
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Greedy methodsGreedy methods

Prudence Wong

Algorithmic Foundations
COMP108

Coin Change Problem
Suppose we have 3 types of coins

10p 20p 50p

2

(Greedy)

Minimum number of coins to make
£0.8, £1.0, £1.4 ?

10p 20p 50p

Greedy method

Algorithmic Foundations
COMP108

Learning outcomes

� Understand what greedy method is

� Able to apply Kruskal’s algorithm to find minimum
spanning tree

� Able to apply Dijkstra’s algorithm to find single-
source shortest-paths

3

(Greedy)

source shortest-paths

� Able to apply greedy algorithm to find solution
for Knapsack problem

Algorithmic Foundations
COMP108

Greedy methods
How to be greedy?

�At every step, make the best move you can make

� Keep going until you’re done

Advantages

Don’t need to pay much effort at each step

4

(Greedy)

�Don’t need to pay much effort at each step

�Usually finds a solution very quickly

� The solution found is usually not bad

Possible problem

� The solution found may NOT be the best one

Algorithmic Foundations
COMP108

Greedy methods - examples

Minimum spanning tree

� Kruskal’s algorithm

Single-source shortest-paths

�Dijkstra’s algorithm

5

(Greedy)

Both algorithms find one of the BEST solutions

Knapsack problem

� greedy algorithm does NOT find the BEST
solution

Algorithmic Foundations
COMP108

Kruskal’s algorithm …

Algorithmic Foundations
COMP108

Minimum Spanning tree (MST)

Given an undirected connected graph G

� The edges are labelled by weight

Spanning tree of G

� a tree containing all vertices in G

7

(Greedy)

Minimum spanning tree of G

� a spanning tree of G with minimum weight

Algorithmic Foundations
COMP108

Examples
a b

c d

2 3

1

23
Graph G

(edge label is weight)

Spanning trees of G

8

(Greedy)

a b

c d

2
23

a b

c d

3

1

3

Spanning trees of G

a b

c d
1

2
2

MST

Algorithmic Foundations
COMP108

Idea of Kruskal's algorithm - MST

min-weight edge 2nd min-weight edge

9

(Greedy)

trees in forest may merge

until one single tree formed

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

10

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Arrange edges from smallest to largest weight

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

11

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the minimum weight edge

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

12

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the next minimum weight edge

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

13

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

14

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

15

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

16

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Continue as long as no cycle forms

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

17

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(h,i) cannot be included, otherwise, a
cycle is formed

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

18

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the next minimum weight edge

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

19

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(a,h) cannot be included, otherwise, a
cycle is formed

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

20

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

Choose the next minimum weight edge

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

21

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(f,e) cannot be included, otherwise, a
cycle is formed

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

22

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(b,h) cannot be included, otherwise, a
cycle is formed

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

23

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

(d,f) cannot be included, otherwise, a
cycle is formed

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

a i

b

h g

c

f

d

e

4

8

11

8

2

4

1 2

7

9

10

14

7

(h,g) 1

(i,c) 2

(g,f) 2

(a,b) 4

(c,f) 4

(c,d) 7

(h,i) 7

24

(Greedy)

h g f1 2 (h,i) 7

(b,c) 8

(a,h) 8

(d,e) 9

(f,e) 10

(b,h) 11

(d,f) 14

MST is found when all edges are examined

italic: chosen

Algorithmic Foundations
COMP108

Kruskal’s algorithm - MST

Kruskal’s algorithm is greedy in the sense that it
always attempt to select the smallest weight
edge to be included in the MST

25

(Greedy)

Algorithmic Foundations
COMP108

Exercise – Find MST for this graph

a

b c

d

4

3

4

10 3 6

10

26

(Greedy)

a

f e

d

6

4

5

order of (edges) selection:

Algorithmic Foundations
COMP108

Pseudo code
// Given an undirected connected graph G=(V,E)

T = ∅∅∅∅ and E’ = E

while E’ ≠ ∅∅∅∅ do

begin

pick an edge e in E’ with minimum weight

Time complexity?

27

(Greedy)

pick an edge e in E’ with minimum weight

if adding e to T does not form cycle then

add e to T, i.e., T = T ∪∪∪∪ { e }

remove e from E', i.e., E’ = E’ \ { e }

end
Can be tested by
marking vertices

Algorithmic Foundations
COMP108

Dijkstra’s algorithm …

Algorithmic Foundations
COMP108

Single-source shortest-paths
Consider a (un)directed connected graph G

� The edges are labelled by weight

Given a particular vertex called the source

� Find shortest paths from the source to all other
vertices (shortest path means the total weight of

29

(Greedy)

vertices (shortest path means the total weight of
the path is the smallest)

Algorithmic Foundations
COMP108

Example

a b

c d

e

Directed Graph G
(edge label is weight)

a is source vertex

5
5

5 2

2

2

30

(Greedy)

thick lines: shortest path
dotted lines: not in shortest path

2

a b

c d

e

5
5

5

2

2

Algorithmic Foundations
COMP108

Single-source shortest paths vs MST

Shortest paths from a

2

a b

c d

e

5
5

5

2

2
What is the
difference

31

(Greedy)

a b

c d

e

MST

5
5

5 2

2

2

difference
between MST
and shortest
paths from a?

Algorithmic Foundations
COMP108

Algorithms for shortest paths

Algorithms

� there are many algorithms to solve this problem,
one of them is Dijkstra’s algorithm, which
assumes the weights of edges are non-negative

32

(Greedy)

Algorithmic Foundations
COMP108

Idea of Dijkstra’s algorithm

choose the edge leading
to vertex s.t. cost of
path to source is min

source

33

(Greedy)

Mind that the edge
added is NOT
necessarily the
minimum-cost one

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
Input: A directed connected weighted graph G and
a source vertex s

Output: For every vertex v in G, find the shortest
path from s to v

Dijkstra’s algorithm runs in iterations:

34

(Greedy)

Dijkstra’s algorithm runs in iterations:

� in the i-th iteration, the vertex which is the i-th
closest to s is found,

� for every remaining vertices, the current
shortest path to s found so far (this shortest
path will be updated as the algorithm runs)

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
Suppose vertex a is the source, we now show how
Dijkstra’s algorithm works

hb 24

18
9

35

(Greedy)

a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
Every vertex v keeps 2 labels: (1) the weight of the
current shortest path from a; (2) the vertex leading
to v on that path, initially as (∞∞∞∞, -)

hb 24

18
9

(∞∞∞∞, -)

(∞∞∞∞, -)

(∞∞∞∞, -)

36

(Greedy)

a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(∞∞∞∞, -)

(∞∞∞∞, -)

(∞∞∞∞, -)
(∞∞∞∞, -)

(∞∞∞∞, -)

Algorithmic Foundations
COMP108

(∞∞∞∞, -)

(∞∞∞∞, -)

Dijkstra’s algorithm
For every neighbor u of a, update the weight to the
weight of (a,u) and the leading vertex to a. Choose
from b, c, d the one with the smallest such weight.

hb 24

18
9

(9, a)

(14, a)

(∞∞∞∞, -)
chosen

shortest pathnew values being considered choices
37

(Greedy)

(∞∞∞∞, -)

(∞∞∞∞, -)(15, a)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)
(∞∞∞∞, -)

(∞∞∞∞, -)
d

Algorithmic Foundations
COMP108

(∞∞∞∞, -)(33, b)

Dijkstra’s algorithm
For every un-chosen neighbor of vertex b, update the
weight and leading vertex. Choose from ALL un-chosen
vertices (i.e., c, d, h) the one with smallest weight.

hb 24

18
9

(9, a)

(14, a)

38

(Greedy)

chosen

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)
(∞∞∞∞, -)

(∞∞∞∞, -)

(15, a)

shortest pathnew values being considered choices

d

Algorithmic Foundations
COMP108

If a new path with smallest weight is discovered, e.g.,
for vertices e, h, the weight is updated. Otherwise,
like vertex d, no update. Choose among d, e, h.

(33, b)(32, c)

Dijkstra’s algorithm

hb 24

18
9

(9, a)

(14, a)

39

(Greedy)

(∞∞∞∞, -)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(15, a)

(∞∞∞∞, -)

(∞∞∞∞, -)

chosen
(44, c)

shortest pathnew values being considered choices

d

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
Repeat the procedure. After d is chosen, the weight
of e and k is updated. Choose among e, h, k. Next
vertex chosen is h.

hb 24

18
9

(9, a)

(14, a)

chosen (32, c)

40

(Greedy)

(∞∞∞∞, -)

(44, c)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)

(59, d)

(35, d)

(15, a)

shortest pathnew values being considered choices

d

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
After h is chosen, the weight of e and k is updated
again. Choose among e, k. Next vertex chosen is e.

hb 24

18
9

(9, a)

(14, a)

(32, c)

41

(Greedy)

(59,d)

(35, d)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(∞∞∞∞, -)

(51, h)

chosen

(34, h)

(15, a)

shortest pathnew values being considered choices

d

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
After e is chosen, the weight of f and k is updated
again. Choose among f, k. Next vertex chosen is f.

hb 24

18
9

(9, a)

(14, a)

(32, c)

42

(Greedy)

(51, h)

(∞∞∞∞, -)

a

k

c
f

e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(45, e)

(50, e)

chosen

(34, h)

(15, a)

shortest pathnew values being considered choices

d

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
After f is chosen, it is NOT necessary to update the
weight of k. The final vertex chosen is k.

hb 24

18
9

(9, a)

(14, a)

(32, c)

43

(Greedy)

shortest pathnew values being considered

a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(45, e)

(50, e)chosen

(34, h)

(15, a)

Algorithmic Foundations
COMP108

Dijkstra’s algorithm
At this point, all vertices are chosen, and the shortest
path from a to every vertex is discovered.

hb 24

18
9

(9, a)

(14, a)

(32, c)

44

(Greedy)

shortest pathnew values being considered

a

k

c

d

f
e

18

2

9

14

15
5

30

20

44

16

11

6

19

6

(14, a)

(45, e)

(50, e)

(34, h)

(15, a)

Algorithmic Foundations
COMP108

(∞∞∞∞,-)

(∞∞∞∞,-)

a

b c

d

4

3

4

10 3 6

10

Exercise – Shortest paths from a

(∞∞∞∞,-)

(∞∞∞∞,-)(∞∞∞∞,-)

45

(Greedy)

f e

6

4

5

order of (edges) selection:

Algorithmic Foundations
COMP108

Dijkstra’s algorithm

To describe the algorithm using pseudo code, we
give some notations

Each vertex v is labelled with two labels:

� a numeric label d(v) indicates the length of the
shortest path from the source to v found so far

46

(Greedy)

shortest path from the source to v found so far

� another label p(v) indicates next-to-last vertex on
such path, i.e., the vertex immediately before v
on that shortest path

Algorithmic Foundations
COMP108

Pseudo code
// Given a graph G=(V,E) and a source vertex s

for every vertex v in the graph do

set d(v) = ∞∞∞∞ and p(v) = null

set d(s) = 0 and VT = ∅∅∅∅

while V \ VT ≠ ∅∅∅∅ do // there is still some vertex left

begin

Time complexity?

47

(Greedy)

begin

choose the vertex u in V \ VT with minimum d(u)

set VT = VT ∪∪∪∪ { u }

for every vertex v in V \ VT that is a neighbor of u do

if d(u) + w(u,v) < d(v) then // a shorter path is found

set d(v) = d(u) + w(u,v) and p(v) = u

end

Algorithmic Foundations
COMP108

Does Greedy algorithm
always return the best
solution?solution?

Algorithmic Foundations
COMP108

Knapsack Problem

Input: Given n items with weights w1, w2, …, wn and
values v1, v2, …, vn, and a knapsack with capacity
W.

Output: Find the most valuable subset of items
that can fit into the knapsack

49

(Greedy)

that can fit into the knapsack

Application: A transport plane is to deliver the
most valuable set of items to a remote location
without exceeding its capacity

Algorithmic Foundations
COMP108

Example 1

w = 10
v = 60

w = 20
v = 100

w = 30
v = 120

item 1 item 2 item 3 knapsack

capacity = 50

total total

50

(Greedy)

total total
subset weight value

φ 0 0
{1} 10 60
{2} 20 100
{3} 30 120
{1,2} 30 160
{1,3} 40 180
{2,3} 50 220
{1,2,3} 60 N/A

Algorithmic Foundations
COMP108

Greedy approach

w = 10
v = 60

w = 20
v = 100

w = 30
v = 120

item 1 item 2 item 3 knapsack

capacity = 50

Greedy: pick the item with the next largest value if

51

(Greedy)

Greedy: pick the item with the next largest value if
total weight ≤ capacity.

Result:
� item 3 is taken, total value = 120, total weight = 30

� item 2 is taken, total value = 220, total weight = 50

� item 1 cannot be taken Does this
always work?

Time complexity?

Algorithmic Foundations
COMP108

Example 2

w = 7
v = 42

w = 3
v = 12

w = 4
v = 40

w = 5
v = 25

item 1 item 2 item 3 item 4 knapsack

capacity = 10

total total total total

52

(Greedy)

total total
subset weight value

φ 0 0
{1} 7 42
{2} 3 12
{3} 4 40
{4} 5 25
{1,2} 10 54
{1,3} 11 N/A
{1,4} 12 N/A

total total
subset weight value

{2,3} 7 52
{2,4} 8 37
{3,4} 9 65
{1,2,3} 14 N/A
{1,2,4} 15 N/A
{1,3,4} 16 N/A
{2,3,4} 12 N/A
{1,2,3,4} 19 N/A

Algorithmic Foundations
COMP108

Greedy approach

Greedy: pick the item with the next largest value if

w = 7
v = 42

w = 3
v = 12

w = 4
v = 40

w = 5
v = 25

item 1 item 2 item 3 item 4 knapsack

capacity = 10

53

(Greedy)

Greedy: pick the item with the next largest value if
total weight ≤ capacity.

Result:
� item 1 is taken, total value = 42, total weight = 7

� item 3 cannot be taken

� item 4 cannot be taken

� item 2 is taken, total value = 54, total weight = 10

not the
best!!

Algorithmic Foundations
COMP108

Greedy approach 2

Greedy 2: pick the item with the next largest

v/w = 6

w = 7
v = 42

v/w = 4

w = 3
v = 12

v/w = 10

w = 4
v = 40

v/w = 5

w = 5
v = 25

item 1 item 2 item 3 item 4 knapsack

capacity = 10

54

(Greedy)

Greedy 2: pick the item with the next largest
(value/weight) if total weight ≤ capacity.

Result:
� item 3 is taken, total value = 40, total weight = 4

� item 1 cannot be taken

� item 4 is taken, total value = 65, total weight = 9

� item 2 cannot be taken

Work
for Eg 1?

Algorithmic Foundations
COMP108

Greedy approach 2

v/w = 6

w = 10
v = 60

v/w=5

w = 20
v = 100

v/w = 4

w = 30
v = 120

item 1 item 2 item 3 knapsack

capacity = 50

Greedy: pick the item with the next largest

55

(Greedy)

Greedy: pick the item with the next largest
(value/weight) if total weight ≤ capacity.

Result:
� item 1 is taken, total value = 60, total weight = 10

� item 2 is taken, total value = 160, total weight = 30

� item 3 cannot be taken
Not the best!!

Algorithmic Foundations
COMP108

Lesson Learned: Greedy
algorithm does NOT always
return the best solutionreturn the best solution

