Algorithmic Foundations

COMP108

COMP108
Algorithmic Foundations

Dynamic Programming

Prudence Wong

Algorithmic Foundations

COMP108

Dynamic programming
an efficient way to implement
some divide and conquer
algorithms

Algorithmic Foundations

COMP108

Learning outcomes

> Understand the basic idea of dynamic
programming

> Able to apply dynamic programming to compute
Fibonacci numbers

> Able to apply dynamic programming to solve the
assembly line scheduling problem

Algorithmic Foundations

COMP108

Fibonacci numbers ...

Algorithmic Foundations
COMP108

Problem with recursive method

Fibonacci number F(n)

_ 1 ifn=0orl
F(n) = {F(n—l) +F(n-2) ifn>1

n Jlol1]2]3[4]5]6]7]8[9]10
Fmy| 1|12 |3[5|8/[13[21]34]55|89

Pseudo code for the recursive algorithm:
Procedure F (n)
if n==0 or n==1 then
return 1
else
return F(n-1) + F(n-2)

5
(Dynamic Programming)

The execution of F(7)

Algorithmic Foundations
COMP108

6

(Dynamic Programming)

Algorithmic Foundations
COMP108

The execution of F(7)

_ Computation of F(2) is
Fi Fo repeated 8 times!

The execution of F(7)

Algorithmic Foundations
COMP108

Computation of F(3) is also
repeated 5 times!

Algorithmic Foundations
COMP108

The execution of F(7)

How long it takes?

exponential time
(refer to notes on F,
divide & conquer) - =

Many computations are
repeated!!

Algorithmic Foundations
COMP108

Idea for improvement

Memorization:

» Store F(i) somewhere
after we have computed
its value

> Afterward, we don't

need to re-compute F(i); Mai
X . ain
we can retrieve its value
from our memory. set v[0] = v[1]=1
fori=2tondo
[1 refers to array v[i]=-1
() is parameter for calling a
procedure output F(n) o i

Procedure F(n)
if (v[n] < 0) then
v[n] = F(n-1)+F(n-2)
return v[n]

yRamic-Programmin

Algorithmic Foundations

Look at the execution of F(7)

v[o] | 1
vitl | 1
vi21 | -1
vi3l| -1
vi41] -1
vi5] | -1
vie] | -1

vzl | -1,

(Dynamic Programming)

Algorithmic Foundations
COMP108

Look at the execution of F(7)

viol | 1
vitl | 1
vi2] | 2
vi3l| -1
vi41 | -1
vi5] | -1
vie] | -1

vzl | -1,

(Dynamic Programming)

Algorithmic Foundations
COMP108

Look at the execution of F(7)

viol [1
vil | 1
vzl [2
vi31 | 3
vi41 | -1
vi5] | -1
viel | -1
vzl | -1,

(Dynamic Programming)

Look at the execution of F(7)

no recursive calls F(1) & F(0) after F(2)

Algorithmic Foundations
COMP108

v[0]
v[1]

v[2]

1
1
2
visl| 3
5

v[4]

vi5] | -1
viel | -1

vzl | -1,

(Dynamic Programming)

Algorithmic Foundations

Look at the execution of F(7)

v[5]

vie] | -1
no recursive calls F(2) & F(1) after F(3) vi71 | -1,

(Dynamic Programming)

F, F

Look at the execution of F(7)

Fi1 Fyo

no recursive calls F(3) & F(2) after F(4)

Algorithmic Foundations
COMP108

v[0]

v[1]

v[2]

1
1
2
visl| 3
5
8

v[4]
v[5]
vie] |13
vi71 | -1

(Dynamic Programming)

F; Fy

no recursive calls F(4) & F(3) after F(5) v71 |21

Algorithmic Foundations
COMP108

Look at the execution of F(7)

vior | 1
vitl | 1
vi2l | 2
vi3l| 3
vi4l1] B
vi51| 8
vie] | 13

(Dynamic Programming)

Algorithmic Foundations
COMP108

Can we do even better?

Observation

> The 2nd version still makes many function calls, and each
wastes time in parameters passing, dynamic linking, ...

> In general, to compute F(i), we need F(i-1) & F(i-2) only
Idea to further improve
> Compute the values in bottom-up fashion.

> That is, compute F(2) (we already know F(0)=F(1)=1), then
F(3), then F(4)...

Procedure F(n)
Set A[0] = A[1]1 =1
fori = 2 to n do

i Ali] = A[i-1] + A[i-2]

return A[n]

This new
implementation
saves lots of
overhead.

18
(Dynamic Programming)

Algorithmic Foundations
COMP108

Recursive vs DP approach

Recursive version:

Procedure F (n)

if n==0 or n==1 then
return 1

else
return F(n-1) + F(n-2)

Too Slow!
exponential

Dynamic Programming version:

Procedure F (n)

Set A[0] = A[1] =1

|
Efficient!
Time complexity is O(n)

for 1 = 2 to n do

A[i] = A[i-1] + A[i-2]

return A[n]

19
(Dynamic Programming)

Algorithmic Foundations

Summary of the methodology

> Write down a formula that relates a solution of a problem
with those of sub-problems.
E.g. F(n) = F(n-1) + F(n-2).

> Index the sub-problems so that they can be stored and
retrieved easily in a table (i.e., array)

> Fill the table in some bottom-up manner; start filling the
solution of the smallest problem.

> This ensures that when we solve a particular sub-problem, the
solutions of all the smaller sub-problems that it depends are available.

For historical reasons, we call such methodology
Dynamic Programming.
In the late 40's (when computers were rare),
programming refers to the "tabular method". 20

(Dynamic Programming)

Algorithmic Foundations
COMP108

Exercise

Consider the following function
6(n) = 1 if 0 <n<2
- 6(n-1) + 6(n-2) + 6(n-3) ifn>2
1. Write a recursive procedure to compute 6(n)

2. Draw the execution tree of computing 6(6)
recursively

3. Using dynamic programming, write a pseudo code
to compute G(n) efficiently

4. What is the time complexity of your algorithm?

21
(Dynamic Programming)

Algorithmic Foundations
COMP108

Exercise

1 if 0 <n<2
G(n) = {G(n—l) + G(n_Z) + G(n-3) ifn>2

Recursive version:
Procedure G (n)

Dynamic Programming version:
Procedure G(n) O(?)

22
(Dynamic Programming)

Algorithmic Foundations
COMP108

Assembly line scheduling ...

Algorithmic Foundations
COMP108

Assembly line scheduling

2 assembly lines, each with n stations (S, ;: line i station j)
Syjand S, ; perform same task but time taken is different

s1,1 s1,2 s1,3 s1,4 sl,n-l s1 n

52,n-1 sz,n

Problem: To determine which
stations to go in order to
minimize the total time through
the n stations

;+ assembly fime at S,
1' : fransfer time after Si;

(Dynamic Programmin

Algorithmic Foundations
OOOOOOO

Example (1)

Algorithmic Foundations
OOOOOOO

Example (2)

stations chosen: S, ; Si» S;3 Sz4
time required: 5 5 4 3 7 = 24

stations chosen: Sl,l 51,2 52,3 52’4

time required: 5 5 4 3 7 =24

stations chosen: S, ; Si2 S;3 Si4

time required: 15 1 5 4 3 2 4 = 34 %
Aoy vy d)

ooooooooooooooooooooooo
CCCCCCC

How to determine the

best stations to go?

There are altogether 2"

_ choices of stations. \
Should we try them all?

\\\\\\\\\\\\\\\\\\\\\\
CCCCCCC

All possible choices

&) &
> » &) >

B G B B B G G Gy
51.(82./81,/61, (519825152 819525151 514/504/81 52

28
(Dynamic Programming)

Algorithmic Foundations Algorithmic Foundations
OOOOOOOOOOOOOO

All possible choices [S;nh:mm?mic:ife;g:d'] All possible choices {7 Smarty, . :
e 5 > o

' 5 5 50 &) & &) & ;

4) ’) ’ n

)) [60 G |) G

51.(82(519(824)81.(52.(51(5051.(61.51.51 @@@@@@@@@@@@

————————————————————————————

Algorithmic Foundations
COMP108

Good news: Dynamic Programming

> We don't need to try all possible choices.

> We can make use of dynamic programming:

1. If we can compute the fastest ways to get thro' station
S;nand S, ,, then the faster of these two ways is the
overall fastest way.

2. To compute the fastest ways to get thro' S, , (similarly
for S,), we need to know the fastest way to get thro’
Sin-10nd Sy g

3. Ingeneral, we want to know the fastest way to get thro’
S;jand S, ;, for all j.

33
(Dynamic Programming)

Algorithmic Foundations
COMP108

Example again
S111 Si2 Si3 Sia

|
s2,1 | 52 2 s2,3 s2 4
S1,1 | S1 2 S1,3 51 4
|
minimum cost: 5 I
52,1 I 52 2 52,3 52 4
15 |

34
(Dynamic Programming)

Algorithmic Foundations
COMP108

Example again
Si1 Si2 1 Sis S14

35
(Dynamic Programming)

Algorithmic Foundations
COMP108

Example again

S

Si11 Si2 13
5+5-10 10+9

minimum cost: 2 15wi5—\ rttriied-
S2,1 52,2 S2,3 IS2,4
15 5+2+4-11_ -10+4+3-

54 11+3 ! %

(Dynamic Programming)

Algorithmic Foundations

COMP108

Example again

Algorithmic Foundations

COMP108

Example again

S1,1 S1,2 S1,3 S1,4 |
5+45:10 10+9:19— o4 |
minimum cost: O 15+t~ Ateited-\ ,14+2+4, 20
]
52,1 s2,2 S2,3 S2,4 |
15 B5+2+4=11 0wde3-/ ‘10ueieZ

154 11+3-14

1 21
14+7 (Dynamic Programming)

St Si3

5+5=10 10+9=19 Ot

minimum cost: 5 « t5+1+5 HR9— 144244
52,1 52,4

15 5+2+4=11 10r4r3—/ ASrbF— 4
15+4— 11+3-14 14+7

38

(Dynamic Programming)

Algorithmic Foundations

COMP108

A dynamic programming solution
What are the sub-problems?

>given j, what is the fastest way to get thro’ S

>given j, what is the fastest way to get thro' S,
Definitions:

> f1[j] = the fastest time to get thro' S

> f,[j] = the fastest time to get thro' S,
The final solution equals to min { f;[n], f,[n]}
Task:

> Starting from f[1] and f,[1],
compute fi[j]and f,[j] incrementally

39

(Dynamic Programming)

Algorithmic Foundations

Solving the sub-problems (1)
Q1: what is the fastest way to get thro' S, ?
A: either

> the fastest way thro' S; 4, then directly to S, , or
> the fastest way thro' S; i 4, a transfer from line 2

to line 1, and then through Sy
sl,j—l s1

"

40

(Dynamic Programming)

Algorithmic Foundations

Solving the sub-problems (1)
Q1: what is the fastest way to get thro' S, ?
A: either
> the fastest way thro'S, ;_,, then directly to S; ;, or

> the fastest way thro' S, , a transfer from line 2
to line 1, and then ’rhr'ougi't Sy

S1.1 S1,j-1 S1j
Linep
start @ /' \..... Time required
Line 2
52,1 sz,j-l SZ,J (Dynamic Programminl:;

Algorithmic Foundations

Solving the sub-problems (1)
Q1: what is the fastest way to get thro' S; ?
A: either
> the fastest way thro' S, ;, then directly to Sy, or

> the fastest way thro'S; ;_,, a transfer from line 2
to line 1, and then through S ;

Si.1 51,1 Sy

Time required

42
S;.1 s2,3-1 S, i i

J (Dynamic Programmin g)

Algorithmic Foundations

COMP108

Solving the sub-problems (1)
Q1: what is the fastest way to get thro® S, ?
A: either
> the fastest way thro' S; 4, then directly to S, or

> the fastest way thro' S, ;, a transfer from line 2
to line 1, and then ’rhrougix Sy

Conclusion: |fi[j] = min(f;[j-1]+a,; , £[j-1]+¢t,; +a;;)

2

. i S S1j1 Sy
Boundary case: |£[1] = a,, - 1/@ :

Algorithmic Foundations

Solving the sub-problems (2)
Q2: what is the fastest way to get thro' S, ;?

By exactly the same analysis, we obtain the formula for
the fastest way to get thro' S; ;:

,[j] = min(f,[j-1]+a,; , f[j-1]+t;+a,;)

) 2

Boundary case: |f,[1] = a,,

44
(Dynamic Programming)

Summary

Algorithmic Foundations

COMP108

f [j] — 31’1 ifJ=1,
! min (f;[j-1]+a,; , B[j-11+t,;,+a;;) if j>1
£,j] = a; if j=1,
min (£,[j-11+a,; , fi[j-11+t,;,+a,;) if j>1
f* = min(f;[n] , f,[n])
i Fljl falj]
1
2
3
4 !
)

Summary

Algorithmic Foundations
COMP108

fijl= {

. a
f,051 = { 2! . .
f* = min(f;[n] , f,[n])

if j=1,
if j>1
if j=1,
if j>1

filj] falj]
5 | 15

Summary

Algorithmic Foundations

COMP108

] A1

filil=+4 = . .
. a

t,lil = 2!

min (fz[j-l]+a2,j R fIU-1]+tIJ_1+aZJ)
f* = min(f;[n] , f,[n])

if j=1,
if j>1
if j=1,
if j>1

filj1 falj]
5 | 15
10 | 11

A WON P

Summary

Algorithmic Foundations
COMP108

f,li1 = { oLl

. a
Giil= | .
f* = min(f;[n] , f,[n])

if j=1,
if j>1
if j=1,
if j>1

(5] [10]

f1lj] f2[j]

5 |15
10 | 11
19 | 14

Algorithmic Foundations

COMP108

Summary
. ap if j=1,
f,lil= . . . o
. 1 if j=1,
£,01= : . . o
f* = min(f;[n] , f,[n])

Algorithmic Foundations
COMP108

Summary
f L]] — al,l ifJ=1,
b= % et

f* = min(f;[n] , f,[n])

. f*=20 |

[10] [19] [23] o [5] [10] —
filj] faljl o filil faljl
5 | 15 1 |5 |15
10 | 11 2 | 10 | 11
19 | 14 3 (119 14
20 | 21 9) 4 | 20| 21 ;
Pseudo code
setfill]=a,, complexity is
forj=2tondo \
begin O
tf,[j] = min (f,[j-1]+a, . , £,[j-1]+t,. +a, .)))
sethilil m%n(1[]. Fa 2[! Fhgatay) i filjl falj]
end
set f* = min (f,[n] , f,[n]) 2
3
51 4 P

(Dynamic Programming)

DyTaTmtCFTOgTaTTTIT)

