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Coin Change Problem
Suppose we have 3 types of coins

10p 20p 50p

2

(Greedy)

Minimum number of coins to make 
£0.8, £1.0, £1.4 ?

10p 20p 50p

Greedy method
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Learning outcomes

� Understand what greedy method is

� Able to apply Kruskal’s algorithm to find minimum 
spanning tree

� Able to apply Dijkstra’s algorithm to find single-
source shortest-paths
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source shortest-paths

� Able to apply greedy algorithm to find solution 
for Knapsack problem
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Greedy methods
How to be greedy?

�At every step, make the best move you can make

� Keep going until you’re done

Advantages

Don’t need to pay much effort at each step

4
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�Don’t need to pay much effort at each step

�Usually finds a solution very quickly

� The solution found is usually not bad

Possible problem

� The solution found may NOT be the best one
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Greedy methods - examples

Minimum spanning tree

� Kruskal’s algorithm 

Single-source shortest-paths

�Dijkstra’s algorithm
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Both algorithms find one of the BEST solutions

Knapsack problem

� greedy algorithm does NOT find the BEST 
solution
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Kruskal’s algorithm …
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Minimum Spanning tree (MST)

Given an undirected connected graph G

� The edges are labelled by weight

Spanning tree of G

� a tree containing all vertices in G
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Minimum spanning tree of G

� a spanning tree of G with minimum weight 
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Examples
a b

c d

2 3

1

23
Graph G

(edge label is weight)

Spanning trees of G

8

(Greedy)

a b

c d

2
23

a b

c d

3

1

3

Spanning trees of G

a b

c d
1

2
2

MST
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Idea of Kruskal's algorithm - MST

min-weight edge 2nd min-weight edge
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trees in forest may merge

until one single tree formed
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

10
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Arrange edges from smallest to largest weight
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

11
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the minimum weight edge

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the next minimum weight edge

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

14
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(h,i) cannot be included, otherwise, a 
cycle is formed

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the next minimum weight edge

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

19

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(a,h) cannot be included, otherwise, a 
cycle is formed

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the next minimum weight edge

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(f,e) cannot be included, otherwise, a 
cycle is formed

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(b,h) cannot be included, otherwise, a 
cycle is formed

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(d,f) cannot be included, otherwise, a 
cycle is formed

italic: chosen
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Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7
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h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

MST is found when all edges are examined

italic: chosen
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Kruskal’s algorithm - MST

Kruskal’s algorithm is greedy in the sense that it 
always attempt to select the smallest weight 
edge to be included in the MST

25

(Greedy)
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Exercise – Find MST for this graph

a

b c

d

4

3

4

10 3 6

10

26
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a

f e

d

6

4

5

order of (edges) selection: 
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Pseudo code
// Given an undirected connected graph G=(V,E)

T = ∅∅∅∅ and E’ = E

while E’ ≠ ∅∅∅∅ do

begin

pick an edge e in E’ with minimum weight

Time complexity?

27

(Greedy)

pick an edge e in E’ with minimum weight

if adding e to T does not form cycle then

add e to T, i.e., T = T ∪∪∪∪ { e }

remove e from E', i.e., E’ = E’ \ { e }

end
Can be tested by 
marking vertices
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Dijkstra’s algorithm …
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Single-source shortest-paths
Consider a (un)directed connected graph G

� The edges are labelled by weight

Given a particular vertex called the source

� Find shortest paths from the source to all other 
vertices (shortest path means the total weight of 

29
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vertices (shortest path means the total weight of 
the path is the smallest)
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Example

a b

c d

e

Directed Graph G
(edge label is weight)

a is source vertex

5
5

5 2

2

2

30

(Greedy)

thick lines: shortest path
dotted lines: not in shortest path

2

a b

c d

e

5
5

5

2

2
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Single-source shortest paths vs MST

Shortest paths from a

2

a b

c d

e

5
5

5

2

2
What is the 
difference 

31
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a b

c d

e

MST

5
5

5 2

2

2

difference 
between MST 
and shortest 
paths from a?
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Algorithms for shortest paths

Algorithms

� there are many algorithms to solve this problem, 
one of them is Dijkstra’s algorithm, which 
assumes the weights of edges are non-negative

32

(Greedy)
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Idea of Dijkstra’s algorithm

choose the edge leading 
to vertex s.t. cost of 
path to source is min

source

33

(Greedy)

Mind that the edge 
added is NOT
necessarily the 
minimum-cost one
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Dijkstra’s algorithm
Input: A directed connected weighted graph G and 
a source vertex s

Output: For every vertex v in G, find the shortest 
path from s to v

Dijkstra’s algorithm runs in iterations:

34

(Greedy)

Dijkstra’s algorithm runs in iterations:

� in the i-th iteration, the vertex which is the i-th 
closest to s is found,

� for every remaining vertices, the current 
shortest path to s found so far (this shortest 
path will be updated as the algorithm runs)
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Dijkstra’s algorithm
Suppose vertex a is the source, we now show how 
Dijkstra’s algorithm works

hb 24

18
9

35

(Greedy)

a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6
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Dijkstra’s algorithm
Every vertex v keeps 2 labels: (1) the weight of the 
current shortest path from a; (2) the vertex leading 
to v on that path, initially as (∞∞∞∞, -)

hb 24

18
9

(∞∞∞∞, -)

(∞∞∞∞, -)

(∞∞∞∞, -)

36
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a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(∞∞∞∞, -)

(∞∞∞∞, -)

(∞∞∞∞, -)
(∞∞∞∞, -)

(∞∞∞∞, -)
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(∞∞∞∞, -)

(∞∞∞∞, -)

Dijkstra’s algorithm
For every neighbor u of a, update the weight to the 
weight of (a,u) and the leading vertex to a.  Choose 
from b, c, d the one with the smallest such weight.

hb 24

18
9

(9, a)

(14, a)

(∞∞∞∞, -)
chosen

shortest pathnew values being considered choices
37
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(∞∞∞∞, -)

(∞∞∞∞, -)(15, a)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)
(∞∞∞∞, -)

(∞∞∞∞, -)
d
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(∞∞∞∞, -)(33, b)

Dijkstra’s algorithm
For every un-chosen neighbor of vertex b, update the 
weight and leading vertex. Choose from ALL un-chosen 
vertices (i.e., c, d, h) the one with smallest weight.

hb 24

18
9

(9, a)

(14, a)

38
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chosen

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)
(∞∞∞∞, -)

(∞∞∞∞, -)

(15, a)

shortest pathnew values being considered choices

d
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If a new path with smallest weight is discovered, e.g., 
for vertices e, h, the weight is updated. Otherwise, 
like vertex d, no update. Choose among d, e, h.

(33, b)(32, c)

Dijkstra’s algorithm

hb 24

18
9

(9, a)

(14, a)

39
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(∞∞∞∞, -)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(15, a)

(∞∞∞∞, -)

(∞∞∞∞, -)

chosen
(44, c)

shortest pathnew values being considered choices

d
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Dijkstra’s algorithm
Repeat the procedure. After d is chosen, the weight 
of e and k is updated. Choose among e, h, k. Next 
vertex chosen is h.

hb 24

18
9

(9, a)

(14, a)

chosen (32, c)

40
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(∞∞∞∞, -)

(44, c)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)

(59, d)

(35, d)

(15, a)

shortest pathnew values being considered choices

d
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Dijkstra’s algorithm
After h is chosen, the weight of e and k is updated 
again. Choose among e, k. Next vertex chosen is e.

hb 24

18
9

(9, a)

(14, a)

(32, c)

41
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(59,d)

(35, d)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)

(51, h)

chosen

(34, h)

(15, a)

shortest pathnew values being considered choices

d
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Dijkstra’s algorithm
After e is chosen, the weight of f and k is updated 
again. Choose among f, k. Next vertex chosen is f.

hb 24

18
9

(9, a)

(14, a)

(32, c)
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(51, h)

(∞∞∞∞, -)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(45, e)

(50, e)

chosen

(34, h)

(15, a)

shortest pathnew values being considered choices

d
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Dijkstra’s algorithm
After f is chosen, it is NOT necessary to update the 
weight of k. The final vertex chosen is k.

hb 24

18
9

(9, a)

(14, a)

(32, c)
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shortest pathnew values being considered

a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(45, e)

(50, e)chosen

(34, h)

(15, a)
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Dijkstra’s algorithm
At this point, all vertices are chosen, and the shortest 
path from a to every vertex is discovered.

hb 24

18
9

(9, a)

(14, a)

(32, c)

44
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shortest pathnew values being considered

a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(45, e)

(50, e)

(34, h)

(15, a)
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(∞∞∞∞,-)

(∞∞∞∞,-)

a

b c

d

4

3

4

10 3 6

10

Exercise – Shortest paths from a

(∞∞∞∞,-)

(∞∞∞∞,-)(∞∞∞∞,-)

45

(Greedy)

f e

6

4

5

order of (edges) selection: 
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Dijkstra’s algorithm

To describe the algorithm using pseudo code, we 
give some notations

Each vertex v is labelled with two labels:

� a numeric label d(v) indicates the length of the 
shortest path from the source to v found so far

46
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shortest path from the source to v found so far

� another label p(v) indicates next-to-last vertex on 
such path, i.e., the vertex immediately before v
on that shortest path
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Pseudo code
// Given a graph G=(V,E) and a source vertex s

for every vertex v in the graph do

set d(v) = ∞∞∞∞ and p(v) = null

set d(s) = 0 and VT = ∅∅∅∅

while V \ VT ≠ ∅∅∅∅ do // there is still some vertex left

begin

Time complexity?

47
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begin

choose the vertex u in V \ VT with minimum d(u)

set VT = VT ∪∪∪∪ { u }

for every vertex v in V \ VT that is a neighbor of u do

if d(u) + w(u,v) < d(v) then // a shorter path is found

set d(v) = d(u) + w(u,v) and p(v) = u

end

Algorithmic Foundations
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Does Greedy algorithm 
always return the best 
solution?solution?



Algorithmic Foundations
COMP108

Knapsack Problem

Input: Given n items with weights w1, w2, …, wn and 
values v1, v2, …, vn, and a knapsack with capacity 
W.

Output: Find the most valuable subset of items 
that can fit into the knapsack

49
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that can fit into the knapsack

Application: A transport plane is to deliver the 
most valuable set of items to a remote location 
without exceeding its capacity
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Example 1

w = 10
v = 60

w = 20
v = 100

w = 30
v = 120

item 1 item 2 item 3 knapsack

capacity = 50

total total

50

(Greedy)

total total
subset weight value

φ 0 0
{1} 10 60
{2} 20 100
{3} 30 120
{1,2} 30 160
{1,3} 40 180
{2,3} 50 220
{1,2,3} 60 N/A

Algorithmic Foundations
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Greedy approach

w = 10
v = 60

w = 20
v = 100

w = 30
v = 120

item 1 item 2 item 3 knapsack

capacity = 50

Greedy: pick the item with the next largest value if 

51
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Greedy: pick the item with the next largest value if 
total weight ≤ capacity.

Result: 
� item 3 is taken, total value = 120, total weight = 30

� item 2 is taken, total value = 220, total weight = 50

� item 1 cannot be taken Does this 
always work?

Time complexity?
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Example 2

w = 7
v = 42

w = 3
v = 12

w = 4
v = 40

w = 5
v = 25

item 1 item 2 item 3 item 4 knapsack

capacity = 10

total total total total
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(Greedy)

total total
subset weight value

φ 0 0
{1} 7 42
{2} 3 12
{3} 4 40
{4} 5 25
{1,2} 10 54
{1,3} 11 N/A
{1,4} 12 N/A

total total
subset weight value

{2,3} 7 52
{2,4} 8 37
{3,4} 9 65
{1,2,3} 14 N/A
{1,2,4} 15 N/A
{1,3,4} 16 N/A
{2,3,4} 12 N/A
{1,2,3,4} 19 N/A
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Greedy approach

Greedy: pick the item with the next largest value if 

w = 7
v = 42

w = 3
v = 12

w = 4
v = 40

w = 5
v = 25

item 1 item 2 item 3 item 4 knapsack

capacity = 10
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(Greedy)

Greedy: pick the item with the next largest value if 
total weight ≤ capacity.

Result: 
� item 1 is taken, total value = 42, total weight = 7

� item 3 cannot be taken

� item 4 cannot be taken

� item 2 is taken, total value = 54, total weight = 10

not the 
best!!
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Greedy approach 2

Greedy 2: pick the item with the next largest 

v/w = 6

w = 7
v = 42

v/w = 4

w = 3
v = 12

v/w = 10

w = 4
v = 40

v/w = 5

w = 5
v = 25

item 1 item 2 item 3 item 4 knapsack

capacity = 10
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(Greedy)

Greedy 2: pick the item with the next largest 
(value/weight) if total weight ≤ capacity.

Result: 
� item 3 is taken, total value = 40, total weight = 4

� item 1 cannot be taken

� item 4 is taken, total value = 65, total weight = 9

� item 2 cannot be taken

Work 
for Eg 1? 
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Greedy approach 2

v/w = 6

w = 10
v = 60

v/w=5

w = 20
v = 100

v/w = 4

w = 30
v = 120

item 1 item 2 item 3 knapsack

capacity = 50

Greedy: pick the item with the next largest 
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(Greedy)

Greedy: pick the item with the next largest 
(value/weight) if total weight ≤ capacity.

Result: 
� item 1 is taken, total value = 60, total weight = 10

� item 2 is taken, total value = 160, total weight = 30

� item 3 cannot be taken
Not the best!!
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Lesson Learned: Greedy 
algorithm does NOT always 
return the best solutionreturn the best solution


