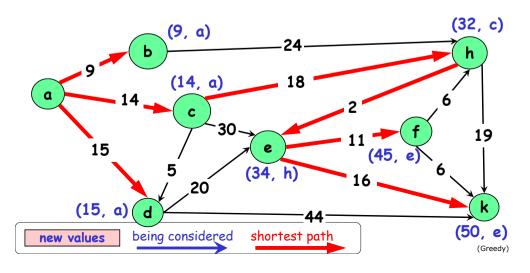
Dijkstra's algorithm

After f is chosen, it is NOT necessary to update the weight of k. The final vertex chosen is k.



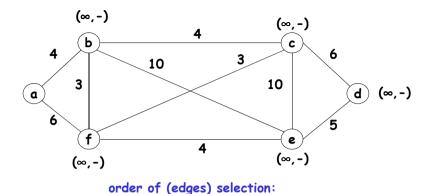
Dijkstra's algorithm

At this point, all vertices are chosen, and the shortest path from a to every vertex is discovered.



Algorithmic Foundations

Exercise - Shortest paths from a



(Greedy)

(Greedy)

Algorithmic Foundations

COMP108

Dijkstra's algorithm

To describe the algorithm using pseudo code, we give some notations

Fach vertex vis labelled with two labels:

- > a numeric label d(v) indicates the length of the shortest path from the source to ν found so far
- \rightarrow another label p(v) indicates next-to-last vertex on such path, i.e., the vertex immediately before ν on that shortest path

(Greedy)

COMP108

Algorithmic Foundations

Pseudo code

```
// Given a graph G=(V, E) and a source vertex s
for every vertex \nu in the graph do
                                               Time complexity?
   set d(v) = \infty and p(v) = \text{null}
set d(s) = 0 and V_T = \emptyset
while V \setminus V_T \neq \emptyset do // there is still some vertex left
begin
   choose the vertex u in V \setminus V_T with minimum d(u)
   set V_T = V_T \cup \{u\}
   for every vertex v in V \setminus V_T that is a neighbor of u do
       if d(u) + w(u, v) < d(v) then // a shorter path is found
          set d(v) = d(u) + w(u, v) and p(v) = u
end
                                                                          47
```

Does Greedy algorithm always return the best solution?

Knapsack Problem

Input: Given n items with weights $w_1, w_2, ..., w_n$ and values $v_1, v_2, ..., v_n$, and a knapsack with capacity W.

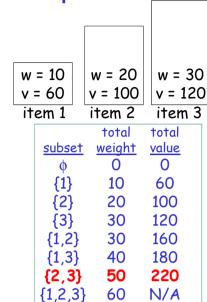
Output: Find the most valuable subset of items that can fit into the knapsack

Application: A transport plane is to deliver the most valuable set of items to a remote location without exceeding its capacity

(Greedy)

Algorithmic Foundations

Example 1



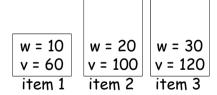
Algorithmic Foundations COMP108 capacity = 50 knapsack

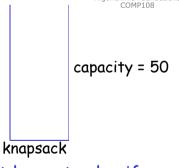
(Greedy)

Algorithmic Foundations

COMP108

Greedy approach

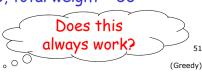




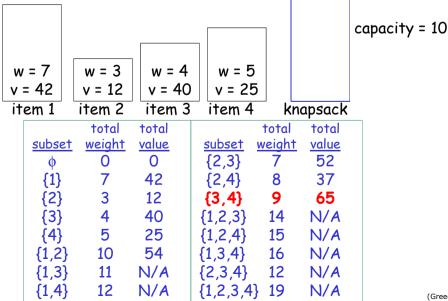
Greedy: pick the item with the next largest value if total weight ≤ capacity. Time complexity?

Result:

- > item 3 is taken, total value = 120, total weight = 30
- > item 2 is taken, total value = 220, total weight = 50
- > item 1 cannot be taken



Example 2



capacity = 10

Algorithmic Foundations

COMP108

w = 3w = 5w = 7w = 4v = 12v = 40v = 25v = 42item 2 item 3 item 4 item 1

knapsack

Greedy: pick the item with the next largest value if total weight ≤ capacity.

Result:

- > item 1 is taken, total value = 42, total weight = 7
- > item 3 cannot be taken
- > item 4 cannot be taken
- > item 2 is taken, total value = 54, total weight = 10

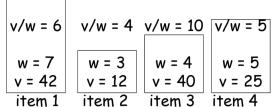
not the best!!

Algorithmic Foundations

COMP108

(Greedy)

Greedy approach 2



capacity = 10

knapsack

Greedy 2: pick the item with the next largest (value/weight) if total weight ≤ capacity.

Result:

- > item 3 is taken, total value = 40, total weight = 4
- > item 1 cannot be taken
- > item 4 is taken, total value = 65, total weight = 9
- > item 2 cannot be taken

(Greedy)

Greedy approach 2

v/w = 6v/w=5v/w = 4w = 10w = 20w = 30v = 100 v = 120 v = 60item 1 item 2 item 3

capacity = 50 knapsack

Greedy: pick the item with the next largest (value/weight) if total weight ≤ capacity.

Result:

- > item 1 is taken, total value = 60, total weight = 10
- > item 2 is taken, total value = 160, total weight = 30
- > item 3 cannot be taken

Not the best!! (Greedy) Algorithmic Foundations COMP108

Algorithmic Foundations

COMP108

Work

for Eq 1?

Lesson Learned: Greedy algorithm does **NOT** always return the best solution